
Dynamical Two-way Nesting in HBM

 Per Berg

 Danish Meteorological Institute (DMI)

 Contents:

 * Introduction to HBM and some applications involving nesting.
 * Details on nesting, attempt to shed some light on what we do.

HBM: HIROMB-BOOS Model

 An ocean circulation model code (i.e. solves IBVP)

 Different applications: Same code build, different input data.
 Regional operational forecast model at DMI:
 - DMI is responsable for storm surge warning in DK
 - MyOcean Baltic MFC --> Copernicus Baltic MFC
 Research: e.g. PanEU, Baffin Bay

 Features two-way dynamical nesting
 (subject of this talk)

 Continuously being developed and validated by the
 HBM partners: DMI (repo), BSH, MSI, FMI, plus third-parties MoU

dmi.dk

myocean.eu

Examples of Applications:
Storm Surge Warning and MyOcean/Copernicus

Regional operational forecasting:
same code, different focus, different input

Water levels predictions at Danish coasts, 4 times per day
Ocean state of Baltic, physics and bio-geo-chemical, 2 times per day

Pan-European setup … thanks to Lars Jonasson and Jens Murawski

For research purposes (so far ...)

For operational
forecasting on a
pan-European scale

Address pan-European
and regional aspects of
climate change
- basis for coupled model

9 two-way nested domains:
 Bosphorus / Dardanelles Straits: ~0.1 n.m.
 Inner Danish waters: ~0.5 n.m.
 Marmara Sea / Gibraltar / Baltic Sea: ~1 n.m.
 North Sea / Shelf / Med.Sea / Black Sea: ~3 n.m.

Vertical resolution down to 1 meter, up to 122 layers

Why nesting?
 Nesting in HBM is

a dynamical two-way exchange of mass and momentum at model time step level
a practical means of setting up models with different local demands on
“resolution properties” such as:

 higher horizontal resolution,
 higher vertical resolution,
 larger toplayer size,
 smaller time step size

 in different parts of the modelled region.

 With nesting in HBM it becomes feasible to run models operationally
 that would otherwise be too computationally demanding,
 e.g. using the smallest grid spacing and/or the smallest time step size
 throughout the entire domain.

 Alternatives to nesting (two-way nesting, dynamical nesting) could be
 curvi-linear grids,
 unstructured grids,
 or even regular structured grids which are computationally

 decoupled from each other with one-way transfer boundaries between.

Dynamical two-way nesting in HBM

Basic Fundamentals

 "control volume formulation"
 Arakawa C-grid as basis
 scalar variables representing grid-cell averages and velocity
 components representing average values on the grid-cell faces
 formulate transport for mass and tracers as budget equations for
 each grid-cell with exchange to neighbor grid-cells across
 grid-cell faces

 In principle, dynamical two-way nesting is no exception to this!
 we implement the nesting on the finite difference scheme level

 For practical reasons, we use
 a number (up to 99) of larger areas of same “resolution properties”
 glued together by "nesting" along borders, plus some restrictions on
 allowed jumps in “resolution properties” (integer multiples)

 description of nesting for a specific setup is defined by the user at runtime

Set up two-way nested models

Example with 5 areas, specify borders:
Red area is inclosed into two black areas and is enclosing two grey areas

--- Not like Chinese boxes!

Generalization of nesting implementation

Example, solve for momentum+mass, pseudo-code:

Inside time-loop of main-prg:
call SolveHydrodynamics (timelevel(mainarea))

where:
subroutine SolveHydrodynamics (level)
 do itl=1,max_iterations_on_this_level
 do ia=1,narea
 if (onthislevel(ia,level)) call SolveMomEq (ia,itl)
 enddo

 call SolveNextLevel (level+1)

 do ia=1,narea
 if (onthislevel(ia,level)) call SolveMassEq (ia,itl)
 enddo
 enddo
end subroutine SolveHydrodynamics

using recursion of time levels:
subroutine SolveNextLevel (level)
 if (level <= maxtimelevels) call SolveHydrodynamics(level)
end subroutine SolveNextLevel

Generalization of nesting implementation

momentum+mass, pseudo-code continued:

subroutine SolveMomEq (ia, ...)
 call turbulence_model(...)
 call momeqs(u(ia), v(ia), un(ia), vn(ia), ...)

