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Convection, mixing, and advection in the upper ocean may be
thought of as the motion of two interacting fluids of different
properties: the sinking fluid parcels generated near the sur-
face and transmitting surface information downward, and the
compensating rising return flow. A general theory based on
this concept is developed and applied to various cases, in-
cluding deepening of the wind-mixed layer, penetrative
convection due to surface cooling, and uﬁper—ocean frontogenesis
due to horizontal advection.

Equations of the general theory are written for two inter-
acting Boussinesq fluids in a rotating frame. Interaction terms
are parametrized in order to apply the theory to geophyesical
situations. Considerable simplification is obtained by assuming
that the response time of turbulence is much less than the time
scale of evolution of the overall system. This assumption is

realized in all geophysical situations and is a generalized

scale of evolution of the overall system. This assumption is
realized in all geophysical situations and is a generalized

statement based upon approximations invoked previouslily by

ii



various authors. The study of deepening of the wind-mixed
layer and of penetrative convection due to surface cooling are
straightforward applications of the general theory. The analy-
tical treatment of the equations is simplified using the
observations that the mixed layer is quasi-homogeneous in its
physical properties and that the thermocline is a thin layer
of large gradients. The solution is analytical and simple.
Its agreement with observations is excellent and comparable to
sophisticated numerical models capable of resolving small-scale
turbulence. Advection and its interaction with mixing are
studied in a case of frontogenesis. Interactions result in
important cross-front asymmetries in properties such as mixed-
layer depth, thermocline strength and/or mixed-layer density.
Results also show that there exists a critical time scale
within which mixing dominates and beyond which advection con-
trols the upper ocean. For a mixed layer about one hundred
meters thick, this time scale is of the order of one month. In
the presence of strong mixing, frontolysis can ensue.

Although the applications focus on the upper ocean, the

theory is general and also applies to the lower atmosphere.
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CHAPTER ONE

INTRODUCTION




Air-sea interactions cannot be successfully modelled without

a deep knowledge of the upper-ocean dynamics and thermodynamics.
The currents and variations of temperature and salinity in the upper
ocean are induced and controlled by surface atmospheric conditions,
oceanic lateral advection, and deep oceanic conditions. The com-
plexity of the situation can, however, be somewhat simplified by
classifying the various processes which take place in the upper
ocean. They are: turbulent mixing by wind stirring or mean current
shear, convection, penetrative convection, entrainment of stratified
fluid, and re-stratification. All these processes involve small-
scale turbulent motions, in space as well as in time. In this work,
the resulting fine structure is studied in order to achieve a better
knowledge of the dynamics and thermodynamics in the upper ocean.
Upper-ocean processes can be thought of as the relative motion
of two interacting fluids: the sinking fluid parcels generated near
the surface and transmitting surface information downward and the
rising fluid parcels forming the return flow. The former play the
active role in mixing and convection, and are called thermals. The
latter play the alternate passive role and are called anti-thermals.
A general theory based on this concept is developed and applied to
various cases, including deepening of the wind-mixed layer, penetra-

tlve convection due to surface cooling, and upper-ocean frontogenesis
due to horizantal aduvaneian . - .

tlve convection due to surface cooling, and upper-ocean frontogenesis

due to horizontal advection.



The work is divided into several chapters (Chapters 2 to 5),
each of them being a discrete and independent entity. As an advan-
tage, the reader interested in one specific topic may limit his/her
reading to a particular chapter without facing problems understanding
symbols or basic ideas. Despite advantages, this presentation leads
to some unavoidable repetition, for which the author apologizes.

Chapter two is the development of the general theory of mixing
and convection, based on the concept of a two-fluid system. It is
an application of the dynamical theory of interacting continua pro-
posed by Kelly (1964), developed by Green and Naghdi (1965), and
generalized by Truesdell (1969). The equations are written for two
interacting Boussinesq fluids in a rotating frame. Interaction terms
are parametrized for the purpose of geophysical situations. Pairs of
governing equations are derived for thermals and anti-thermals. Each
pair meets an Invariance Principle as a consequence of reciprocity in
the roles played by thermals and anti-thermals. Considerable sim-
plification is obtained by assuming that the response time of tur-
bulence is much less than the time scale of evolution of the overall
system. This assumption is realized in all geophysical situations.
Each pair of governing equations is transformed into an average
equation for which interaction terms cancel, combined with a very
simple equation linking the two fluid properties. An important
parameter of the model is the fraction, f, of area occupied by

thermals. Since a closure assumption is needed, a dynamic satu-

Pation annilihnmisim bmdeemmm 4l e d o a3 e XL S 23

thermals. Since a closure assumption is needed, a dynamic satu-
rdation equilibrium between thermals and anti-thermals is assumed.

This implies a constant value of f throughout the convective layer.




Chapter three is the application of the theory to the deepening

of the wind-mixed layer. In view of simple algebra, the model is
one-dimensional, frictionless, and neglects the turbulence produc-
tion by the mean-flow shear in the thermocline. Hence, the increase
in potential energy required for deepening is supplied by the tur-
bulence input at the surface. The analytical treatment of the
equations is simplified using the well-known facts that the mixed
layer is quasi-homogeneous and that the thermocline is a thin layer
of large gradients. The vertical structure throughout the mixed
layer and thermocline is given by an analytical solution. Vertical
profiles of mean velocity components, mean temperature, and vertical
fluxes of momentum and heat are then plotted. The solution also
yields bulk formulae predicting the rate of deepening, the thermo-
cline thickness, and the mean surface temperature. As the mixed
layer deepens, the thermocline shallows, vertical profiles, there-
fore do not remain similar to themselves in time. The analytical
solution is not self-similar.

Chapter four is the application of the theory to penetrative
convection due to surface cooling, as it occurs past mid-fall and
during winter. The model is still one-dimensional, but includes
dissipation. Wind stirring plays an important role when the con-
vective layer is shallow, but rapidly convection dominates the
process. Thermal instability itself supplies the kinetic energy

required for stirring and deepening. Wind stirring is therefore
ionared in +hot cantian Aacriiminm A Anned hamAadcananns mioad 1ouraw

required for stirring and deepening. Wind stirring is therefore
ignored in that section. Assuming a quasi-homogeneous mixed layer
and a sharp thermocline, a single non-similar analytical solution

is found. Vertical profiles of mean values and vertical fluxes



are plotted for the mixed layer and the thermocline. The solution
also yields bulk formulae predicting the rate of deepening, the
mean surface temperature, the heat flux at the bottom of the mixed
layer and the thermocline thickness. Although the results
presented here focus on convection in the upper ocean forced by sur-
face cooling, they also apply directly to convection in the atmo-
spheric boundary layer above a heated ground.

Chapter five is a study of advective effects and their inter-
actions with wind-mixing effects. A case of frontogenesis is
chosen in order to include lateral variations in advection and
mixing and in order to understand better frontal dynamics of the
large-scale oceanic fronts in the central North Pacific. Inter-
actions between advection and mixing result in important cross-
front asymmetries in properties such as mixed-layer depth, pvcno-
cline strength, and/or mixed-layer density. Two cases are treated
separately: the case of convergence (when the water masses downwell
at the front) and the case of confluence (when the water masses

form a long-front current).




CHAPTER TWO

A GENERAL THEORY OF MIXING AND CONVECTION:
MODELLING BY TWO BUOYANT INTERACTING FLUIDS




1. INTRODUCTION

Convection may be caused by either an initially unstable
situation or by a continuously-applied external forcing. In
most geophysical convective situations, convection is of the latter
kind and is maintained by a forcing which is almost invariably
applied along one boundary rather than within the fluid. The theory
developed here attempts to model-convection when convective motions
are driven under such circumstances. Convection of air above a
heated ground, mixing of the upper ocean under the action of wind
stress and/or surface cooling, and penetrative convection in stars
are some examples.

Along the boundary where the forcing is applied, fluid par-
ticles coming from the interior are altered; their velocity
components and/or temperature are modified. The same particles
thus leave the boundary with new properties. As a consequence of
this mechanism, convection can be thought of as the relative motion
of two different fluids: the fluid particles coming from the
interior toward the boundary, and the altered fluid particles leav-
ing that boundary with different properties. The latter play the
active role in convection and will be called thermals. This name
was adopted by glider pilots for masses of warm air rising from
hot ground. Ever since, this word has been widely used in the

field of convection. The other fluid parcels play an alternate
Dassive role and will ke An11-9 amdtd 2haswaT - S

field of convection. The other fluid parcels play an alternate

passive role and will be called anti-thermals.




The model presented here does not require interpreting thermals
and anti-thermals as discrete elements. Particles will not be
numbered nor will they be assigned a volume. The two fluids may
be considered like plumes, puffs or other forms (Scorer, 1978).
However, the terminology of thermals and anti-thermals is used for
convenience because discrete elements are more easily perceived.

As a formal extension, the word thermal will be even assigned
arbitrarily to non-buoyant fluid having an excess of momentum.

Priestley (1959) has shown how one can obtain information
about the mean properties and the fluctuations in air over a heated
ground by considering it as the superposition of many closely-spaced
convecting elements. However, his approach is limited to environ-
mental lapse rate constant with height and does not allow the
elements to grow or decrease as they migrate vertically.

The model developed here is an extension of the dynamical
theory of interacting continua proposed by Kelly (196u4) and Green
and Naghdi (1965), and extended by Truesdell (1969). For the
present purpose, equations are written for a two-fluid continuum
in a rotating frame. The Boussinesq approximations are made
(Spiegel and Veronis, 1960), and interaction terms are parametrized
in view of geophysical situations.

