
1
Layered Ocean Model workshop, June 2015

Refactoring for Xeon Phi
Jacob Weismann Poulsen, DMI, Denmark
Per Berg, DMI, Denmark
Karthik Raman, Intel, USA

2
Layered Ocean Model workshop, June 2015

Outline

Data structures
Node performance

Thread parallelization
SIMD vectorization

Performance results

3
Layered Ocean Model workshop, June 2015

The data is sparse (highly irregular)

11.1%

k

j

i

YOU ARE HERE

4
Layered Ocean Model workshop, June 2015

Data layout (serial, indirect addressing)

do iw = 1,iw2
 i = ind(1,iw)
 j = ind(2,iw)
 ! all surface wet-points (i,j) reached with stride-1
 ... u(iw) …
enddo
do iw = 1,iw2
 kb = kh(iw)
 if (kb < 2) cycle
 i = ind(1,iw)
 j = ind(2,iw)
 mi0 = mcol(iw)-2
 do k = 2, kb
 ! all subsurface wet-points (k,i,j) are reached with stride-1
 mi = mi0 + k
 ... u(mi) ...
 enddo
enddo

iw2 iw2+1 iw30 1 2 3 4

Land Surface Subsurface

5
Layered Ocean Model workshop, June 2015

Data layout (serial)

Data layout revisited:
Horizontally (unstructured) columns
Indirect addressing in the horizontal:
 msrf(0:,0:), ind(1:2,:), mcol(0:), kh(0:)

Direct addressing in the vertical
(GungHo paper 2013 – similar conclusion for NWP)

Observation
Any enumeration of the surface points and any
enumeration of the subsurface points imposes a unique
cache pattern (D1, L2, L3, TLB) and some are obviously
better than others. Finding the infimum is NP-hard but
space-filling-curves could lead to reasonable heuristics. A
true challenge to formulate a well-posed problem, though.

6
Layered Ocean Model workshop, June 2015

Data layout for threads (or tasks + explicit halo)

...
!$OMP PARALLEL DEFAULT(SHARED)
call foo(...);call bar(...); ...
!$OMP BARRIER
call halo_update(...)
!$OMP BARRIER
call baz(...);call quux(...); ...
!$OMP END PARALLEL
...
subroutine foo(...)
 ...
 call domp_get_domain(kh, 1, iw2, nl, nu, idx)
 do iw=nl,nu
 i = ind(1,iw)
 j = ind(2,iw)
 ! all threadlocal wet-points (:,:,:) are reached here
 ...
 enddo
end subroutine foo

Another layout of the columns will impose another threaded
layout of data.

Each tread will handle a subinterval of columns:

7
Layered Ocean Model workshop, June 2015

Thread (and task) load balancing

Formal definition:

Observation: The NP-hard problem is reduced to the
integer partition problem which provides an exact solution
within time complexity: Ο(m²n).
Heuristics: Greedy approach or alternating greedy
approach with runtime complexity: Ο(n).
The weights can be a sum of sub weights while retaining
problem complexity!

8
Layered Ocean Model workshop, June 2015

Thread parallelism - insights

SPMD based (like MPI) and not loop based in order
to minimize synchronization. A single openMP block
with orphaned barriers surrounding synchronization
points such as MPI haloswaps will do (nice side-
effect: No explicit scoping).
On NUMA architectures proper NUMA-layout for all
variables is important.
Consistent loop structures and consistent data layout
and usage throughout the whole code.
Proper balancing is very important at scale
(Amdahl). It can be done either offline (exact) or
online (heuristic).
Tuning options for balancing: Linear regression
based on profiles, cf. DMI technical report tr12-20.

9
Layered Ocean Model workshop, June 2015

Refactoring for SIMD

Actually not as simple as it may sound....

10
Layered Ocean Model workshop, June 2015

SIMD target loops

All loops are structured like this:

Could vectorize at the iw-level but hardware is not
ready. Thus, the aim is to vectorize all the k-loops
Trivial obstacles to vectorization

Indirections
Assumed-shape (F2008 contiguous attribute)
Branches (min/max/sign)

do iw= ! horizontal - mpi/openmp parallelization
 do k= ! vertical - vectorization
 do ic= ! innermost loop (in advection) with number of tracers
 …
 enddo
 enddo
enddo

11
Layered Ocean Model workshop, June 2015

SIMD target loops

Design choice for stencil codes: columns one-by-one using
work arrays (tune for tripcount) or whole stencil in one go
(tune for intensity) plus required remainder loops.
Refactor strategy using computational intensity (CI) and D1
pressure as the guide lines. High CI is good
… but not too high; use blocking to reduce pressure on D1,
L2,...

12
Layered Ocean Model workshop, June 2015

Premature abstraction is the root of all evil
(a hands on experience)

13
Layered Ocean Model workshop, June 2015

Premature abstraction is the root of all evil

This topic may not coincide with your expectations:
I will not talk about how one can loose a leg with OOD
(google it, e.g. Mike Acton).
I will not talk about how one looses performance by using
the HW abstraction that cores within a node have
distributed memory (do the math on a piece of paper).
…

Instead I will describe how the most simple HW abstraction
(a 2D-array) will result in more than 2x performance loss on
Xeon Phi and this should serve as a warning against using
even the most simple abstractions without a prior analysis of
consequences.

