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ABSTRACT

Two techniques are combined to consider the dynamics of a
narrow, stratified fjord system with two channe1s.

The first technique removes the barotropic mode from a two
layer model but retains the influence of bottom topography. The
second technique allows development of a numerical model of two
narrow, connected channels. The resulting br&nched fjord model is
forced by coaetal wind stress through the mechanism of ~n flux.
The major question addressed with this model is, what determines
the exchange between the two channels in a time dependent si tu-
ation.

Various simulations are performed with different widths,
depths, and lengths for the channels and locations for the junction.
From the simulations three main conclusions are obtained:

1) The presence of a side channel increases greatly the variabi-
li ty of the forced flow in the main channel.

~
2) Geometric constrictions (sills and narrows) have only local
effect on the flow if the flow remA;ns subcritical.

3) The relative lengths of the two channels have the strongest
effect on the variabi1ity of the resulting flow.
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INTRODUCTION

~ The Ryt'ylkefjord system, comprising the Boknafjord~ Sandsfjord
.'

Btlsfjord, Saudafjord and others (Fig. 1), is a geometrically
complicated interconnection of deep narrow channels and is typical
of many fjord systems. Such a dynamical system can be analyzed with
a three dimensional numerical model, but such models are expensive to
develop and to run. This paper presents a model that approximates
such geometric complexity in a way that is inexpensive enough for
many situations to be examined.

A basic method tor connecting channels depends on the use of a
spa~ial1y-staggered numerical grid, with transport and thickness
variables at alternating grid points. All connections between two
channels are chosen to occur at thickness grid points. This proce-
dure was first suggested by Dr. D. P. Wang (see Elliot, 1916) and
was used in a model of Chesapeake Bay (Wang and Elliot, 1918).

Another procedure has been proposed by Narayanan (1979) in a
study of the barotropic tidal response of the Douglas Channel along
the coast of British Columbia. The linear wave propagation problem
is solved for eaCh tidal frequency, by following a non-staggered
path of integration and introducing a certain number (say N) of
arbitrary transport and depth values where necessary (junctions and
open boundaries). The integration is performed N times with
different values assigned to those constants. The solution is then
sought as a linear combination, such that all flow constraints (also
N in number) are met. In a second stage, the linear tidal response
is used to initialize a non-linear model, using an axplicit scheme.
The basic limitations of Narayanan t s procedure are two-fold: (i),
for each frequency, the algorithm sweeps the system N+l times and
solves an N by N :fuJ.l linear system; (ii) the method of unknown
constants cannot be generalized to non-linear models, while the
ini tialization by a linear solution ~ fail in the study of baro-
clinic motions (particle velocity closer to wave speed).

The present model is based on Wang's method, to keep the number
of passes over the system to a minimum of one Gaussian elimination
per time step (or per frequency, if a modal. decomposition were
applied), and to open the ~ to direct and accurate extension to
non-linear dynamics.

We chose to investigate narrow t deep silled fjords with a
lineart two-lgyert nonrotating model. The model is externally forced
by coastal wind stress through ~an flux. We ignore diffusively
driven flowt such as that due to freshwater addition from riverst
and the effects of wind stress in the fjord itself. The simplified
dynamics allow us to focus on the interaction of flow in several
channels. Diffusion and local forcing can be considered as the
understanding of the multibranched fjord system increases.

.
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Fig. 1. Map or the RyfY1kerjords on the western coast or Norway
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The following questions are considered in this study. How do
long gravity waves behave in a system with two channels? What
controls the exchanges between the two channels? How do sills and
narrows influence the exchange between the two channels?

The following section considers the dynamical equations and the
procedure for eliminating the barotropic mode while retaining the
effects of bottom topography. Section III presents the numerical
technique for connecting two narrow channels. The details of the
numerical model are also discussed. Several simulations are
discussed in Section VI. The effect of geometry and topography are
presented. Section V summarizes the paper and lists conclusions.

EQUATIONS

a) Two-layer Mo~el

The dynamics of a narrow, stratified fjord are investigated
with a linear, two-layer, vertically and laterally integrated model.
The governing equations are

x+ W-r

+ ~ H2Whlx

U~t = -gH~ W(h~ + h2 + D)X + K UlXx

= -gH2W(hl

=-J:JJWlx

U
2t

+ K U2xx

~t

The geometry o~ the model is indicated in Fig. 2 and the variables
are given in Table I. Note that U. is the total mass transport{cm3/sec} o~ a given layer. ~

The local surface stress is included in (1) but its influence
is not considered here. Also included in each layer is a horizontal
friction term. The coefficient is chosen so that frictional effects
are not dynamically important and only provide a small amount of
smoothing.

