South Atlantic Operational Multi-model Evaluation

Ronaldo Palmeira, Edmo Campos, Gabriel Clauzet, Mariana Gouvea, Felipe Alcantara

Numerical Modeling Laboratory – LABMON/USP Tetra Tech.

Introduction

A system for operational multi-model evaluation was developed.

The methodological approach consisted on procedures to evaluate different operational simulations.

The operational models used:

Model Id.	Model	Provider
RTOFS	HYCOM	NCEP/NCAR
GOFS	HYCOM	NRL/RSMAS
MERCATOR	NEMO	MERCATOR
LABMON	HYCOM	USP/Tetra Tech
Base4.2	POM	Tetra Tech

The operational data used:

- Altimetry from AVISO
- SST from GHRSST

Dynamic velocities from AVISO altimetry

Main features – Mean surface currents (AVISO)

Features Map!

Main features – Surface elevation anomaly (AVISO)

Features from different models:

(m)

0.70

0.56

Mean surface currents (MERCATOR)

Campo de elevação em superfície (MERCATOR) 2015-05-15 03

Surface elevation (MERCATOR)

21°S

35°S

37°S

55°W

0.64

0.48

0.32

Operational data used

Altimetry from AVISO

Buoys from PNBOIA

Time series from models and buoy B69152

Time series from models and buoy B69153

Operational data used

Altimetry from AVISO

Buoys from PNBOIA

Drifters from Argos System

The drifters available in the analyzed period:

Drifter B126963 vs 5 days modeling starting at 15/05/2015 00Z

Drifter B116284 vs 5 days modeling starting at 15/05/2015 00Z

Conclusion:

- The combination of different models can be helpful to forecast oceanic patterns, specially when combined with real-time observational data.
- A set of models can be used in operational forecasting to support decision making.
- A tool developed for operational multi-model comparison is effective to support oceanic forecasts.

