

Layered Ocean Model Workshop

2-4 of June 2015 - Copenhagen, Denmark

The REMO Ocean Data Assimilation System into HYCOM

Davi Mignac

Alex SANTANA, Filipe COSTA, Clemente TANAJURA

Oceanographic Modeling and Observation Network (REMO)

DATA ASSIMILATION SYSTEM

- RODAS REMO Ocean Data Assimilation System
 - Ensemble Optimal Interpolation (Oke et al., 2005; Xie and Zhu, 2010; Tanajura et al., 2014)
 - Results of the first version of the full DA system + OSEs
- RODAS consists of:
 - 1. 00 UTC Assimilation of SST from UK MetOffice OSTIA
 - 2. 03 UTC Assimilation of **T/S Argo** data
 - 3. 06 UTC Assimilation of along-track SLA from all altimeters
 - Not the same employed today in the Brazilian Navy operational system (Argo DA still to be implemented)

DATA ASSIMILATION SYSTEM

Assimilation is performed every 3 days

	A_SST	A_IN_SITU	A_SLA
Observational window	-	72h	72h
Covariance length scales	150 km	150 km	150 km
Superobs (grid cells)	2x2	-	2x2
State vector	ALL	DP, U,V, T, S	ALL

126 ensemble members

- 21 members per year
- 60-day window centered in the corresponding assimilation day
- 6 years to capture the variability spread
- For more details about RODAS (Tanajura et al., 2014; Mignac et al., 2015)

HYCOM CONFIGURATION

INITIAL CONDITION - OSEs

- 2002-2007
 assimilation of SST +
 Argo get a
 stable SSH mean
- 2004 2007
 SSH mean
- 2008-2010
 assimilation including
 SLA
- IC on 1 Jan 2010

Mignac et al., 2015 (OS)

CONFIGURATIONS - OSES

1 JAN 2010 - 31 DEC 2012

RODAS	Assimilation	of SLA, SST	and Argo
-------	--------------	-------------	----------

NOARGO	Withholding	only Argo
--------	-------------	-----------

NOOSTIA Withholding only OSTIA

NOASSIM Withholding all observation types and turning off DA

FREE Free run

Same model configuration for all the runs

RESULTS – T/S

VERTICAL PROFILE OF RMSD WITH RESPECT TO ARGO

1. ARGO

- -> T/S of subsurface
- -> S in the upper
 ocean!

Oke and Schiller (2007) Balmaseda et al. (2007) Lea et al. (2014)

-> System is not optimal (covariances)

RESULTS – T/S

VERTICAL PROFILE OF RMSD WITH RESPECT TO ARGO

2. OSTIA

-> T of the mixed layer

3. ALTIMETERS

-> small impact on T and S

RESULTS – RMSD OSTIA (°C)

RESULTS – CORR AVISO SLA GRIDDED DATA

VELOCITY - GULF STREAM (m/s)

VELOCITY - BRAZIL-MALVINAS CONFLUENCE (m/s)

ZONAL VELOCITY

SSH MEAN (m)

SUMMARY

- RODAS
 able to improve the SST, T/S subsurface structure and circulation into HYCOM
- Complementarity of the observation systems
 - OSTIA quality of SST and T of the mixed layer
 - Argo Tof sub-surface and especially S
 - Altimeters quality of SLA and mainly improve the large and mesoscale circulation
- New OSEs in the higher resolution grids along the Brazilian coast
 - XBTs, fixed moorings of the PIRATA array and gliders

ADDITIONAL FIGURES

ADDITIONAL FIGURES

CORR SST AND S AT 30N