If the bottom is horizontal, these equations can be decoupled
into two independent modes as outlined by Veronis and Stommel
(1956). Each of the modes satisfies a one-layer, long gravity wave
equation but the wave speed is different for each of the modes. To
be more explicit about the modal separations, a linear combination
of the variables is defined as

U = Ul + AU2 and h = hI + Ah2
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Table I - Notation

A: area of junction region

c: loc~ baroclinic wave speed

D: depth anomaly

accel.eration of' gravityg:

undisturbed thickness for la,er i

H: total volume of junction region

thickness of layer i (main channel)
A

hi: thickness of layer i (side channel

K:
"
L:

horizontal diffusion coefficient

number of' grid points in the main channel

t: time

Ui:

Y . .
1..

volume transport for layer i (main channel

volume transport for layer i (side channel)

W:
A
W:

width of main channel

width of side channel.

x: posi tion along main channel {posi ti ve toward head

positive along side channel (zero at junction, positive
towards head)

y:

az: squared speed of barotropic (+) and baroclinic modes

density of lay-er i Pl<P2 = p)

density difference between layers (~2 - PI)

structure coefficient for % mode

n~ average elevation of junction region

P: a .function of order unity

.,.1': surface wind stress
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and the modal variables are required to satisfy an equation of the
form

- QAWD + W-rX
x

Ut = -aWh; +KUx xx

~ = - Wx

The ~ameters a and A must satisfy algebraic consistency
re~ations t which reduce to a quadratic equation for a (or A). The
character of these parameters is easily shown in the ~imit of small
~p/Pt which is 0(10-3) in most oceanic situations.

The approximate parameters, expanding in ~p/p, are

<1+ = g(Hl +~)A+ = 1

and

Bl~A- = - ~ a..- = # ~Lf.J
H2 P Hl+~

The parameters denoted by the plus subscript correspond to the
barotropic mode 'While the negative subscripts denote the baroclinic
mode. Each alpha is the square of the celerity for the surface and
internal gravity 'Waves.

z
~

~x-

-~

H2!

10~ Fig. 2. Model geometry and variables.
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If topography effects are present (~ fUnction of x), the above
method of modal decoupling fails because of the interaction between
the fast and slow motions: Passing a topography feature, a baro-
tropic wave generates a baroclinic component and vice versa (Proudman,
1953) . And, the more abrupt is the topography, the greater is that
interaction. Therefore, only approximate methods can be developed
to decouple the barotropic and baroclinic modes in the presence of
bottom topography, and their accuracy depends on the strength of the
coupling. To consider the barotro.pic mode in isolation, one simply
sets ~, h2~ U2 to zero and lets Hl be the total undisturbed depth.
This is equivalent to neglecting ~p in Equation (1). The accuracy is
thus only f1.p/p.

If the baroclinic mode is to be studied in isolation, the
elimination of the barotropic mode is not so simple. The usual
procedure involves an infinitely deep, passive, lower l8¥er (the
reduced-gravity model). This procedure also eliminates the effect
of bottom topography. Its accuracy is Hl/H2.

];!) BarQcJ.inic Model

In order to study the baroclinic mode in isolation while
retaining the influence of bottom topography, a new procedure has
been developed. It uses the fact that the baroclinic mode has al-
most no vertically integrated transport to eliminate the barotropic
mode from the two-layer model. That is, from (4), U2 = -Ul to
lowest order in ~p/p.

First, define h to be the displacement of the free surface from
its reference position or h = hl - Hl + h2 - H2° The two-l&rer
equations (1) are rewritten (with K, LX = 0) as

Ult 'x

U2t = -gH2(x)Wh

= -gHl Wh

x

1
Ulx W

1h2t = - U2x Whlt m-

since D = -H-
X ~.

Assume that

)']

where ~ is a function (to be determined) of order unity.
of equations (5) can be reduced to the single equation:

The system
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T

The time derivative term is o~ order Ap/p compared to the other two
terms in this equation. Indeed, it will be shown a posteriori that
the baroclinic mode satis~ies a wave equation which allows replace-
ment o~ two time derivatives with the phase speed times two space
derivatives. Since the baroclinic ihase speed is approximately
(1_1/2, replace a2/'at2 with (1- a2/ax , where (1- is de~ined in (4).
The ~irst term is clearly of order Ap/ p compared to the other two
terms.

