

Performance of a 23 years TOPAZ reanalysis

L. Bertino, F. Counillon, J. Xie,, NERSC

LOM meeting, Copenhagen, 2nd-4th June 2015

- Presentation of the TOPAZ4 system
 Choice of modeling and assimilation tools
- The 23-years physical reanalysis
 - "Good health" of an Ensemble Kalman Filter
 - Ocean variables
 - Sea ice variables
- Plans for TOPAZ5 /perspectives

The HYCOM model at NERSC

- 3D numerical ocean model
 - Hybrid Coordinate Ocean model, HYCOM (U. Miami)
 - Horizontal resolution 12 km
 - Conformal mapping: uniform
- Hybrid vertical coordinate
 - Isopycnal in the interior
 - Z-coordinate at the surface
 - No sigma layers
 - TOPAZ4 uses 28 layers
- Hybrid coordinates in the Arctic
 - Sharp pycnocline
 - Less spurious diapycnal mixing (critical at high model resolution)

Local HYCOM settings

- 4th Order scheme, momentum advection
 - Used in near real time, but not in this reanalysis
- Sea ice coupled with HYCOM
 - CICE V3, NERSC thermo
 - No coupler, same code
- Still using sigma-0
- Rivers using ERA-Interim + TRIP
- No SSS relaxation if Delta S > 0.5 psu

Why <u>dynamic</u> Data Assimilation in the Arctic? Example of ice-salinity correlations in the Barents Sea

Sakov et al., the TOPAZ4 system, OS 2012 Also see Lisæter et al. Oc. Dyn. 2003

Comparison of dynamical to static / climatological covariances

Corelation between ICEC and SSS Dynamic ensemble 0.5 0 -0.5 - 1 Mobile ice edge = mobile covariances

Scattergram between ICEC and SSS

O

0

0

0.8

С 0

Corelation between ICEC and SSS

Static ensemble

The TOPAZ system at a glance

Assimilation

- DEnKF, asynchronous
 - 100 members
 - Local analysis (~90 km radius)
 - Ensemble inflation by 1%
- Observations:
 - Sea Level Anomalies (CLS)
 - SST (NOAA, then UK Met)
 - Sea Ice Concentr. (OSI-SAF)
 - Sea ice drift (CERSAT)
 - T/S profiles (Coriolis, IPY)
 - 400.000 observations per week
 - ~100 in each local radius

SRF: local spread reduction factor

$$\mathsf{SRF} = \sqrt{rac{\mathrm{tr}(\mathsf{HP}^{f}\mathsf{H}^{\mathrm{T}}\mathsf{R}^{-1})}{\mathrm{tr}(\mathsf{HP}^{a}\mathsf{H}^{\mathrm{T}}\mathsf{R}^{-1})}}$$
 -

SRF of TSLA, 23/4/2008

SRF of SST, 23/4/2008

SRF of ICEC, 23/4/2008

SRF of UICE, 23/4/2008

SRF of VICE, 23/4/2008

SRF of T, 23/4/2008 SRF of S, 23/4/2008

Production Centres

Gmes

The TOPAZ system again

- Exploited operationally at MET Norway
 - Since 2008
 - Ecosystem coupled online
- 20 years reanalysis at NERSC
 - Took 2 years to produce
- 3-years ecosystem reanalysis
 - Assimilation of both physical and ocean colour data
- MyOcean/Copernicus
 - Arctic MFC
 - Free distribution of data
- RT Data used by ECMWF wave forecast model
 - Surface currents

m√Ocean

Data assimilation statistics SLA

Gmes

Production Centres

In situ TEM innovation statistics

Depths 300-800 m

Production Centres

Gmes

In situ SAL innovation statistics

Arctic-wide sea level change

Same trend: 2mm/yr Same performance wrt tide gauges

No improvements, no degradation

Production Centres

Arctic SST trend

Improved by assimilation (of SST or of sea ice?)

WWWWWWWW

my Ocean

Arctic SST [°C] Monthly Anomalies and Trend

Independent data: surface drifters

Gmes

www.myocean.eu

9 January 2008: SLA from TOPAZ reanalysis + drifters (± 4 days)

Current velocities near surface

Validation of 1993-2009 reanalyses

- Validation of 1993-2009 reanalyses, focus on vol & heat fluxes, hydrography in the Nordic Seas
- Global / Arctic MFC
- NEMO / TOPAZ
- Monthly means ,both free runs and assimilated runs
- Mean, std, seasonal cycle and trends
- Lien V., S. Hjøllo, M. Skogen, H. Wehde, E. Svendsen, G. Garric, M. Chevallier, F. Counillon, L. Bertino (in progress)

NEMO assim:

TOPAZ assim: Realistic hydrography: AW core at Shetland shelf slope; sloping T and S surfaces; AW above ~500 m.

Gmes

Production Centres

Fram Strait – Water masses

Production Centres

Gmes

Icea area anomalies

Ice drift in the model

Example 3-days end of March 2013

OSI-SAF

TOPAZ

Ice drift seasonality shortcoming of the EVP rheology

my Ocean

Ice thickness validation

Production Centres

Summary performance

- The Good:
 - Constraint of ice edge within +/- 50km
 - Processes related to presence of ice (mixing, blooms)
 - Most input data respected simultaneously
 - Useful for planning field experiments
- The Bad:
 - Heavy computational burden
 - Not yet eddy-resolving (planned for 2017)
 - Insufficient advection of Atlantic Water to Arctic
 - Sea ice too thin
- The Ugly:
 - The sea ice model needs a new rheology to improve the drift

Gmes

- Absence of sea ice biogeochemistry model

Evolution until 2018

Next steps TOPAZ5 (2018)

- Wave-induced mixing in KPP
 - Hourly output in real-time / daily in reanalysis
 - 1 post-doc position soon opened
- Double horizontal resolution (6 km)
- Double vertical resolution (50 z-rho layers)
- Sigma-2*
- Nesting in global NEMO model
- Biological model ECOSMO

Increased horizontal resolution

V1: TOPAZ4 (12 km)

V4: TOPAZ5 (6 km)

Production Centres

Even further steps

- Sea ice model in (horizontal) Lagrangian coordinates
 - Consistent with solid mechanics (elastic-brittle rheology)
 - neXtSIM model (Rampal and Bouillon, OM 2015)
 - Coupling through ESMF.
- Wish list for HYCOM developments:
 - I/O to NetCDF (r/w access water columns) would make assimilation code much simpler.
 - Better cold halocline representation

A new generation of sea ice models First steps