...
 do iao=1, No_of_areas_nesting_from_ia
 ! ia: inclosing domain, iia: enclosing domain
 iia = nestingfrom(ia,iao)

 call mom_c_f(u(ia), v(ia), un(ia), vn(ia), ... &
 un(iia), vn(iia))

 enddo
end subroutine SolveMomEq

Generalization of nesting implementation, pseudo-code

momentum+mass, continued:

subroutine SolveMassEq (ia, ...)
 do ii=1,nestinglevels(ia)
 ! iia: enclosing domain, ia: inclosing domain
 iia = nestingto(ia,ii)

 call mom_f_c (un(ia), vn(ia), un(iia), vn(iia), ...)
 enddo

 ! solve mass equations for zn at interior points:
 call masseqs(z(ia), zn(ia), un(ia), vn(ia), ...)

 do iao=1, No_areas_nesting_from_ia
 ! ia: inclosing, iia: enclosing
 iia = nestingfrom(ia,iao)

 call z_c_f(zn(ia), z(ia), un(ia), vn(ia), &
 un(iia), vn(iia), ...)

 enddo
end subroutine SolveMassEq

Bottlenecks related to nesting

With our generalized approach, we cannot assume that points in the vicinity
of a nesting border in the enclosing and in the inclosing areas
reside on the same MPI task, or on the same OpenMP thread,
not even when they are located in geographically overlapping regions.

Extended explicit communication patterns needed:

barriers
gathers
encoding/decoding

plus increased difficulties when

keeping accessed data contiguous and unit stride
maintaining proximity of accessed data
doing efficient SIMD vectorization

Demo example:

Regional forecasts on a
Pan-European scale

e.g. water levels

Interbasin connections
and

general circulation

Venice

Venice

Monaco

Bilbao

Whitby

Stockholm

Time consumption
for Pan-EU setup

On DMI’s ancient in-house computer: ~2.5h / 5 day forecast

More modern H/W (Ivy Bridge): <1.5h / 5 day forecast

both using a modest 360 cores

demonstrated scaling up to ~1600 cores

OK for operational forecasting

kind of hopeless for climate simulations ... as is

Further reading:
Per Berg and Jacob Weismann Poulsen: “Implementation details for HBM”
 http://beta.dmi.dk/fileadmin/Rapporter/TR/tr12-11.pdf

Per Berg: “Mixing in HBM”
http://www.dmi.dk/fileadmin/Rapporter/SR/sr12-03.pdf

Jacob Weismann Poulsen and Per Berg: “More details HBM – general modelling
theory and survey of recent studies”

http://beta.dmi.dk/fileadmin/Rapporter/TR/tr12-16.pdf

Jacob Weismann Poulsen and Per Berg: “Thread scaling with HBM”
http://www.dmi.dk/fileadmin/user_upload/Rapporter/tr12-20.pdf

Jacob Weismann Poulsen, Per Berg and Karthik Raman: “Better Concurrency and
 SIMD on HBM”

Chapter 3 in “High Performance Parallelism Pearls
-- Multicore and Many-core Programming Approaches”,

Jim Jeffers and James Reinders (eds.),
Morgan Kaufmann, 2014, ISBN 978-0-128-02118-7

PRACE Final Report:
“Next generation pan-European coupled Climate-Ocean Model - Phase 1 (ECOM-I)”

http://beta.dmi.dk/fileadmin/Rapporter/TR/tr12-11.pdf
http://www.dmi.dk/fileadmin/Rapporter/SR/sr12-03.pdf
http://beta.dmi.dk/fileadmin/Rapporter/TR/tr12-16.pdf
http://www.dmi.dk/fileadmin/user_upload/Rapporter/tr12-20.pdf

	Motivation
	Key technical requirements
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