If the fUnction ~ varies slowly in x or

JJX«UX (6)

then the solution for ~ is

(9)

Condition (8) requires that the bottom topography va~ slowly
over a wavelength of the internal wave.

Now that p(x) is known, the equations for'the baroclinic mode

(10..)

~~.!!g- ~ ~- . .where C2(X) = p ~i+H2ll + p Hl+B2I, yh~ch ~s the square of the

"local" baroclinic phase speed. Once Ul and hl are calculated, U2
is obtained from (6), apd -h2 from an identic~ relationship.

The approximations have eliminated the coupling between the
baroclinic and barotropic modes. Such co~ling occurs through
nonlinear interaction (hydraulic processes) or thro~ creation of
internal waves by barotropic flow over sharp bottom topography. It
is therefore concluded that the coupling is weak and negligible (on
the order of Apfp)2) as long as velocities are much smaller than
the phase speeds and the topography smooth over one wavelength.

c ) External Forcin~

The effects of an along shore coastal wind on f1ow in a fjord
are investigated with a coastal upwelling model and a fjord model
which join at the coastline (Klincks et al.s 1981). The results of
this study are paraphrased here: a more complete discussion is
contained in the reference cited.
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The first conclusion from the ~oupled model is that the coastal
wind stress forces flow in the fjord through ~A-n transport. The
wind pumps water either in or out the upper lsyer at the ocean mouth
of the fjord. The changes at the mouth induced by the forcing
travel to the rest of the fjord as long gravity waves.

The second conclusion is that the barotropic disturbance
created by changes in the wind is very quic~ in balance (in a few
hours for a 50 km long fjord) and thus the dominant response in the
fjord is baroclinic. It is for this reason that we choose to focus
on the baroclinic mode and its interaction with width and depth
variations in the fjord.

The results of this previous study show that a coastal boundary
condition can be imposed on the baroclinic yavefield. However,
specifYing the baroclinic transport at the ocean boundary is impro-
per because it does not allow waves to leave the fjord and generates
spurious re~ections of waves. Fortunately, these reflected waves
do not affect the interaction of the two channels. Therefore, for
the present york, the model is forced by an imposed baroclinic flow
at the ocean boundary, simulating the baroclinic flow.

DJ:1'AILS OF lfUMERICAL mDEL

a) Branching Technique

The procedure for connecting two narrow channels uses the modal
equations (3). As such, the technique can be used for any multi-
layer model for which linear, nonrotating dynamics are appropriate.

The basic method ~or connecting a side channel to a main
channel depends on the use of a spatially staggered numerical grid
with transport and thickness variables at alternating grid points.
The connection between the two channels occurs at a thickness grid
point (see Fig. 3). That is, the two channels share a common grid
point (called the junction). This procedure was first suggested by
Dr. D. P. Wang (see Elliot, 1976) and was used in a model of
Chesapeake Bay (Wang and Elliot, 1978).

The junction region is defined by the dashed lines in Fig. 3.
The conditions at the junction are

1) continuity of thickness and,

2) conservation of mass.

'!'he first condition is satisfied automatically since the two
channels share a common thickness point.
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x

Fig. 3. Geometry of the junc~ion region and staggered grid.

The second condition is obtained by integrating the continuity
equation over the junction region.

~

-~ - U.i+l - V, (U~=U J - ...

For notational clarity. the main channel is along the x axis
while the side channel is along the y axis. Variables with a caret

.refer to the side channel. H refers to the total volume of the
junction region.. This expression cannot be used directly in (3),
but must be modified somewhat. Let A be the surface area of the
j1mction region then the average interf"ace elevation is Tl = H/A.
Therefore, the continuity condition becomes

A

Tlt = (Uj - Uj+l - Vl)/A

This development simply yields a modified continuity condition at
the single grid point at the junction.

The branching condition is strictly kinematic, so inertia
(~amic) effects at the junction are ignored. This choice requires
that the flow in the junction be slow -enough that such inertia
effects are negligible. The precise condition is U2«C2 where c is
t~e gravity wave speed for the mode under consideration. This
condition is obtained Py scaling the fUll momentum equation. The
conditio~ that U2«C2 is also required for the flow in the channel
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to be subcritic~ - a choice which is already made by the use of

linear dynamics.

Since inertia effects are unimportant in the junction region,
the angle between the two channels is not important. This
assumption may not be strictly valid for some fjord situations where
the junction is near a narrow (or shallow) region of the fjord.