14
Layered Ocean Model workshop, June 2015

Premature abstraction is the root of all evil

The design idea was to hold all tracers in one 2D-
array and treat all tracers in a similar fashion in one
go like this (simplified illustration of the obstacle):

With dynamic nc the compiler vectorizes nc-loop:
(4): (col. 7) remark: LOOP WAS VECTORIZED
With static nc, the compiler vectorizes the k-loop:
(1): (col 7) remark: LOOP WAS VECTORIZED

 1 do k=2,kmax
 2 k1 = k+off1
 3 k2 = k+off2
 4 t(1:nc,k) = t(1:nc,k) + A(k)*(B(1:nc,k1)-B(1:nc,k2))
 5 enddo

15
Layered Ocean Model workshop, June 2015

Premature abstraction is the root of all evil

Alas, this is the code generated:
AVX (essentially a software gather operation):

MIC (a hardware gather):

Especially for the MIC target not what we aimed at
(issues on SNB/IVB with 256-bit unaligned load/store
so a software gather may not be as bad as it looks to
me)

...
vmovsd (%r10,%rcx,2), %xmm6
vmovhpd 16(%r10,%rcx,2), %xmm6, %xmm6
vmovsd 32(%r10,%rcx,2), %xmm7
vmovhpd 48(%r10,%rcx,2), %xmm7, %xmm7
vinsertf128 $1, %xmm7, %ymm6, %ymm7
...

...
vgatherdpd (%r13,%zmm2,8), %zmm6{%k5}
...

16
Layered Ocean Model workshop, June 2015

Premature abstraction is the root of all evil

The obstacle in a nutshell: A static nc (2) implies unrolling:

And the unrolling implies that the optimizer sees the loop as a
stride-2 loop but we know better so let's state what the
compiler should have done (next slide)
And no.... interchanging loops is not the solution since it
implies a 2x cost on BW and VL is reduced by 1/nc :

do k=1,kmax
 k1 = k+off1
 k2 = k+off2
 t(1,k) = t(1,k) + A(k)*(B(1,k1)-B(1,k2))
 t(2,k) = t(2,k) + A(k)*(B(2,k1)-B(2,k2))
enddo

17
Layered Ocean Model workshop, June 2015

The compiler transformation that we hoped for:

Proper handling of a mix of 2D and 1D (load with nc=2):

Proper handling of a mix of 2D and 1D (arithmetic):

But did not get so we need to drop the 2D abstraction if
performance matters to us.

zmm1← t(1,1) t(2,1) t(1,2) t(2,2) t(1,3) t(2,3) t(1,4) t(2,4)

zmm2← t(1,5) t(2,5) t(1,6) t(2,6) t(1,7) t(2,7) t(1,8) t(2,8)

zmm3← B(1,1+k1) B(2,1+k1) B(1,2+k1) B(2,2+k1) B(1,3+k1) B(2,3+k1) B(1,4+k1) B(2,4+k1)

zmm4← B(1,5+k1) B(2,5+k1) B(1,6+k1) B(2,6+k1) B(1,7+k1) B(2,7+k1) B(1,8+k1) B(2,8+k1)

zmm5← B(1,1+k2) B(2,1+k2) B(1,2+k2) B(2,2+k2) B(1,3+k2) B(2,3+k2) B(1,4+k2) B(2,4+k2)

zmm6← B(1,5+k2) B(2,5+k2) B(1,6+k2) B(2,6+k2) B(1,7+k2) B(2,7+k2) B(1,8+k2) B(2,8+k2)

zmm7← A(1) A(1) A(2) A(2) A(3) A(3) A(4) A(4)

zmm8← A(5) A(5) A(6) A(6) A(7) A(7) A(8) A(8)

zmm9 = zmm1 + zmm7*(zmm3-zmm5)!k=1,4;nc=1,2
zmm10 = zmm2 + zmm8*(zmm4-zmm6)!k=5,8;nc=1,2

Trick

18
Layered Ocean Model workshop, June 2015

Performance numbers

The module for the advection was chosen as a
candidate for tunings. A single node run on both
IVB and KNC showed that ≈ 44% of the time was
spent here. The time spent on KNC was 3x the
time on IVB when we started to investigate this.

19
Layered Ocean Model workshop, June 2015

Benchmark systems

Intel Xeon E5-2697 v2 (30Mb cache, 2.70 GHz)
Launched Q3, 2013
Number of cores/threads on 2 sockets: 24/48
DDR3-1600 MHz, 8*8 GB
Peak flops (HPL: 543 GF/s, 450 Watt)
Peak BW (Stream: 84 GB/s, 408 Watt)

Intel Xeon Phi 7120A (30.5Mb cache, 1.238 GHz)
Launched Q2, 2013
Number of cores/threads: 60/240
GDDR5, 5.5 GT/s, 16 GB
Peak flops (HPL: 999 GF/s, 313 Watt)
Peak BW (Stream: 181 GB/s, 283 Watt)

20
Layered Ocean Model workshop, June 2015

Performance (memory bandwidth bound)

Advection (same algorithm) 2S-IVB 2697v2 KNC C0 7120A

Threads 48 240

Timing [sec] 81 72

Relative timing [%] 100 89

Stream Triad [GB/s] 86 177

Stream Triad [GB/s/watt] 0.21 0.63

BW sustained [GB/sec] 86 155

BW sustained [% peak] 100 88

BW sustained [GB/sec/watt] 0.21 0.55

Vector intensity sustained 7

21
Layered Ocean Model workshop, June 2015

More information

The foray is documented in
chapter 3 in High Performance
Parallelism Pearls (Morgan
Kaufmann; ISBN: 978-
0128021187).
Code and testcase is available
online: http://lotsofcores.com

The preparation work is documented in a technical report:
http://www.dmi.dk/fileadmin/user_upload/Rapporter/tr12-20.pdf

http://lotsofcores.com/

22
Layered Ocean Model workshop, June 2015

Acknowledgement

Michael Greenfield, Intel
Larry Meadows, Intel
John Levesque, Cray
Bill Long, Cray

