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The data is sparse (highly irregular)
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Data layout (serial, indirect addressing)

do iw = 1,iw2
  i = ind(1,iw)
  j = ind(2,iw)
  ! all surface wet-points (i,j) reached with stride-1
      ... u(iw) …
enddo 
do iw = 1,iw2
  kb = kh(iw)
  if (kb < 2) cycle
  i = ind(1,iw)
  j = ind(2,iw)
  mi0 = mcol(iw)-2
  do k = 2, kb
    ! all subsurface wet-points (k,i,j) are reached with stride-1
    mi = mi0 + k
    ... u(mi) ...
  enddo
enddo 

iw2 iw2+1 iw30 1 2 3 4

Land Surface Subsurface
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Data layout (serial)

Data layout revisited:
Horizontally (unstructured) columns
Indirect addressing in the horizontal:
 msrf(0:,0:), ind(1:2,:), mcol(0:), kh(0:) 

Direct addressing in the vertical
(GungHo paper 2013 – similar conclusion for NWP)

Observation  
Any enumeration of the surface points and any 
enumeration of the subsurface points imposes a unique 
cache pattern (D1, L2, L3, TLB) and some are obviously 
better than others. Finding the infimum is NP-hard but 
space-filling-curves could lead to reasonable heuristics. A 
true challenge to formulate a well-posed problem, though. 
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Data layout for threads (or tasks + explicit halo)

...
!$OMP PARALLEL DEFAULT(SHARED) 
call foo( ... );call bar(...); ...
!$OMP BARRIER
call halo_update(...)
!$OMP BARRIER
call baz( ... );call quux(...); ...
!$OMP END PARALLEL
...
subroutine foo(...)
  ...
  call domp_get_domain(kh, 1, iw2, nl, nu, idx)
  do iw=nl,nu
    i = ind(1,iw)
    j = ind(2,iw)
    ! all threadlocal wet-points (:,:,:) are reached here 
    ...
  enddo
end subroutine foo

Another layout of the columns will impose another threaded 
layout of data. 

Each tread will handle a subinterval of columns: 
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Thread (and task) load balancing

Formal definition:

Observation: The NP-hard problem is reduced to the 
integer partition problem which provides an exact solution 
within time complexity: Ο(m²n).  
Heuristics: Greedy approach or alternating greedy 
approach with runtime complexity: Ο(n).
The weights can be a sum of sub weights while retaining 
problem complexity! 
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Thread parallelism - insights

SPMD based (like MPI) and not loop based in order 
to minimize synchronization. A single openMP block 
with orphaned barriers surrounding synchronization 
points such as MPI haloswaps will do (nice side-
effect: No explicit scoping).
On NUMA architectures proper NUMA-layout for all 
variables is important.
Consistent loop structures and consistent data layout 
and usage throughout the whole code.
Proper balancing is very important at scale 
(Amdahl). It can be done either offline (exact) or 
online (heuristic).
Tuning options for balancing: Linear regression 
based on profiles, cf. DMI technical report tr12-20.
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Refactoring for SIMD

Actually not as simple as it may sound....
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SIMD target loops

All loops are structured like this:

Could vectorize at the iw-level but hardware is not 
ready. Thus, the aim is to vectorize all the k-loops
Trivial obstacles to vectorization

Indirections
Assumed-shape (F2008 contiguous attribute)
Branches (min/max/sign)

do iw=      ! horizontal - mpi/openmp parallelization
  do k=     ! vertical   - vectorization 
    do ic=  ! innermost loop (in advection) with number of tracers
      …
    enddo
  enddo 
enddo
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SIMD target loops

Design choice for stencil codes: columns one-by-one using 
work arrays (tune for tripcount) or whole stencil in one go 
(tune for intensity) plus required remainder loops.
Refactor strategy using computational intensity (CI) and D1 
pressure as the guide lines. High CI is good
… but not too high; use blocking to reduce pressure on D1, 
L2,...
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Premature abstraction is the root of all evil 
(a hands on experience)
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Premature abstraction is the root of all evil

This topic may not coincide with your expectations:
I will not talk about how one can loose a leg with OOD 
(google it, e.g. Mike Acton).
I will not talk about how one looses performance by using 
the HW abstraction that cores within a node have 
distributed memory (do the math on a piece of paper).
…

Instead I will describe how the most simple HW abstraction 
(a 2D-array) will result in more than 2x performance loss on 
Xeon Phi and this should serve as a warning against using 
even the most simple abstractions without a prior analysis of 
consequences. 
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Premature abstraction is the root of all evil

The design idea was to hold all tracers in one 2D-
array and treat all tracers in a similar fashion in one 
go like this (simplified illustration of the obstacle): 

With dynamic nc the compiler vectorizes nc-loop:
(4): (col. 7) remark: LOOP WAS VECTORIZED
With static nc, the compiler vectorizes the k-loop:
(1): (col 7) remark: LOOP WAS VECTORIZED