The mathematical problem is now specified and can be solved by
a number of numerical techniques.

b) Numerical Model

The simplest numerical procedure is an explicit time inte-
gration of the equation in the two channels. Although this method
is the simplest, it can prove quite costly because the time step is
limited by the CFL stability condition,

AxAt < 12: Cma.x

where e max is the maximum wave speed allowed by the dynamics. In
this case, t~e maximum speed is the barotropic wave speed. The CFL
condition can be quite restrictive for deep fjords.

The use of the baroclinic equation allows a large enough time
step for the calculation to be practical. This fact provided the
impetus to derive the baroclinic equations in the first place.

Since part of this work will compare the two-layer model with
the baroclinic model, another approach is taken. The equations ar~
integrated with a semi-implicit technique which is unconditionally
stable. This technique uses implicit time differences on the terms
in the equations which give rise to the fastest waves. Phase errors
are introduced for the barotropic waves but as the waves do not
participate actively in the overall circ~ation of the fjord, these
errors are not important (see Grotjahn and O'Brien, 1976, for a
discussion of the phase errors). The unconditional stability of
this integration procedure allows the choice of any time step
consistent with a reasonable truncation error.

Howevert this ability to chose a large time step has a price
a set of linear equations must be solved at each time step. This
linear system must be amenable to a direct and fast solution
algorithm for the semi-implicit method to be computationally more
efficient than an explicit method.

For a one channel model, semi-implicit integration gives rise
to a linear system 'With a tridiagonal matrix which can be solved
'Wi th an "up-down" algorithm that is fast and direct. When the
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semi-implicit method is used on the equations for the branched
system, the coefficient matrix Of the resulting linear system is
"almost" tridiagonal. The "up-down" algorithm can be modified to
account for the off.,.tridiagonal terms yielding a direct solution
scheme. The appendix presents the details of the linear system and
of the solution procedure.

Both the two-layer model and the baroclinic model were
constructed using the semi-implicit integration scheme. Several
test calculations were made to compare the two models. For a
variety of depth and width variations, the two models give identical
results. The remainder of this paper considers simulations from the
baroclinic model alone.

SIMULATION AND DYNAMICS

The effects of width and depth changes in a fJord are now
considered vi th the baroclinic, branched model that is forced by
coastal ~n flux. Particular emphasis is placed on the factors
which determine how the flow divides at the junction, and how the
two channels interact in a time-dependent situation.

The parameters for the simulation (Table II) are chosen tocorrespond to fjords like the Ry"f'ylkefjords. . Data for these fjords

are provided by Svendsen (1981). The wind forcing is chosen to
simulate the reversals of coastal wind which are observed offshore
of the Ryf'y-lkefjords (Svendsen, 1981). To simplif'y interpretation
of the model simulations, the wind is taken to be a sinusoid with a
5 day period. The magnitude of the wind is 2 dy'nes/cm2 which gives
an average velocity at the fjord mouth of 10 cm/sec.

a) Case I

The first case presented has a main channel length of 60 km and
a side channel 40 km long. The junction is 20 km from the mouth of
the fjord. This geometry yields identical distances from the
junction to the end wall in both channels. Since gravity waves
travel at the same speed in each channel, the waves ;rill split at

Table II

U(x=O) = lO. x Hl x W x sin (21rt/60hrH = 20 m

~p/p = .002H = 480 m
'"

W=W=lkm ~=2km

6t = 1 h
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the junction and return in phase after a reflection from the end
wall.

Fig. 4 is a phase plot of the pycnocline anomaly for the
situation just described. It is evident that the pycnocline
disturbance in the branch is- the same as that in the main channel
between the junction and the end wall. This fact shows that the
j\mction region does not introduce any phase shifts or affect the
flow in an unrealistic manner. Also included on the figure is one
characteristic to show that the semi-imp1icit integration scheme
does not affect the phase of the gravity waves in the simulation.