The forcing along the boundary generates thermals at the
expense of anti-thermals, whereas interactions between the two

fluids in the interior progressively transform thermals back to

anti-thermals. Thermals are directlv dniven hv +tha avtanrnal

fluids in the interior progressively transform thermals back to
anti-thermals. Thermals are directly driven by the external

forcing, while anti-thermals are driven by reaction to the thermals



(continuity of mass, conservation of momentum and heat). The two
fluids have different properties; their relative motion is thus
a mechanism capable of transferring heat, momentum, energy, or any

other constituent, through the convective layer.

2. FRACTION OF AREA OCCUPIED BY THERMALS

At a given level, any horizontal surface is crossed by thermals
and anti-thermals. At a given time, a given horizontal area A is
occupied partly by thermals and partly by anti-thermals (Figure 1).
From a hypothetical instant infra-red picture detecting warm and
cold regions, one may compute the fraction of area occupied by ther-
mals for that surface at that time. That value inevitably varies in
a certain range, and a theoretical ensemble average yields, in a
statistical sense, a local instantaneous mean value. If one evokes
the hypothesis of ergodicity, this averagipg process 1s equivalent
to an average over horizontal distances and time intervals short
compared to lateral and temporal scales of variation characterizing
the whole system. The resulting quantity, noted as f, is dimension-
less, positive and less than unity (Manton, 1975). As a direct result,
the fraction of area available to anti-thermals is (1-f). Although
it is anticipated that f will be assumed to be a constant, the govern-
ing equations derived hereafter are written in a general framework,
allowing local and temporal variations of f.

The observed mean value of any quantity is a combination of

allowing local and temporal variations of f.
The observed mean value of any quantity is a combination of

contributions due to the two fluids in the ratio of their respective



Anti-thermals

The fraction of area occupied by thermals at any level
is the instantaneous local value, averaged over horizon-

tal distances and time intervals short compared to lateral

45 e luswdlltaneous local value, averaged over horizon-
tal distances and time intervals short compared to lateral

and temporal scales of variation of the overall system.
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available areas:

horizontal velocity u = fu' + (1-f)u", (1)

v o= fv' o+ (1-f)v", (2)
vertical velocity w o= fu' + (1-f)w", (3)
pressure p = fp' + (1-f)p", (u)
density o= fo' + (1-£)o", (5)
temperature T = £T' + (1-£)T", (6)

where primed and double-primed quantities refer to thermals and
anti-thermals, respectively. The bar thus represents an operator
averaging over short horizontal distances and short time intervals
in the sense defined previously. It indirectly assumes that each
fluid is characterized by single values rather than by distribution
functions of their properties.

The above relations, rather than a definition of mean values,

constitute the mathematical expression of the average operator:
a = fa' + (1-f)a",

where a represents any physical quantity. The application of this
operator may also define momentum, heat and energy fluxes. In the
context of Boussinesq approximations, the vertical fluxes of hori-

zontal momentum (Reynolds stresses divided by po, the reference den-

sity) are:

-uw = -fu'w' - (1-f)u"w", (7)
-vw = ~fvlw' - (1-f)v'w", (8)
—uw = -fu'w' - (1-BHu"w', (7)

-vw = ~fv'w' - (1-f)v''w", (8)
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the kinematic vertical convective heat flux (heat flux divided by

p C ) has the form:
o p

Wl = fw'T' + (1-£)w"T", (9)

and the vertical flux of turbulent kinetic energy reads:

L w ((u=T)2+(v-7) 2+ (w-7)2)
= Lt (0T 24(v'-7) 24 (u' =) 2)

+ B(1-F)w' ((0"'-0) 2+(v"'=7) 2+ (w"-7) 2] . (10)

Other fluxes may be defined in an analogous way but are not of
primary importance to geophysical convection problems.
Finally, the averaging operator may also be used to define |
root-mean-square (rms) quantities, measuring departures from mean
values. If a represents any physical quantity, the rms fluctuation

is defined as:

_ L
qpms t(a- 3)2 2 (11)
1.2., aims = f(a'-3)2%+ (1-f)(a"-3)2. (12)

Simple calculations yield:

1 . 24
Srms (igfiz(a'_g) =_(£E£15(a”_5) (13)

[f(l—f))%(a'—a”). (14)

The sign is selected as to yield a positive value when the thermals

quantity a' exceeds the mean value a. The rms fluctuation is

directly proportional to the difference between thermals and anti-

theymale —acv —waceo wo wus meaun vatue a.  The rms fluctuation is
dlrectly proportional to the difference between thermals and anti-

the :
hermals values, and is zero when these values are equal and do not
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differ from the mean.
3. MASS AND VOLUME EXCHANGES BETWEEN THERMALS AND ANTI-THERMALS

Thermals and anti-thermals continuously exchange mass and,
conéequently, momentum, heat, and energy. At any moment and at any
location, either thermals or anti-thermals lose some of their mass
to the other. The exchange is controlled by Em, the mass exchange
per unit time and total volume of fluid (kg m3s 1), However, in
the Boussinesq framework, that quantity is advantagedusly replaced
by the volume exchange, E, per unit time and total volume (s™1
defined as:

E=—, (15)
where o0 is the reference density close to the actual densities of
thermals and anti-thermals, p' and p'", respectively. By definition,
the mass exchange, Em, is chosen to be positive if anti-thermals
lose mass to thermals and is negative if thermals lose mass to
anti-thermals.

In subsequent sections, it will be assumed that heat and
momentum are transferred exclusively through this mass exchange,
thus excluding transfer by diffusion or collision. However, this
assumption may be questionable for highly turbulent clouds, where
momentum exchange between air masses can occur without mass

exchange, as in a collision.

f sy e uweci Gl m@dSES Al OCCUr without mass

exchange, as in a collision.
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4. INVARIANCE PRINCIPLE

From a semantic point of view, thermals and anti-thermals play
reciprocal roles: what is lost by one is gained by the other.
Thermals may be labelled anti-thermals and vice-versa. Their dy-
namics and thermodynamics are therefore to be governed by corre-

sponding equations and the following Invariance Principle must hold:

Principle: All the governing equations must be invariant under the
transformation:
primed quantity «—» double-primed quantity
f=-—1-f

E =—-E

rms fluctuation —=— -rms fluctuation.

It may easily be seen that any mean quantity such as u, -uw,

wT, ... is invariant under that transformation, and equations for

mean values will thus automatically meet the Invariance Principle.

5. GOVERNING EQUATIONS

The dynamics and thermodynamics of two interacting fluids are
parts of the mathematical theory of mixtures. This latter theory
aims to represent exchanges of mass, momentum, heat, and energy.

Particular cases are theories of diffusion and chemical homogeneous

PeaC‘tiOnS aAand kinoatia +Fhomnt ae A0 - 50 cinssscwany HINW L T AU CUCDEY
Particular cases are theories of diffusion and chemical homogeneous
reactions and kinetic theories of heterogeneous continua. A general

framework for all such theories has been laid down by Kelly (1964),
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green and Naghdi (1965), and Truesdell (1969, Lecture 5) so as to
“include magnetohydrodynamic and other effects. Here, the governing
‘equations are written for a two-fluid Boussinesq rotating continuum.

Moreover, interaction terms are parametrized in view of geophysical
‘situations.

Thermals and anti-thermals have relatively large vertical ve-
locities. Due to these sinking or rising motions, they do not have
time nor do they go far enough laterally to be affected by temporal
‘and horizontal variations in the overall system. As a result, in

any equation, operators such as
‘3_ ' _3_ 1ot G 1ot i_ _ nan
3,C(fa ), ax(fu a'), gy(fv a'), ax((l flu"a ),

lead to terms which are negligible compared to these involving the

tical operators applied to the same quantities:

3 11 3__ gt
—a-z—(fw a'y, aZ((l—f)d a ],

However, it will be seen in the treatment of the continuity
1]

tions that, in the case of zero global vertical motion, w' and

9 — 3 ,—  Y—
3t a, '5;( a), ‘5}‘( a)
8 — 3 ,— 5 —
3t a, E’( a)s W( a)
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operator:

a —_—
v (wa)

These conclusions are equivalent to stating that the response

time of the two interacting fluids is much less than the time scale
of evolution of the overall convective system.

. The system is thus characterized by two time scales: time
variations of the whole system will be resolved at the long time

‘scale, by assuming a quasi-instantaneous response of the fluctua-

tions at the short time scale.

or thermals: ) oy (l - a(T'-TO)), (16)

or anti-thermals: p" oy (l - a(T”—To)], (17)
where o is the coefficient of thermal expansion ( «=3.5x1073 %¢-!

e - _ o - _ .

for air at 15°c, a=10"% °c-! for pure water at 10°c), and TO is the
*rence temperature. The mean density is related to the mean

temperature by:
L

o |

=p, (1 - aT-1)). (18)

’ o =0, (1~ aT-1)). (18)

llatter result is obtained simply by summing (16) and (17) pre-
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multiplied by £ and (1-f), respectively. (If density is a linear
function of salinity , an equation similar to (18) may be derived.)