    1 do k=2,kmax
    2   k1 = k+off1
    3   k2 = k+off2
    4   t(1:nc,k) = t(1:nc,k) + A(k)*(B(1:nc,k1)-B(1:nc,k2)) 
    5 enddo
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Premature abstraction is the root of all evil

Alas, this is the code generated:
AVX (essentially a software gather operation):

MIC (a hardware gather):

Especially for the MIC target not what we aimed at 
(issues on SNB/IVB with 256-bit unaligned load/store 
so a software gather may not be as bad as it looks to 
me)

...
vmovsd  (%r10,%rcx,2), %xmm6    
vmovhpd 16(%r10,%rcx,2), %xmm6, %xmm6 
vmovsd  32(%r10,%rcx,2), %xmm7  
vmovhpd 48(%r10,%rcx,2), %xmm7, %xmm7 
vinsertf128 $1, %xmm7, %ymm6, %ymm7
... 

...
vgatherdpd (%r13,%zmm2,8), %zmm6{%k5}        
... 
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Premature abstraction is the root of all evil 

The obstacle in a nutshell: A static nc (2) implies unrolling:

And the unrolling implies that the optimizer sees the loop as a 
stride-2 loop but we know better so let's state what the 
compiler should have done (next slide)
And no.... interchanging loops is not the solution since it 
implies a 2x cost on BW and VL is reduced by 1/nc : 

do k=1,kmax
  k1 = k+off1
  k2 = k+off2
  t(1,k) = t(1,k) + A(k)*(B(1,k1)-B(1,k2))
  t(2,k) = t(2,k) + A(k)*(B(2,k1)-B(2,k2))
enddo
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The compiler transformation that we hoped for: 

Proper handling of a mix of 2D and 1D (load with nc=2):

Proper handling of a mix of 2D and 1D (arithmetic):

But did not get so we need to drop the 2D abstraction if 
performance matters to us. 

zmm1← t(1,1) t(2,1) t(1,2) t(2,2) t(1,3) t(2,3) t(1,4) t(2,4)

zmm2← t(1,5) t(2,5) t(1,6) t(2,6) t(1,7) t(2,7) t(1,8) t(2,8)

zmm3← B(1,1+k1) B(2,1+k1) B(1,2+k1) B(2,2+k1) B(1,3+k1) B(2,3+k1) B(1,4+k1) B(2,4+k1)

zmm4← B(1,5+k1) B(2,5+k1) B(1,6+k1) B(2,6+k1) B(1,7+k1) B(2,7+k1) B(1,8+k1) B(2,8+k1)

zmm5← B(1,1+k2) B(2,1+k2) B(1,2+k2) B(2,2+k2) B(1,3+k2) B(2,3+k2) B(1,4+k2) B(2,4+k2)

zmm6← B(1,5+k2) B(2,5+k2) B(1,6+k2) B(2,6+k2) B(1,7+k2) B(2,7+k2) B(1,8+k2) B(2,8+k2)

zmm7← A(1) A(1) A(2) A(2) A(3) A(3) A(4) A(4)

zmm8← A(5) A(5) A(6) A(6) A(7) A(7) A(8) A(8)

zmm9  = zmm1 + zmm7*(zmm3-zmm5)!k=1,4;nc=1,2
zmm10 = zmm2 + zmm8*(zmm4-zmm6)!k=5,8;nc=1,2 

Trick
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Performance numbers

The module for the advection was chosen as a 
candidate for tunings. A single node run on both 
IVB and KNC showed that ≈ 44% of the time was 
spent here. The time spent on KNC was 3x the 
time on IVB when we started to investigate this.
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Benchmark systems

Intel Xeon E5-2697 v2 (30Mb cache, 2.70 GHz)
Launched Q3, 2013
Number of cores/threads on 2 sockets: 24/48
DDR3-1600 MHz, 8*8 GB
Peak flops (HPL: 543 GF/s, 450 Watt)
Peak BW (Stream: 84 GB/s, 408 Watt)

Intel Xeon Phi 7120A (30.5Mb cache, 1.238 GHz)
Launched Q2, 2013
Number of cores/threads: 60/240
GDDR5, 5.5 GT/s, 16 GB
Peak flops (HPL: 999 GF/s, 313 Watt)
Peak BW (Stream: 181 GB/s, 283 Watt)
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Performance (memory bandwidth bound)

Advection (same algorithm) 2S-IVB 2697v2 KNC C0 7120A

Threads 48 240

Timing [sec] 81 72

Relative timing [%] 100 89

Stream Triad [GB/s] 86 177

Stream Triad [GB/s/watt] 0.21 0.63

BW sustained [GB/sec] 86 155

BW sustained [% peak] 100 88

BW sustained [GB/sec/watt] 0.21 0.55

Vector intensity sustained 7
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More information

The foray is documented in 
chapter 3 in High Performance 
Parallelism Pearls (Morgan 
Kaufmann; ISBN: 978-
0128021187).
Code and testcase is available 
online: http://lotsofcores.com

The preparation work is documented in a technical report: 
http://www.dmi.dk/fileadmin/user_upload/Rapporter/tr12-20.pdf

http://lotsofcores.com/
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