To address the question of exchange between the two channels,
velocity is shown as a function of time (Fig. 5). for the first
velocity grid point in the side branch and for the first velocity
point toward the head of'" the fjord from the junction. The speeds
into each channel have the same magnitude and the same variation.
This fact is expected since both channels have the same cross
sectional area, thus splitting the flow eq~ between the two
channels. The velocity does not show a sinusoidal disturbance, from
the sinusoidal forcing, because waves reflect from the end wall and
mix with the waves produced by the direct forcing. There is also
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'::;~:

DAYS

5. Case I. Velocity variation from the first grid point from
junction toward the head of the main and side channels. Units

are cm/sec.

some spurious ref1ection from the ocean mouth of the fjord due to
the choice of boundary condition there.

b) Case II

The second case is a slight modification of the first case.
The main and side channels are 40 km long and the junction is 10 km
from the ocean boundary. Now the two channels have different
lengths from the junction to the end walls. The pycnocline anomaly
(Fig. 6) is not the same in the two channels, but is greater in the
longer branch. To see the variation in the flow more easily,
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Fig. 6. Prcnocline anomaly for Case II.

consider the time plot of the velocity at the entrance to each
branch (Fig. 7). Note that after the first two days, the velocity
is quite different in the two channels. This difference is due to
the phase of the waves when they return to the junction. This phase
difference can be seen easily through rgy tracing arguments (not
presented here). From Fig. 7 it appears that there has been a net
increase (over the first eight days) in the volume of water in the
main channel downstream of the junction while the side channel shows
no increase in volume. These differences in transport are due
strictly to length differences of the two channels since both
channels have the same width and depth.

c) Case III

Case III eonsiders the effect of channel width on the branched
system. 'rhe side channel has a constant width of' .5 kJn while the
main channel is 1 km wide. 'rhe geometry of Case I is retained so
the two channels are the same length from the junction to the end

wall.

The pycnocline anomaly looks the same as Fig. 4, so only the
velocity time history is shown (Fig. 8). The velocity shows the
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UP CHANNEL VELOCITY

DAYS
10 BR.BRAN~H .. . ... . 'I

/
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-10. .. . "'. t. . .

0 2 .. 8 8 10
DAYS

Fig. 7. Case II velocity variation.I
Units are cm/sec.

same structure as Fig. 5 but the amplitude is larger in both bran-
ches . The increase in speed over case I (15%) is proportional to
the decrease in total volume o:f the :fjord system due to the narrower
side channel.

"
Th~s simulation shows that the transport divides at the

junction in proportion to the cross section~ area of the two
"downstream" channels, where "downstream" depends on the direction
towards which the wave is moving. This division 9'f the transport by
cross sectional area produces the same velocity for each of the
downstream channels even though the transport into each channel may
be quite different.
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UPCHANNEL VELOCITY

DAYS

DAYS

Fig. 8. Case III ~ocit7 variation. Units are cm/ sec.

Several simulations were calculated to consider the effect of
sills and narrovs on the exchange between two channels. These
simulations had sills that were 200 -. high or narrovs to . 5 km in
one branch just inside the junction. Bone of these simulations are
shown here because these constricting effects had only a local
effect on the flow: the flow was greater in proportion to the
decrease in cross sectional area. The presence of a sill narrows
in one channel had no effect on the exchange at the junction.
Therefore, for the Qynamics included in this model, only the local
geometry of the junction region and the relative lengths of the two
channels have any influence on the exchange between the two channels
in a branched f.i ord.
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Fig. 9. Width and depth for Sandsfjord - Saudafjord system.

This conclusion assumes that there are no hydraulic effects in
either channel. If a sill or narrows causes the flow to speed up
su~ficiently to be supercri tical, then this region becomes a control
section and must ~uence flow both up and downstream of that region.

For deep-silled fjords which do not have hydraulic controls,
the baroclinic model should simulate the dynamics adequately, and
the geometry of a given branched fjord determines the exchange
between the two channels.

e) Sandsfjord System

The ultimate aim of this research is to analyze an actual fjord
having two channe~s. Towards that end, one s~ation is inc~uded
which considers a part of the Ryfylkefjord system. Because of the 2
km reso~ution of the model, the width and depth must be smoothed
somewhat to match the mode~ reso~ution. Fig. 9 disp~ays the
smoothed width and depth profi~es for the main channe~ (Boknafjord
to Hy~sfjord) and the side channe~ (Saudafjora).

'*

One simulation with this complicated geometry is performed with
forcing by a five-day period EkmRn ~ux. The pycnocline anomaly is
presented in Fig. 10. The most notable feature of this simulation
is that the 1argest flows, indicated by the largest pycnocline
anomaly, appear at constrictions in the channel. It is difficult to
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DAYS

Fig. 10. pycnocline anomal7 for the Sandsfjord - Saudafjord
geometry. Contour interval is .5 m.

detect much of the disturbance between the constrictions.