In the Boussinesq framework, the variations of density are
small, and the continuity equation is equivalent to the law of
conservation of volume (Spiegel and Veronis, 1960). The equations
become:

for thermals:

S_
ot

E__ 1 a t a 1
f+ax(fu)+§(fv)+a—z(f‘ﬂ)

E, (19)
for anti-thermals:

a a " 3 " 8 Fay " -
Te(1-£) + 3;((1—f)u ]+ W[(1—f)v )+ 5 ((-f)w ] = -E, (20)

where E is the volume exchange between the two fluids, per unit
time and volume, and is positive if anti-thermals lose mass to
thermals (positive divergence of the thermals velocity field). It
may be easily shown that the above two equgtions meet the Invariance
Principle,

Summing (19) and (20), an averaged continuity equation is
obtained:

L

ST+
ax ay

T+ =o. (21)
9Z

As stated in the preliminary remark, the term ow/3z of this equation
is the sum of the dominant terms in the left-hand sides of (19) and
(20). The two other terms, du/9x and dv/3y, are the sum of negli-

gible terms. Therefore, the two contributions to ow/3z almost

(20). The two other terms, du/dx and 3v/3y, are the sum of negli-

gible terms. Therefore, the two contributions to 9w/dz almost

cancel each other, and one may write:
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i.e., the mean vertical velocity is z-independent. Since, in most
cases, there is no mean upwelling or downwelling, this mean veloci-
ty ought to be zero everywhere, leading to a relationship between
w' and w':

w o= fw' + (1-f)w" = 0. (22)
To the same level of approximations, equations (19) and (20)

reduce to:

E :a—(fw') =

- ~((1-£)w"). (23)

o)lc)

In the regions where variations of f are unimportant, E=f3w'/3z,
i.e., thermals grow (E > 0) when they accelerate (dw'/3z > 0), and
decrease in size (E < 0) when they decelerate (3w'/3z < 0). Note
that E has not been parametrized in any manner.
d) Heat conservation equation:
In the context of Boussinesq approximations, the heat conser-
vation equations are:
for thermals:
2(er) ¢ 2 (urTr) + S(EvITY) ¢ S(E'T') = = E(TIHTY), (28)
ot ox Ay 3z 2 ?
for anti-thermals:

3 d 3
—-—t—(('l—f)T"] +o—((1-HHu"t) + —agf—((l—f)v”T”] + =—((1-£)u)

=

= 5—E(T‘+T"), (25)

where molecular diffusivity and internal source of Jheat are noclaont-
-—-5 E(T'"+T"), (25)

where molecular diffusivity and internal source of heat are neglect-

ed, since they are unimportant for most geophysical convective situ-
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ations. The heat exchange between thermals and anti-thermals is
modelled by a transfer of mass at the mean temperature (T'+T'")/2. A
justification of this parametrization and a discussion of a more
general formulation is presented in Appendix B.

The above equations, which meet the Invariance Principle, could
also have been written in terms of the buoyancies

b'! =—ag(T'—To), b" :—ag(T”~To).
The sum of equations (24) and (25) yields the global heat con-

servation equation:

3
ot

3

— 3 — _
3y VT+§EWT— 0, (26)

T+ 0T +
ax

which expresses that the time rate of change of the mean temperature
T is equal to the negative of the divergence of the convective heat

flux. In the case of horizontal homogeneity on scales much larger

than the one of thermals, the reduced equation is:

%‘?TIT: -EWT’ . (27)

where the vertical convective heat flux wT is defined by (9).
Subtracting from (24) and (25) the continuity equations (19)

and (20) pre-multiplied by T' and T", respectively, and assuming

that thermals and anti-thermals do not have time to see lateral and

temporal variations (preliminary remark), one obtains:

T!
1
fw 3

(1-£)ndTt
9%

w

E(T"-T"), (28)

E(T"-T'). (29)

BT— LUl —L ), (28)
3T

_ n
(1-f)w .

[T SIS T S

E(T"-T'). (29)
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By use of (22), the difference of these two equations leads to:
9 -
(T* +T") =0, (30)
oz

stating that vertical variations of temperatures are inversely
correlated. This last equation is remarkable by its simplicity.
As one may expect, similar results will be obtained from the
treatment of the horizontal momentum equations, and these will
greatly facilitate further computations.
e) Horizontal momentum equation:

In the context of Boussinesq approximations, the horizontal
momentum equations on a rotating fo—plane are:
for thermals:

—a_ ! E_ ' 1 _8_ 1 t a__ g ! 1 !
at(fL~1 )+ Bx(fu u') + By(fv u') + aZ(lw u') + ff kxu

(@]

) _¢l>_ v, (fp') + %E(g'ﬂs”) + %{l‘zf)E(g'-g”), (31)

for anti-thermals:

g_t((l_f)g-”) + %;((l—f)u"g”) + g_y((l"f)v"kl") ¥ %((l_f)wllgll)
+ (1-D)F jo" = -;- v, ((1-D)p") - 2 E(u'+u") - Z(1-20)E(u'-u"),
o -

(32)
where u'=(u',v',0), g”=(uﬁ,v”,0) are the horizontal velocity com-
ponents of thermals and anti-thermals, respectively, k=(0,0,1) the
vertical unit vector pointing upward, VH the two-dimensional
gradient operator (§§3%§30), and fo is the Coriolis parameter.
Thermals and anti-thermals are subjected to two different pressures

(Truesdell, 1969). Viscous forces are neglected since they are

unimportant for most geophysical convective situations. The ex-

(Truesdell, 1969). Viscous forces are neglected since they are
unimportant for most geophysical convective situations. The ex-

change of momentum is modelled by a transfer of mass at the mean
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horizontal velocity (g’+9")/2, analogous to the heat transfer. It
may be shown that this form of exchange is the only one that con-
serves total kinetic energy in the horizontal motion. The last
term of each equation represents a kinetic energy exchange, which is
converted to kinetic energy in the vertical motion (See section
about energetics). Finally, it may be seen that the pair of equa-
tions meets the Invariance Principle.

The sum of equations (31) and (32) yields an equation governing

the mean horizontal momentum u=(u,v,0):

a_

Py (33)

|

L w+ Wi -vp
~ 9z~ o~ =

a JE—
+ % WY + 5y o ~Hp.

= |

In the particular case of horizontal homogeneity at large scales,

the two components of equation (33) reduce to:

9 — 9 —

3—1';_ fOV = - S—Z-'-uw, (34)
v — 5 —

%%'*‘ fou = - a—ZVW, ] (35)

where the Reynolds stresses -uw and -vw are defined by (7) and (8).
Subtracting from (31) and (32) the continuity equations (19)

and (20) pre-multiplied by u' and u'", respectively, and assuming

that the vertical advection terms dominate (preliminary remark),

one obtains:

il gt = By, (36)
né__ [ — M_qy !

w'sou'" = E(ut-u'). (37)
wn_g__ u' = E(Bn_gv ) (37)
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By use of (22), the difference of these two equations leads to:

(1-f)g—£ ut f%z— ut = 0, (38)

which is comparable to (30).

£) Vertical momentum equation:

In the context of Boussinesq approximations (Spiegel and
Veronis, 1960), densities may be approximated by the reference den-
sity I everywhere except in the buoyancy terms where actual values
have to be kept. For two interacting fluids, the vertical momentum
equations are:
for thermals:

8_1 E_tv 9 (- é__lv
Bt(fw ) + ax(fu w') + Sy(fv w') + aZ(fw w')

- -%—g;{fp') -%fp' +%E(w’+w”), (39)
O O

for anti-thermals:

3 9 3 d
So(@=fun) + —((-f)um) + W((1-f)v"wvv] + 5 (-E)um)

L2 (-0pr) - B41-6)p" - L B, (+0)
O O

The sum of these two equations yields an equation for mean

quantities:
LR - B T S - S
i % U + 5y VWt oW s S 9% o 0. (4l1)

The main balance consists of the terms on the right-hand side, i.e.,
the hydrostatic balance. The fourth term dominates the left-hand
side, because w' and w" do not cancel their effect in the correla-

tion ww and vertical advection dominates. Using (13) and (22), the

s1de, because W' and w'" do not cancel their effect in the correla-
tion ww and vertical advection dominates. Using (13) and (22), the

Reynolds stress ww is found to be equal to wims , and (41) may be
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rewritten as:

w2 (42)

which simply is the hydrostatic relation corrected by the Reynolds
stress divergence. To obtain an equation governing the vertical
motions, this equation will be sutracted from (39), and this correc-
tion will become of the same order as the remaining terms.

A vertical velocity equation is needed in order to predict
vertical motions through the convective layer. That equation, ob-
tained by subtracting (42) multiplied by f from equation (39),
using (13), (22), (23), and assuming once again that vertical advec-
tion is the dominant term of the total time derivative (preliminary

remark), is:

ow p+mp
rms 2m rms 2 2 of
Sm wrms 9z * 1-2f ( po (1+m?) wrms 9Z
_ 1
- o Tr'ms oy 3z Prms’ _ (43)

where m is a coefficient dependent on f only, defined by:

m=—12f (uy)

2(£(1-))7
This diagnostic equation controls the vertical motion of ther-
mals and anti-thermals. It relates the vertical acceleration to the
buoyancy. The pressure term allows an exchange of kinetic energy
between horizontal and vertical motions. The equation finally in-

cludes a correction term due to eventual changes in f.

e e D 2N )

cludes a correction term due to eventual changes in f.
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In the above set of governing equations, the unknown variables
are u', u", u, v', v", v, w', w", W} T', T", T, p', P", p, £, and E.
There are thus 17 variables for which 17 equations are needed.

