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Outline

• Use Polynomial Chaos (PC) expansions to quantify
uncertainties in oceanic forecasts

• Approximate model with an accurate surrogate
• Compute series coefficients via an ensemble
• Validate the accuracy of the surrogate
• Mine the series for statistical information in lieu of model

• Initial Condition uncertainties in the Gulf of Mexico
• How to perturb a field?
• How to localize perturbations around a dynamical process?
• Series Validation
• Statistical Outputs

• Uncertainty Experiments to date
• Initial conditions uncertainties (small ensemble)
• Initial conditions and wind forcing uncertainties
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HYCOM surrogate idea

• M(x , t , ξ) is a model output
• ξ is a stochastic variable that represents the dependence

of M on the uncertain input data
• ξ is characterized by its probability density function ρ(ξ)

• The mean of M is: M(x , t) =
∫

M(x , t , ξ) ρ(ξ) dξ

• Its variance is

σ2(M) = (M −M)2 =

∫
(M −M)2 ρ(ξ) dξ

• A surrogate embodies the dependence of M on the
uncertain data ξ via a spectral series in ξ:

M(x , t , ξ) =
P∑

n=0

M̂n(x , t)ψn(ξ)
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PC surrogate series M(x , t , ξ) =
P∑

n=0

M̂n(x , t) ψn(ξ)

• M̂n(x , t): series coefficients
• ψk (ξ): orthonormal basis functions w.r.t. ρ(ξ)

ψmψn =

∫
ψm(ξ)ψn(ξ)ρ(ξ)dξ = δm,n

• ψm(ξ) consits of Legendre polynomials when ρ(ξ) is a
uniform distribution

• mean: M =
∑P

n=0 M̂n(x , t)ψn, ψ0 = M̂0(x , t)

• Variance: (M −M)2 =
∑P

n=1 M̂2
n (x , t)

• Where to truncate the series, P ? Monitor Variance
• How to determine the coefficients M̂n?
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Calculating the PC series coefficients
• Minimize the norm of the approximation error by using

either Galerkin projection, interpolation, least square, or
compressed sensing. All can be implemented via
ensemble.

• The least square approaches are useful when model
response includes model noise.

• Galerkin projection exploits orthogonality

M̂ = Mψm =

∫
M(x , t , ξ)ψm(ξ)ρ(ξ)dξ

≈
Q∑

q=1

M(x , t , ξq)ψm(ξq)ωq

• ξq, ωq are appropriate quadrature roots,weights
• M(x , t , ξq) requires an ensemble at the quadrature roots
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Gulf of Mexico Circulation

Figure: Sea Surface Height in cm from AVISO

Target Loop Current Eddy separation during May-June 2010.
Capture the role of the frontal anticyclones in eddy detachment.
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Uncertainty in Initial Boundary Conditions

• Computational challenge: Number of sample grows
exponentially with the number of stochastic variables.

• Rely on EOFs to characterize uncertainty and reduce the
number of stochastic variables. For 2 EOFs mode we have:

M(x ,0, ξ1, ξ2) = M(x ,0) +
[√

λ1M1ξ1 +
√
λ2M2ξ2

]
(1)

• (λk ,Mk ): are eigenvalues/eigenvectors of covariance
matrix obtained from free-run simulation

• M: unperturbed initial condition
• M(x ,0, ξ): Stochastic initial condition input
• ξ1, ξ2 are the amplitudes of the perturbations
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Figure: First and Second SSH modes from a 14-day series. The 2
modes account for 50% of variance during these 14 days.

• Characterize local uncertainty: get perturbation from short,
14-day, simulation.

• Uncertainty dominated by Loop Current (LC) dynamics
• Mode 1 seems associated with a frontal eddy
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Figure: Vertical slice along 26.4N showing Temperature
perturbations. The first mode shows a strong 2.5◦C cooling in the
vicinity of the frontal cyclones. The ”warm” perturbation around 90W
is at the southern edge of a small anticylone NW of the LC.
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PC representation
• (ξ1, ξ2) independent and uniformly distributed random variables
• PC basis: Legendre polynomials of max degree 6, P = 28
• Ensemble of 49 realizations for Gauss-Legendre quadrature
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Figure: Quadrature/Sample points in ξ1, ξ2 space. Center black
circle corresponds to unperturbed run, while blue circles
correspond to largest negative and positive perturbations.



Col 1: SSH of
realization (1,1)
with weakest
frontal eddy

Col 2: SSH of
unperturbed
realization (4,4)
has medium
strength frontal
eddy

Col 3: SSH of
realization (7,7)
has strogest
frontal eddy and
earliest LC
separation

Col 4: Loop
current edge in
ensemble



SSH stddev
(cm) grows in
time with
maximum in
LC region



PC-error: ‖ε‖2
2 =

∑
q [η(~x , t , ξq)− ηPC(~x , t , ξq)]

2
ωq

SSH
PC-errors
(cm) grow in
time with
maxima in LC
region

On day 60
PC-error is
about 38% of
stddev



Figure: Variance Analysis:The majority of the variance in the deep
part of the Eastern Gulf of Mexico can be attributed to the 1st EOF,
while the second mode plays a secondary role, particularly during the
time span when the series is reliable (< 40 days, x-axis tick marks
interval is 5-days).



Figure: Predictability Limit:Spatial distribution of the ratio of the forecast standard
deviation to climatology standard deviation for SSH (from AVISO). The magenta lines
show areas where the ratio > 1.
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Initial Conditions & Wind Forcing Uncertainties

Figure: Field snapshots on day
30: (Top) SSH; (Bottom) MLD

Focus on the following two Quantities of
Interest (QoIs):

• Sea Surface Height (SSH) averaged
over a square area near the loop
current (LC) region:
[−86.04◦,−85.20◦] in longitude and
[25.19◦, 26.23◦] in latitude

• Mixed Layer Depth (MLD) averaged
over the DeepWater Horizon (DWH)
region: [−88.44◦,−88.28◦] in
longitude and [28.68◦, 28.79◦] in
latitude

Our HYCOM simulations start from 05-01-2010
to 05-30-2010. Fig.7 on the left shows HYCOM
results on the last day of simulation using
unperturbed initial and wind forcing fields.
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Variance Analysis
1st Order Sensitivity:

Si =

∑
α∈Si

1
c2
α < Ψα,Ψα >∑P

i=1 c2
i < Ψi ,Ψi >

Total Order Sensitivity:

Ti =

∑
α∈Si

T
c2
α < Ψα,Ψα >∑P

i=1 c2
i < Ψi ,Ψi >

ξ
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Figure: Sensitivities: (Top) 1st Order; (Middle) total Order; (Bottom)
Initial and Wind forcing sensitivities.
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SSH: Joint Sensitivity

(a) Interaction

(b) Initial Condition (c) Wind Forcing
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MLD: Joint Sensitivity

(d) Interaction

(e) Initial Condition (f) Wind Forcing
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Conclusions
• Polynomial Chaos are a promising approach in analyzing

oceanic uncertainties
• It can monitor representation fidelity and adequacy of

sampling
• The 14-day time series EOF analysis helped in designing

perturbations focused on a Loop Current separation event.
• The PC-Series performs reasonably well in the 20–40 days

range
• Predictability in SSH lost after about 20 days
• It is probably enough to perturb only the 2 leading EOF

modes
• Including more uncertainty sources is more important for

the current experiment than including more modes.
• SSH uncertainty due mainly to initial conditions except in

shelf areas
• MLD uncertainty mainly caused by winds
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