The exchange between the two Channels is considered in Fig. 11.
The velocities are not very different over the 20 ~ span of this
simu1ation~ but the length of Hylsfjord and Saudafjord differ by only
2 km (Fig. 9) ~ and their topographies are quite close. Therefore~
the waves return to the junction at about the same time. Notice
that even though the forcing has a 5 day period~ the presence of a
side channel allows extra freedom to the waves in the system and
the disturbance at a given point does not re~ect the forcing period
at all. The geometry of the Sandf'jord system does not provide a
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UPCHANNEL VELOCITY
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Fig. ll. Velocity variation for Sandsfjord - Saudafjord simulation.
Units are cm/sec.

sensi ti ve test of the exchange processes because the two channels are
so close in length and topography. A better place to consider exchan-
ges might be the J~senfjord branch off the main channel.

..Since constrictions in a narrow channel amplify the flow so
markedly, as illustrated by Fig. 10, one speculates that these
regions would show the strongest response to coastal wind events. It
may also be that for a strong coastal wind storm, the flow in some
constriction may become critical and develop a hydraulic jump.
As the storm slackens, such a jump would be released as an internal
bore or solitary wave. It would be interesting to see if coastal
storms produce such jumps or enhanced mixing in constriction far
removed from the direct effect of the wind.
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SUl.on.!ARY

Two techniques are combined to consider dynamics o:f a narrow,
strati:fied :fjord system with two channels.

The first technique removes the barotropic mode from a two-
layer model but retains the influence of bottom topography.
Earlier baroclinic models removed the barotropic mode by having a
passive, infinitely deep lower layer. Such an assumption is not
appropriate for fjords.

. The second technique allows a numerical model to be constructed
which connects two narrow channels. O~ kinematic conditions of
conservation of mass and continuity of the interface are specified.
Therefore ~ there are no inertia effects at the junction and the
angle between the two channels is not important.

.

The branched-fjord model is forced by coastal wind stress
through the mechanism of Ekman flux. The major question addressed
here is What determines the relative exchange of the two channels in
under time dependent circumstances.

Various simulations are calculated with different widths, depths
and lengths for the two channels and different choices for the
location of the junction of the two channels. From the simulations,
three msin conclusions are obtained:

1) The presence of a side channel increases greatly the
variability of the forced flow in a narrow channel.

2) Geometric constriction (sills and narrows) have only a
local effect on the flow if the flow remains subcritica1..

3) The relative lengths of the two channels have the strongest
effect on the variability of the resulting now.
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APPEND IX

The linear algebraic sys'tem or equations to be solved at each
step or the semi-implicit integration is denoted

(Al)- -
Mu-!

Where M is the co~tticient matrix, u is a vector of the transport at
the new time and f is the torcing obtained in terms of variables at
the old time steps. The vector ~,is obtained by concatenating
the mainAchannel variables and the side variables, u = (Ul' U2, ...
.., UL' Vl'...' VL). The almost tridiagon~ matrix is shown in Fig.
Ala where the asterisks indicate non-zero matrix elements and the
solid circles indicate the ott tridiagon~ elements that result trom
the branching condition.

~

The "up-down" algorithm is modified in the following w~ to
form an "insweep-outsweep" procedure. The insveep step involves
Gaussian elimination of the matrix elements below the diagonal from
the ocean to the junction. A similar procedure eliminates the '.

elements above the diagonal starting at the end of each channel and
moving towards the junction. Fig. Alb shows the fo~ of the matrix
at the end of the insweep part of the solution.

Ihe matrix elements denoted by asterisks correspond to UJ, UJ +1
and V~, which are the three transport variables defining the
junct~on region (Fig. 3). These matrix elements compose an
independent, fully dense 3 x 3 1inear system to be solved for the
three transport variables, analogous to the coefficient matrix
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Fig. Al. Coerricient matrix ror the branched mode1. a) asterisks
denote non-zero matrix elements. Solid circles denote
the "orr tridiagonal" elements due to branching. b) After
insweep. X's denote changed elements. Asterisks derine
a 3 x 3 matrix ror the three veloci.ty point derining the

junction.

obtained by Narayanan (~979).
Gaussian elimination.

This 3 x 3 can be solved directly b)'"

Once these three values are known, the "outsweep" p~ of the
procequre finds the v~ues of the adjacent transport variables until
the complete solution is known.

This modiried tridiagonal solution scheme requires the
computation or an ordinary "up-down" solution plus that ror the
solution or a 3 x 3 linear system. This procedure gives a rast and
direct solution to the linear system and justiries the use or a
semi-implicit integration scheme over an explicit calculation (ror
the two-l:ay-er model).