The definitions of mean values u, v, w, T, and p [(L), (2),
(3), (4), and (6)] yield 5 equations. The two continuity equations
(19) and (20) may be equivalently replaced by (22) and (23). The
heat conservation equations (24) and (25) may be replaced by (26)
and (30), the horizontal momentum equations (31) and (32) by (33)
and (38), the vertical momentum equations (39) and (40) by (42) and
(43). Since the horizontal momentum are two-dimensional, there are
5+2+2+4+2 = 15 independent definitions and governing equations.
One needs thus two extra equations to solve the problem for the 17
variables. A closure hypothesis will provide the first one, while

an examination of the energetics will provide the second one.

6. CONSERVATION OF FRACTION OF AREA OCCUPIED BY THERMALS

Where thermals accelerate, they tend to separate vertically and
to grow by entraining surrounding fluid (Turner, 1973, Chap. 6
and 7; Scorer, 1978, Chap. 8). Isolated thermals may grow freely,
but in presence of many others, they grow until they feel a strong
return flow more and more confined to a reduced fraction of area.
This return flow will tend to erode the thermals, preventing them

form growing any further. and a satnratinn enniTihminm +olan ~1---

This return flow will tend to erode the thermals, preventing them
form growing any further, and a saturation equilibrium takes place.

Inversely, the same equilibrium state does occur in regions where
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thermals decelerate: there, they tend to accumulate, restricting
the area available for the return flow and are therefore eroded.
Anti-thermals now grow so that saturation of area is reached.

This saturation equilibrium leads to assigning a constant value
to the fraction of horizontal area occupied by thermals. This as-
sumption of a constant value of f is supported by atmospheric obser-
vations. Direct measurements were carried out by Grant (1965),
while data obtained by Warner and Telford (1967) were used by Manton
(1975) to evaluate values of f. Both sources show a narrow range of
variation. The assumption was successfully used by Manton (1975) in
an attempt to model convection in the atmospheric boundary layer
below the inversion and by Roisin (1979) in a study of penetrative
convection with application to upper ocean surface cooling. The
encouraging results presented in subsequent papers support the vali-
dity of this assumption for both geophysical and laboratory applica-
tions.

The expression of the volume exchange between thermals and
anti-thermals (23) is compatible with this assumption. Indeed, in
regions where the fraction of area occupied by thermals is constant,

equation (23) reduces to:
- ow'
E = fgz— N (LI'S)

i.e., when thermals accelerate (dw'/3z > 0) and would normally sep-
arate if there were no exchanges, they grow (E > 0) and thus tend to

avoid separation. The same conclusion holds when thermals decelen-

arate if there were no exchanges, they grow (E > 0) and thus tend to
avoid separation. The same conclusion holds when thermals deceler-

ate (dw'/3z < 0, E < 0). This remark does not prove the assumption
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of constant f, but rather affirms that if saturation equilibrium
occurs, it is a stable equilibrium state.

Although the fraction f of area is expected to be constant for
a given convective situation, it might differ from one case to
another, depending upon the way thermals are produced. The value
to be assigned to f depends upon the average size and rate of pro-
duction of thermals along the boundary where the forcing is applied.
For example, small scale convection by surface stress in laboratory
experiments (Kato and Phillips, 1969; Kantha, Phillips and Azad,
1977) is not expected to yield the same value of f as oceanic con-
vection in the upper ocean-due to surface cooling (Kraus and Turner,
1967; Roisin, 1979). In the oceanic wind-mixed layer and in the cor-
responding laboratory experiments (Chapter three), the value of f is :
of the order of 10% (see Table 1). In the case of penetrative con- .
vection in the lower atmosphere, a reasonable range of values is 30%-

40% (see Chapter four). On the other hand, .large-scale horizontal vari-

ations in the forcing may lead to some lateral variations of f.

Aside from those possible lateral variations and from restrict-
ed regions where saturation equilibrium is not yet reached, the
fraction of area occupied by thermals to the total area is assumed
to be constant. It will therefore appear parametrically in the
model. This assumption is stated at this early stage of the early
stage of the modelling of convection, and its effects are anticipated
to be unimportant.

As a consequence, equations (30) and (38) may be rewritten as:

to be unimportant.

As a consequence, equations (30) and (38) may be rewritten as:

S (T+mT__ ) =0, (46)
3z rms
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3—(ﬁ+ 2m u ) = 0, (57)
dz  ~ ~rms

where m is defined by (44) and rms quantities by (14). Since f is

constant, these two equations are linear. The vertical momentum

equation (u43) becomes:

|

1 9
“rms 3z "rms ae Trms - Eg'gz-prms' (48)

7. ENERGETICS

In this section, exchanges of kinetic energy between mean and
turbulent flow as well as conversion to potential energy are exam-
ined in detail. The last equation required by the model will result
as a direct consequence éf the statement that the response time of
turbulent motions is much less than the time scale of variation of
the overall convective system (preliminary remark).

The total kinetic energy (KE) may be divided in two parts,
the kinetic energy in the mean flow (MKE) and the kinetic energy in

the turbulent motions (TKE):

- 1L (G2 + v2 + w2}
KE—Epof(u + v2 4 w2} v
v

P p
= 9 [ (g2,52,=2 _° 2 2 2

5 J(u +72472) AV + 5 {[umswrmswrmsj av

v v

= MKE + TKE, (49)

where V is the total volume of the system. Equation (13) was used

to separate meana and Flua+na+ianes Fla o ma et

where V is the total volume of the system. Equation (13) was used

to separate means and fluctuations. The potential energy is defined




28

by:

PE = - agp J z T dv, (50)
\

where z 1s the vertical coordinate, positive upward.
a) Mean Kinetic Energy Budget:

The time rate of change of the kinetic energy in the mean flow

results from (33). An integration over the entire volume yields:

a ) 0 . —3 — _—3 1 _.__
a%-MKE = —pof(g.sz ua + 9.5§-V~ T UL WU ot EZ-B.YHp) av

\Y

- —_—— = 1 —
= -p (# [tWu.n + (W uw + vV VWw)n_ + —p U.n] ds
o ~TaTE z o, ~-
: (51)
d —  _— 9 — — 93 1l _ —
*pof@-x‘s Py TR U P Ty W an
\%

where I is the closed surface bounding the system, n and n_ are
respectively the horizontal and vertical components of the unit
outward normal vector to Z. The first terﬁ is the input of mean
kinetic energy through the boundaries of the system, while the
second term represents the exchange of kinetic energy between mean
flow and turbulent motions, due to shear and divergence effects.

In agreement, with the basic assumptions, vertical fluxes along the
boundaries and vertical shear effect are the dominant process, and

equation (51) reduces to:

<l

d
3¢ UKE = -p_ (ﬁ(ﬁ o0+

Ere VW)nZdS + poJ(EW — + vw —)dvV. (52)

9%z 9z

1

4 I — oV
e MKE Py é(u w + v vw)nZdS + poJ(uw — + VW SEOdV. (52)
z \%
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The exchange term may be rewritten by using (13), (22), and (47):

au Y
—_— Jdu  — oV _ rmS rms av
—pof(uw 52_+ v SEJdV - onm[(urms 97 * Vems oz “rms
Vv \'
- 3 2 2 53
B pomfwrmssz(urms+ Vrms)dv' (53)
\Y

The time rate of change of the potential energy is directly

obtained from the heat equation (26):

d . _ ST N
EE-PE = agpo[ Z[ax uT + 3y vT + "z wT]dV
\'
= agp é(z'gf.g + 2z WT.nZ)dS - agpof'ﬁﬁ dv. (54)
X \

The first term represents the input of potential energy by means of
imposed convective heat flux through boundaries. The last term is
the exchange between potential and kinetic energy by convection.

It can be rewritten as follows, with use of (13), (22), and (u48):

aep OJ meS Trms v

agpof WT dv
\Y \

awrms aprms
2
f(3pom Yems 0z T “rms 9z ) dv. (55)
\

—_——— L T

The sources of turbulent kinetic energy are (i) the exchange

with kinetic energy in the mean flow, (ii) the exchange with poten-
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tial energy, and (iii) the input at the boundaries. This last

contribution is primarily due to vertical fluxes:

- qé% o, w[(u-a)2+(v-6)2+(w-m2] + w[p-pJ }nzds,
L

which can be rewritten in terms of rms fluctuations by using (13),

(22), and (u4):

2

+v2 + w2 )+w__p_]nds. (56)
rms rms S

- Cé [emw__(u
J o] rms rm rms- rms Z
%

The sum S of the three sources of turbulent kinetic energy is given

by (53), (55), and (56):

aw Jdp
9 rms rms
g = 2 2 2
Jpom “rms 5E<urms+ vrms)dV * f(3pom Yrms dz T Yrms oz )av
v

[om w S(u2 +v2 +w2 )Y+w p ]n.ds.

rm rms rms rms rms” rms Z

1
M- <

Integrations by parts lead to the cancellation of the boundary terms.

It results that:

ow
S = - 2 2 rms
J [pom(urms+ Vrms) * prms] Z dv. (57)
Y

Since the total energy in the system is conserved, the time
rate of change of turbulent kinetic energy ought to be equal to S.

However, in the present study, the preliminary remark, which states

rate of change of turbulent kinetic energy ought to be equal to S.
However, in the present study, the preliminary remark, which states

that vertical advection is the dominant contribution to the
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substantial derivative, is equivalent to neglecting local time rate
of change of turbulent fluctuations compared with the vertical
transport, input, and conversion rates. Moreover, evaluation of the
orders of magnitude for laboratory experiments and geophysical sit-
uations shows that the time rate of change of turbulent kinetic
energy 1s at least one order of magnitude less than each individual
term in S (Denman, 1973; Willis and Deardorff, 1974; Niiler, 1975,
Lenschow et aql., 1980). Therefore, in agreement with both obser-
vations and previous assumptions, the sum of the three contributions
to the turbulent kinetic energy has to be negligible compared to
each individual term, i.e., S = 0 at that level of approximation.
This conclusion states in other words, that turbulence adapts itself
quasi-instantaneously to local variations. Equation (56) for $=0

is immediately satisfied if

+ v2 ). (58)

- 2
= - mi{u
P P o] ( rms rms

rms

This constitutes the last equation closing the model. The final

energy diagram for the system is sketched on figure 2.
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8. SUMMARY AND CONCLUSIONS

Convection is envisioned as the relative motions and inter-

actions of a two-fluid system. Considering only geophysical appli-

cations, the Boussinesq approximation is made. Although molecular
processes are necessary to diffuse heat and momentum witﬂin the
thermals and anti-thermals, molecular diffusion is modelled through
the parametrization of heat and momentum exchanges between thermals
and anti-thermals and does not explicitly appear in the governing
equations. The model requires a closure hypothesis. The existence
of a stable saturation equilibrium between the two interacting fluids
permits an assumption of a constant value of the ratio of areas
occubied by these two fluids.

The governing equations may be advantageously rewritten in
terms of mean and rms variables. In the particular case of no
horizontal variations, the one-dimensional unsteady model may be

summarized as follows:

Continuity equations: W= 0 (59)
5 awrms

E = [£(1-f)]" 5= (60)
Heat equations: -gi S

ot az(wrmsTrms) (61)

a —

EE(T + m Trms) =0 (62)
Horizontal momentum equations:

ou — 3

—_ - f - -

at ov az(urmsvrms) (63)

?—Y + f —1_; = - A 7 \ VAPETRN

ou — )

—_ f = -

at o’ az(urmsvrms) (63)

v 9

—— t+ f = -

ot ou az(vrmswrms) (64)

9 ,—

sz(u + 2m urms) =0 (65)

9 ,—

SE(V toom Vrms) =0 (66)
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Vertical momentum equations:

35 - 3
= = - 1-a(T-T - — w2
3z pog[ o o)] po 9Z wrms (67)
oW ap
rms _ 1 rms
3m Yems oz 8 Trms 5;' 9z (68)
: . - _ 2 2
Pressure fluctuation: Poins pom(urms + Vrms)' (69)

In the above set of equations, f and m are two constants,
related by (44). Equations (60) and (67) give E and p once the
solution is found; they may thus be separated from the others.
Equations (62), (65), and (66) may be directly integrated; the rms
pressure fluctuation may be eliminated in (68) by use of (69). The
problem thus reduces to four non-linear first-order coupled differ-
ential equations [(61), (63), (64), and (68)]. Examples of appli-

cations are presented in subsequent papers.




APPENDIX A

Mathematical treatment of the Preliminary Remark

If a represents any physical quantity, the preliminary remark

states:
2 (Fat) + X (fu'a') + = (fy'a')<< (fw'a') (A1)
ot ox dy 0z i
% [(1-£)a"] + 2= [(1-Pura"] + aiy [(1-F)vian < [(L-£lu"a"], (A2)

i.e., the vertical acceleration is the dominant part of the substantial
time derivative. The orders of magnitude of the various terms can be
quantified by introducing the scale for each variable: T, for the

time scale of evolution of the whole system, L, for the horizontal
length scale of lateral non-homogeneities in the system, V, for the
horizontal-velocity components, H, for the convection-layer thickness,
and W, for the vertical velocity of thermals and anti-thermals. The

preliminary remark is then equivalent to stating:

1 W vV W
_’f“«ﬁ' and E-«H .
or %« T and ‘I"/’- ,

i.e., the time taken by the thermals to cross the convective layer is
much less than (i) the time scale of evolution of the whole system
and (ii) the advective time scale of lateral non-homogeneities.

Mathematically, one may define a dimensionless number, e, to

T™MAA mvtemm e L o P e T N I -

Mathematically, one may define a dimensionless number, e, to

measure the ratio of these time scales:

35
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_ H/W  H/W
€ = max [—T—— . m] (A3)
The preliminary remark therefore holds as long as:
e<<l . (Au4)

If the terms of the order of £ and smaller are neglected, the
mathematical treatment of the equations leads to the equations pro-
posed in chapter two. It is shown below that all the equations are
valid at the order of € or better.

The continuity equations (19) and (20) may be rewritten as:

2 1y = il
3z (fw') = E + 0 &:H) , (A5)
and 2 [(1-f)w"] = -E + O (EHJ (A6)
9% H® 2
the sum of which is:
oW W
9z 0 &:ﬁ)

Since, for most of geophysical situations w can be assumed to be zero
somewhere (along a boundary, for example), w is of order eW and thus
is much smaller than w' and w'". An integration with respect to z
yields:

w = fw' + (1-F)w" = 0(eW) , (A7)
i.e., equation (22) is valid at the order of .

Equations (24) and (25) may be rewritten as:
3 tt - 1 1 " we
a(fwT)—/zB(T+T)+O(€—), (A8)
Z H
8 1nm - 1 1 i wb
g L(I-£JW'T'] = B (T'+T") + 0 € H) , (A9)

where 6 is a measure of a temperature difference across the convective

1 atwrAsn Colaea_ 2t /oA AN PEEVEPIREN
Where 6 i1s a measure of a temperature difference across the convective
layer. Subtracting from (A8) and (A9) the continuity equations (A5)

and (A6) pre-multiplied by T' and T'", respectively, one obtains:
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T! 0
fw! %E = LE (T"-T!') + 0 @:%r) s

9T wb
_ n 91 _ 1 n_m Al
(1-f)w 52 sE (T"-T') + 0 (e H)

By virtue of (A7), the difference of these last two equations is:

P wo
v % [, TR
fw az(T+T) O(EH),
B magmny = 8
or 32 (T'+T") = 0 (EH) R

i.e., equation (30) is valid at the order of .

The same treatment can be carried out in a straightforward
manner, and it is concluded that equations (38), (42) and (43) are
valid at the order of €. On the other hand, the governing eqﬁations
for the mean variables, T, u and v, are not based on the preliminary
remark and are exact equations.

As an example, the application of the theory of chapter two to
the deepening of the wind-mixed layer (Chapter three) is governed by
the following scales:

H=10m, L =®, T =10%, W=102ms !, v = 10 Ims™ !,
in which case, € is of the order of 10 !. Likewise, the application
of the theory to oceanic penetrative convection under surface cooling
(Chapter four5 and to wind-induced oceanic frontogenesis (Chapter five)
are based on values of ¢ of the order of 10™“ and SXlO—“, respectively.
The theory, as developed in chapter two is thus directly applicable to

upper-ocean dynamics.




APPENDIX B

A more general parameterization of the exchanges
between thermals and anti-thermals

Exchanges of heat and momentum between thernals and anti-thermals
are assumed to take place exclusively through a volume exchange, thus
excluding transfer by diffusion or collision. Exchange terms can

then be written as the product of E, the volume exchange between

thermals and anti-thermals, by the quantity which is being transferred.

Since momentum exchanges are analogous to a heat exchange, only the
parameterization of the heat exchange is discussed in this appendix.
The conclusions will hold for momentum exchanges.

Assuming that the transfer of heat between thermals and anti-
thermals is a net transfer of volume, E per unit time and total

volume, at a temperature Tex’ the heat conservation equations take

the form:
_a H a ! 1 a 1 1 a ! 1 -
g (T + o (Fu'T?) + o0 (£v!T!) + - (fw'T') = ET__ (B1)
X y Z ex
D [-HTM + 2 [T + 2 [(1-F)v"T"] + 2 [(1-£)w"T"]
ot X oy 9z
= -ET (B2)
ex

The exchange temperature, Tex’ must be a function of T', T" and

possibly f, and has to meet the following requirements:

(1) Tex ranges between T' and T", (B3)
(ii) T =T, i€ T = ™" = T {RL)
(i) T, ranges between T' and T", (B3)
(i) T = T, ifT'=T" =T, (Bu4)
(iii) TeX (trr, T, £) = TeX (tv, T', 1-f) . (B5)

38
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The second requirement states that if thermals and anti-thermals
are at the same temperature, the exchange takes place at that temper-
ature, while the third requirement directly follows from the
Invariance Principle.

Using the continuity equations and the Preliminary Remark, and
performing the same algebraic transformations as in chapter two, one

obtains the following equations:

, 9T
fw'! — = E (T -T') , (B6)
9Z ex
1"
(=) 2 =g (o1 ), (87)
0Z ex

which are generalized forms of (28) and (29). The elimination of the
vertical velocities from (B6) and (B7) by use of (22) yields:

T ! 3T
(T"-T_ ) 5, + (T - T") 5~ =0, (B8)

which is the generalization of equation (30).

No further information can be drawn from this equation without a
parametrization of the exchange temperature, Tex' Since Tex has the
dimension of a temperature, a linear function of T' and T" is well-
suited:

T =a(f) T' + £(£) T", (B9)
ex
where the dimensionless coefficients, a and b, are functions of f

in general. The three requirements lead to impose:

(i) o<a, b<l, (B10)
(ii) a+b =1, (B11)
(iii) a(1-f) = b(f) . (B12)

In this case. eauation (B8) reduces to:
(iii) a(1-£f) = b(f) . (B12)

In this case, equation (B8) reduces to:
R (313)

9Z 9z
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for the derivation of which (B1ll) has been used. The coefficients
a and b are functions of f only, and it is assumed later that f is

constant throughout the system. Therefore, (B13) becomes:

o T = (aT' +bTM) =0, (B14)
This equation is a more general form of equation (30). Since it is
linear in T' and T", the same analysis as in chapter two and

the subsequent chapters can be carried out. The mathematical
formulation remains unchanged; only the dependence of the coefficient
m upon f has changed to:

m = .aﬂ__f_ . (BlS)

VE(1-T)

The particular case chosen in chapter two corresponds to a = b = %
and is the only choice which leads to conserving the total kinetic

energy of the flow, i.e.,

1-f

; (u'2+v'2+w'2) + (u”2+v”2+w”2)

As defined previously, parametrizations of exchanges between
thermals and anti-thermals are not based on any coefficient of
molecular diffusivity. However, molecular processes are required
to homogenize thermals and anti-thermals and are effective as
exchanges take place. Therefore, in all precision, molecular

diffusion is not neglected but modelled.




CHAPTER THREE

DEEPENING OF THE WIND-MIXED LAYER:
A MODEL OF THE VERTICAL STRUCTURE




1. INTRODUCTION

Much of the work on upper ocean mixing is limited to one-
dimensional models. These can be useful because bulk temperatures
and salinities tend to vary more along a vertical distance of a
hundred meters than along a horizontal distance of a thousand
kilometers. This holds true over many parts of the world's oceans,
except near fronts, because vertical exchange processes between the
air and the sea, as well as vertical mixing within the water column,
are likely to affect local conditions much more rapidly and
effectively than horizontal. advection and horizontal mixing (Niiler
and Kraus, 1977).

Time-dependent one-dimensional models often assume vertical
homogeneity in the mixed layer, and are therefore bulk models.

They were reviewed extensively by Niiler and Kraus (1977) and
Zilitinkevich, et al., (1979). The four unhknowns in these
models are the mixed-layer temperature T, horizontal velocity
components u, v, and thickness h. These variables are functions
of time only and are governed by the overall budgets of heat,
horizontal momentum and turbulent kinetic energy. This last
budget takes the form:

d _ d
o TKE=F +E-3z-PE-D-F , (1)

expressing that the time rate of change of the turbulent kinetic

energy (TKE) is the sum of a surface flux F_ from the atmosphere

expressing that the time rate of change of the turbulent kinetic
energy (TKE) is the sum of a surface flux FS from the atmosphere

through surface-wave breaking and the rate of production E by the
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shear of the mean flow minus the rate of increase of potential
energy PE, the rate of dissipation D by friction within the mixed

layer, and the flux F,_ of energy lost by internal gravity waves

h
through the underlying stable layers.

It is reasonable to state that the turbulent kinetic energy
responds quasi-instantaneously to time variations and thus to
neglect its time rate of change (Denman, 1973; Niiler, 1975;

Chapter two). On the other hand, the downward flux by internal
gravity waves is often neglected since no acceptable parametrization

has yet been proposed. The TKE-budget (1) therefore reduces to:

dPE

TE?'= FS + E -D 5 (2)

which leads to two main classes of models: (i) Turbulent erosion
models (TEM) for which the increase in potential energy by mixing
is exclusively due to the surface flux FS minus internal dissipation,
and (ii) the dynamic instability models (DIM) for which the increase
in potential energy is entirely due to production of turbulence
by the mean-flow shear. The comparison and synthesis of these two
models are discussed by Niiler (1975), de Szoeke and Rhines (1976)
and Price, et al., (1978).

More recently, various turbulence closure models have been
applied to the mixed-layer deepening problem in order to study
the vertical structure across the layer (Mellor and Durbin,
1975; Warn-Varnas and Piacsek, 1979; Klein, 1980; Kundu, 1980a).

They all show that the assumption of vertical homogeneity is

LI/0 5 WALll=VALlldS dlld FldUSER, LY/J5 DNLELI, 1LJYOU, DUllluUu, LIjovd/.
They all show that the assumption of vertical homogeneity is
excellent for temperature when the mixed layer is deep enough so

that the thermocline is well-defined, but not adequate for

e R —————————
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horizontal velocity components for sub-inertial time scales when
an Ekman-spiral structure is present.

In a parallel way, laboratory simulations of mixed-layer
deepening were conducted, either without mean shear (oscillating-
grid experiments by Turner and Kraus, 1967; Linden, 1975) or with
mean shear (Kato and Phillips, 1969; Moore and Long, 1971; Kantha,
Phillips and Azad, 1977).

Finally, theoretical and laboratory results have been com-
pared with observations (Turner, 1969; Denman and Miyake, 1973;
Halpern, 1974; Kullenberg, 1977; Price, Mooers and Van Leer, 1978;
Dillon and Powell, 1979). The main conclusions resulting from
the data are: (i) TEM and DIM both lead to qualitative agreement,
(ii) good quantitative agreement is obtained for a well-adjusted
dissipation term, and (iii) comparisons of the various terms in
(2) favor a TEM when the mixed layer is well developed (15 m or

more) .

2. THE MODEL

The model presented here is a new turbulent erosion model
(TEM). It focuses on the vertical structure of the variables
throughout the mixed layer and thermocline. The aim is to predict
by simple analytical calculations the thermocline thickness and

profiles of temperature, velocity, Reynolds stresses and heat flux.

Ly Simpie dndiyticdl CalCuldrlons tne TNermocllne TNlckness ana
profiles of temperature, velocity, Reynolds stresses and heat flux.
The model is based on a new parametrization of mixing and convection

(Chapter two). It can be applied to the most general case of
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mixed-layer deepening under variable wind stress and/or variable
surface heat flux.

The model envisions mixing as the relative motion of two
interacting fluids of different properties. Parcels of fluid
rising through the convective layer are given near the surface
extra momentum by the wind stress, and their temperature is
altered by the surface heat flux. These elements are pushed back
into the convective layer by turbulence with new broperties.
Because they sink in a slightly stratified fluid, they accelerate
or decelerate. Ultimately, they will become buoyant and decelerate.
As they sink, they also progressively lose their horizontal-
momentum excess and heat content by interactions with the upward
return flow. As they reach the bottom, they have a null vertical
velocity and lose their ability to carry heat and momentum. The
active sinking elements are called thermals, and the rising
elements, anti-thermals, by analogy. The model describes the
individual dynamics of thermals and anti-thermals, and their
exchanges; mean properties and relative differences are then
deduced. This permits direct computation of mean profiles and
vertical fluxes of momentum and heat.

For better comparison with previous models and laboratory
experiments, the present study is limited to the case of no
surface heat flux. This wind-mixed layer deepening case is

depicted on Figure 3. At the surface, non-buoyant thermals are

CuL fUuLLe TaTWL Liune LULD WALLUTUILACUW Llaycl uccpelllily cdse 1o
depicted on Figure 3. At the surface, non-buoyant thermals are
produced by wind action. As they penetrate the mized layer,

they acquire positive buoyancy due to a slight stable stratification




Figure 3.

Schematic model of the wind-mixed layer.

Generation of
turbulence by
the wind

Entrainment of
quiescent fluid
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existing in that layer, and decelerate. At the bottom of the
mixed layer, their vertical velocity is somewhat reduced. As the
temperature profile begins to curve at the entrance of the thermo-
cline, the thermals' buoyancy increases sharply, and their vertical
velocity decreases rapidly. Since the newly-entrained fluid is
subjected there to the largest temperature variations, the vertical
heat flux wT (negative) is large at the bottom of the mixed layer.
A decreasing velocity therefore implies larger temperature contrasts
and increasing buoyancy forces, which in turn decelerate thermals
eveﬂ more. The process is cumulative, and gives rise to the
formation of a thin layer of rapid variations, the thermocline,
which lies between the mixed layer and the quiescent stable fluid.
Throughout the mixed layer and thermocline, a saturation
equilibrium between thermals and anti-thermals can be assumed
(Chapter two). This leads to assigning a constant value to f,
the fraction of area occupied by thermals. .However, continuity
of physical properties at the bottom of the thermocline requires
f to vanish at that level. This may be accomplished by assuming
the existence of an entraimment layer within which f decreases
monotonically from its constant value in the mixed layer and
thermocline to zero. Calculations carried out in Appendix C show
that this layer is in fact so thin that it does not play any
active role in the deepening process and may be neglected. It is

therefore assumed here that f is constant throughout the water

AnTliimn

- — o - C e -

therefore assumed here that f is constant throughout the water

column.
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3. GOVERNING EQUATIONS

Thermals and anti-thermals are characterized by different
velocities, temperatures, densities and pressures. Primed and
double-primed quantities refer to thermals and anti-thermals,
respectively. If f represents the fraction of area occupied by
thermals at any level, the fraction of area available to anti-

thermals is (1-f), so that mean properties are defined by:

Mean Temperature T = £T' + (1-£)T" , (3)
Mean velocity components u = fu' + (1-f)u" , (%)
v = fv' + (1-f)v" , (5)
w = fu' + (1-f)w" , (6)
Mean density o = fp' + (1-fo" , (7)
Mean pressure p = fp' + (1-f)p" . (8)

Moreover, root-mean-square (rms) fluctuations are defined by:

“rms ~ /E(1-f) (a'-a") = 1?3:3371%, (9)

where a stands for any physical quantity such as temperature,
velocity, density or pressure. Rms fluctuations are thus propor-
tional to the difference between thermals and anti-thermals
quantities. They may be positive or negative. The vertical

convective heat flux can be expressed as:

wl = fw'T' + (1-£)w"T"

== (10)
= wT T ,
rms rms
and 211 +ha A+than £luvac canah_~m~ +hA Darrma TAA mdammmmam mm—m Lo
b (10)
=wl +w T ,
rms rms

and all the other fluxes such as the Reynolds stresses can be

written in similar forms:




43

-uW = -U W -Uu_ W (11)
rms rms ,

VW = -V W -V W , (12)
rms rms

—WW = W2 - w2 . (13)
rms

With these definitions, the one-dimensional convection (no
horizontal variations) can be described by the following equations

(Chapter two):

Continuity equation: w=0 (1)
Heat equations: o7 _ 9y T (15)
ot 9z ~rms rms
T v mT. ) =0 (16)
0z rms
Horizontal momentum G _ 5
equations: 3T - oV T oty (urmswrms) (17)
v - p) (18)
=+ fu= -2
at “ 9z (vrmswrms
9%+ 2mu ) = 0 (19)
oz rms
3 :
a_Z—(V + varms) =0 (20)
Vertical momentum 35 - 3
. . i = - 1-7 - - 2
Equations: po'gg gl (T TO)] 32 oms (21)
awrms 1 b
3 L - = rms
™ ms oz OLgTrms 0 9z (22)
Pressure fluctuation: p = -p m(u? +v2 ) (23)
: rms o rms prms’’

where fo is the Coriolis parameter, o the reference density at

To’ a the coefficient of thermal expansion, and m a coefficient

where fo is the Coriolis parameter, po the reference density at

To’ o the coefficient of thermal expansion, and m a coefficient

dependent upon f, defined by
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1-2f

o (24)
and is related to the turbulent kinetic energy input at the surface
(Chapter two). Figure 4 exhibits a plot of m versus f.

Eliminating the equations for w and p, (14) and (21), and
replacing Prms by its expression (23), the system reduces to seven

non-linear first-order coupled differential equations.

4, BOUNDARY CONDITIONS

At the surface, z =0, the Reynolds stresses ought to match the

wind stress components:

T
-uw = -u W = 2 (25)
rms rms o] ?
o
— T
VT T VemsYems T =
r
Py (26)
while the vertical convective heat flux is set equal to zero:
Wl = =0, (27)

W T
rmMs’ rms

since the effect of a surface heat flux is not studied here.
Finally, isotropic turbulence is assumed in the wave zone just

beneath the surface:

w2 = u2 + v2 s (28)
rms rms rms

expressing that the turbulent vertical velocity equals the turbu-
lent horizontal velocity.

The wind-stress amplitude defines a friction velocity charac-

e T JON R P M A

The wind-stress amplitude defines a friction velocity charac-

teristic of the turbulence near the surface:
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Figure 4. Plot of m versus f, the fraction of area occupied by
thermals.
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u, = [t /o )2 uy/po)zf . (29)

In terms of this friction velocity, the surface boundary conditions

(25), (26), (27) and (28) become:

Uo T Tx/(pou*) R (30)
v =1 /(p u,) ,

rms y' o %
Wons = "W s (31)
T =0,

rmS

where Wons is chosen to be negative because thermals sink (w'<O<w").
At the bottom, z = -h(t), mean quantities match the charac-

teristics of the underlying motionless layer:

u=0,
v=0, (32)
T = -Th ,

where I' = dT/dz is the constant temperature gradient in the stably
stratified fluid below the mixed layer (See Figure 3). By
definition, the bottom of the thermocline at z = -h(t) is the
level beyond which thermals do not penetrate. The thermals' ver-
tical velocity therefore vanishes at that level:

w' =0 . (33)
Strictly, w' ought to be equal to -dh/dt, the rate of entrainment
at which the bottom of the thermocline deepens. However, the
thermals' sinking velocity through the water column is much greater
than the rate of deepening of the thermocline, and boundary con-

dition (33) is a valid approximation.

than the rate of deepening of the thermocline, and boundary con-
dition (33) is a valid approximation.

The set of equations requires seven boundary conditions




53

whereas eight are presently prescribed. The extra condition is
precisely the one which will yield a prognostic equation for the
mixed-layer depth h(t). The system is thus closed and self-

consistent.

5. THE HYPOTHESIS OF A TURBULENT EROSION MODEL (TEM)

For the present boundary conditions, the turbulent kinetic

energy input at the surface by the wind is:

1 — — - - — Z
Fy = —E(W—w)[(u-u)2 + (v-v)? + w-w)?] - %—(W—W)(P-P)
o
- 2 2 2 1
mwrms(urms Y Vems Y Ypms? T 5; "rmsPrms
= mu’
b3 (34)

at z = 0. Thus the coefficient m as defined by (24) is equivalent
to the parameter m_ as defined by Niiler (1975).

In the case of no dissipation, the turbulent kinetic energy
budget (2) is given by Niiler (1975), de Széeke and Rhines (1976),

Niiler (1977):

<

TNhh = mul o+ (3% o+ TR, (35)

where ﬁ = dh/dt is the rate of deepening, and the double bar
represents a vertical average of mean quantities across the mixed
layer. A turbulent erosion model (TEM) balances, in (35), the left-
hand side with the first térm on the right-hand side, arguing that

deepening is caused by erosive action of turbulence propagating

At OLUT WL LU LIS L 1E'dL LTl ULl LlE LiiglitTidid siue, argutny tnat
deepening is caused by erosive action of turbulence propagating
from the surface down to the thermocline. A dynamic instability

model (DIM), on the other side, balances, in (35), the left-hand
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side with the second term on the right-hand side, arguing that
deepening results from a shear instability across the thermocline.
The computations of de Szoeke and Rhines (1976) show that the DIM

holds for times of the order of the inertial period %E-. At later
o

times, the mass flow in the mixed layer is limited to the Ekman
transport, the velocity components 4 and v decrease as h'!, and a
TEM applies.

Because this study is directed toward long time scales,
assumptions will be made to reduce the model to a TEM, and thus
decouple the mixed-layer deepening from the mean horizontal flow.
The pressure term in equation (22) represents the mechanism of
production of turbulent kinetic energy from the mean flow shear
(Chapter two). The reduction of the model to a TEM is thus
accomplished mathematically by neglecting the pressure term in (22).

The final model thus reduces to the following set of equations:
dT _ 3

) (36)

9t 3z "rms rms

3 -
3z(TenT ) = 0 7
du - _ 9
9t foV - —Ez(urmswrms) (38)
v - 2
FE fou T 792 VrmsYrns (39)
a_(- + 2mu ) = 0 (10)
5z Mms? 7

3 -
5—(v + 2mv ) = 0 (u1)
zZ rms

3 -
5—(V + 2mv ) = 0 (u1)

Z rms

dw
rms _ .

smwrms_ﬁz__ - OLgTrms ’ (42)
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with the boundary conditions at z = O:

T = 0 (43)
rms
u =1 /(p u,) (ki)
rms X o =%
v B /(p u_'l) (u5)
rms v o =
w = -u, (46)
rms
and at z = -h: T = -Th (u7)
a = 0 (‘48)
v = 0 (49)
W =0 (50)
rms
6. CHANGE OF VARIABLE AND FUNCTIONS
Since the mixed layer is constantly deepening it is advan-
tageous to use the similarity variable & = -z/h(t) which varies

from zero at the surface to one at the bottom of the thermocline.

On the other hand, one may immediately integrate equations

(37), (40) and (41) with respect to z and define:

u = U(t) - 2mu(t,£&)

u = u(t,g) ,

v = V(t) - 2mv(t,&)

v = ;(tsg)a

=1
i

= -TT(t) -m T(t,E)

—3
it

IT(t,€) ,

rms

—3
i

rms FT(t,&) ,

(51)

(52)

(53)

(53)
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where tilded quantities are & and t-dependent and represent rms
quantities. The non-tilded quantities U, V and T are constants of
intregration and depend upon time only. They will have to be
determined by the boundary conditions. Note that due to the
presence of the factor T', the new temperature variables T(t) and
%(t, £) have the dimension of a length. The rms vertical velocity
may be redefined as:

W T -w(t, &) , (54)

in order to work with a positive variable.
With these changes of variable and functions, the remaining

governing equations (36), (38), (39), and (42) become:

. 3T n.9T | 13 (=% (55)
-T - mae + mgiag = -3 g(wT) s

I B, 90U S AT (56)
U—QmB—E + 2mg€a— -~ fOV + meOV = h ag(UW)

3V h 3V i} I R (57)
V—ng? + 2mh£3£ + fOU 2mf u h ag(VW)
3 A _N2nT (58)

mw8€ - bl

where N2 = agl is the square of the Brunt-Vdisdld frequency in the
underlying stratum, and where a dot represents a time derivative.

The boundary conditions become:

T(0) = 0, u(0) = T /(pw,), v(0) = T /(p u,), w(0) = u, , (59)
X o ¥ y o ¥ %

and

T(1) = (h-T)/m, (1) = U/2m, v(1) = V/2m, w(1) = O (60)

This constitutes a set of four coupled first-order non-lincar

SN = oAM=l /0y UNL) S U/ZM, VUL) = v/Zm, WAL) = U (60)
This constitutes a set of four coupled first-order non-linear

differential equations which require four boundary conditions.
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However, they contain four unknown time-dependent functions: T(t),
u(t), V(t) and h(t), for which four additional conditions are
required. The system consists of eight boundary conditions,

precisely what is required.
7. GLOBAL HEAT BUDGET

The heat budget of the whole system yields the temperature
T(t) as a function of the mixed-layer depth h(t). Although the
result of this section will be recovered after having solved the
equations, it is useful to anticipate that result in order to
define the Richardson numbers of the next section.

The global heat budget of the mixed layer and thermocline,
integrated over time, expresses that the temperature difference
from the initial value integrated over the water column is equal
to the time integration of the net surface heat flux, which is
zero in the present case:

o
J (T-Tz)dz = 0.
-h

Using expression (53) for T and the vertical momentum equation

(58) to eliminate T, one obtains:
1

3m2T oW _
[O(—FT +ﬁ2h— WE +Fh£)hd£ =0,

and, with the use of boundary conditions (59) and (60), the

integral yields:

u?
crtm 3 i vas taae o VJ-‘A.’;V\‘AAA\.Lubj’\/OAAG.'.L(_?_\JI.'AQ \v I/ Al \UV /4 LlE
integral yields:

1.12

w

h
T(t) = 5(1—3m2N2h2) . (61)
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For oceanic values corresponding to time scales greater than the
inertial period, i.e.,

NNlO-zs—l, u*%lO_zms—l, h320 m, m of the order one,
it is easily seen that the second term in the parentheses in (61)
is of order of 10 2, Therefore, because the mixed layer is deep
enough (h>>%§), the heat budget reduces at the leading order to:

T = 2, (62)

This approximate result could have been easily anticipated.
Indeed, assuming a well-developed mixed layer of perfectly
homogeneous temperature and bounded by a zero-thickness thermo-
cline (see Figure 5.), the global heat budget requires the equality
of areas A and B, and therefore T~h/2. Because the mean tempera-
ture profile T is not exactly z-independent, the correction f, due
to a slight gradient through the mixed layer and to a non-zero
thermocline thickness, leads to a value of T which is somewhat
reduced, as expressed by (61).

The total buoyancy in the mixed layer is:
Bp
%

B =g—h,

where Ap is the density jump across the thermocline, and s the
reference density. Since Ap = pouAT, AT = -Th/24Th = -Th/2, by
virtue of (62) (see also Figure 5.), and N2 = agl, the total

buoyancy may be rewritten as:

212
B = N;’ . (63)
B = (63)




Figure 5. Limiting case of a perfectly homogeneous mixed layer
bounded below by a zero-thickness thermocline. The
global heat budget requires: Area A = Area B.
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8. RICHARDSON NUMBERS

The mixed-layer deepening under the action of a surface wind

stress 1s successfully characterized by the values of two Richardson

numbers, ratios of the total buoyancy in the mixed layer to the
square of a velocity. The Frictional Richardson number is the
ratio of B as defined by (63) to the square of the friction
velocity u, as defined by (29), based on the wind-stress amplitude:

N2h?2

502 (64)

i =

This is the Richardson number used by Turner and Kraus (1967),
Kato and Phillips (1969), Kim (1976), Kullenberg (1977), and
érice, Mnoers and Van Leer (1978). The Overall Richardson number
is the ratioc of B to the square of the mean horizontal velocity
in the mixed layer, here approximated by U2+V? as introduced by (51)
and (52):

N2h2

Rv Y (65)

Rv is the Richardson number used by Pollard, Rhines and Thompson
(1973), Garwood (1977), Dillon and Powell (1979), Price (1979) and
Kundu (1980a).

Both numbers Ri and R, are time-dependent through h, U and V,
and increase as the mixed layer deepens. They characterize at
anytime the state of the system. The frictional number, Ri, is
the dominant number in TEM's, for turbulence induced by vertical

shear across the thermocline is neglected compared to the surface

the dominant number in TEM's, for turbulence induced by vertical
shear across the thermocline is neglected compared to the surface

input. Because the present model is a TEM, the frictional
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Richardson number, Ri, will play an essential role. It increases
from zero, when the wind starts to blow, to values much larger
than unity, when the mixed layer is well-developed (Rin102 for
orders of magnitude listed in the previous section ).

Mathematically, it will be assumed here that the mixed-layer
+ thermocline system may be treated as an interior + boundary-
layer problem. It will be shown a posteriori that this simplifi-
cation holds when

Ri>>1,

i.e., when the mixed layer is well-developed.

Another important dimensionless number is the rate of

entrainment

E2

E =2 (66)

ofe
v

£

the ratio of the deepening rate to the friction velocity, as
defined by Kato and Phillips (1969). The friction velocity is
characteristic of the vertical downward velocity of thermals. It
is anticipated to be large compared to the rate of deepening of
the thermocline because thermals take a short time to sink from
the surface down to the thermocline compared to the time scale of
evolution of the whole system. The entrainment parameter is thus
expected to be very small compared to one.

Dimensional analysis leads to the solution of the mixed-layer

deepening:
E = F(Ri) (67)
aeepening: v "
E = F(Ri) (67)
and YU -6 i), =6 (rRi), L =G (r),
Uy 1 Yy 2 h 3
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where the four functions, F, G , G and G result from the solution
1 2 3

of the equations.
g9, SOLUTION

a) Hypotheses of a_guasi-homogeneous mixed layer:

It is well known from observations and laboratory experiments
that when the mixed layer is well-developed, it is quasi-homogeneous
and bounded below by a thin layer of large gradients, called the
thermocline. This behavior may be anticipated a priori and a
boundary-layer treatment is therefore the appropriate method of
solution. The system is divided into two-regions, the interior
region where the horizontal velocity and temperature are almost

constant with depth

4<<U0, ¥<<V, T<<T ,

(68)
= 0(1),

2
13
and the thermocline, where vertical gradients are anticipated to

be very large:

any, 9w, TaT,

(69)

3
§§>>O(l)'

These assumptions will be verified a posteriori, and it will be
shown that they are correct provided that Ri is much greater than

one.

Tesmar LWL LIITY LT LWL L TLW L PLUVLIUTUY Llal Nl 1S uln preatel’ uidll
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b) Solution in the mixed layer

Assuming a quasi-homogeneous mixed layer, equations (55) to

(58) reduce to:

. L 9 ,~x
-T = 5 5—(WT) s (70)
. 1 9 ,~~
U - fOV = —H ﬁ—(uw) . (71)
y 19 ,~~
v+ £ U= -¢ gg(VW) , (72)
P R

mW3E = -N"hT . (73)

The left-hand sides of the first three equations are independent
of &. Integrations with respect to & and use of surface boundary

conditions (59) yield:

—Je

§ - hIE (74)

=

Tx/po—h(u—fOV)E

a = = ’ (75)
T Jo -h(V+f U)E
v o= AL " - (76)

W

Replacing T by (74) in equation (73) yields a single equation

for W whose solution is:

=ul - o g2, (77)

after the surface boundary condition (59) has been used.

¢) Solution in the thermocline:
The dominant terms in the governing equations are now those

which include derivatives with respect to &. Moreover, since

this boundary layer lies near £ = 1, & may be replaced by one

winlcn lnclude derivatives with respect to &. Moreover, since
this boundary layer-lies near & = 1, & may be replaced by one

where it appears. Equations (55) to (58) now reduce to:




Bl

R 9T 1 9 ,~x
- es - = 2 78
m 3E o3 (wT) , (78)
hou _ 1 9 ,~~
ng a—é = h -8—-'(UW) . (79)
9V 19 .-
2mB— ’a—g = -—H a_g(v‘ ) s (80)
amird¥ - _nZni (81)
& ’

These last equations may be easily integrated with respect to &.
The constants of integration are determined by using the bottom

boundary conditions (60):

= (h-T)h

T = S nn (82)
~ _ RU ’

VS Eomn (83)
~ AV

VoS Siomh (84)

where W is implicitly given by the cubic polynominal:

2
‘;3 : %mﬁ‘;z _ N h(rl’rll—T)Fl

(1-¢) . (85)

10. MATCHING OF SOLUTIONS

The two sets of solutions were cbtained independently for the
mixed layer and thermocline by using surface and bottom boundary
conditions, respectively. However, they ought to be the asymptotic

forms of a unique set of solutions valid throughout the whole water

conditions, respectively. However, they ought to be the asymptotic
forms of a unique set of solutions valid throughout the whole water

column. This requires imposing matching conditions. As a result,




four prognostic equations for the time-dependent functions T, U,

Vv and h will be obtained.
Mathematically, matching conditions are obtained by writing
that, for each variable T, i, ¥ and W, the mixed layer solution

for & approaching unity is equal to the thermocline solution for

# much greater than h. The resulting relations are:

(h-T)h
ﬁ bl

=3.

- J_f v
Tx/po h(U fo )

_ hu
W oW
Ty/po - h(V+fOU) _ Pl ’
W W
N2h2T  N2h27 _ N?h(h-T)h
u:’: - 2m * m (l—g) - ——m——(l~£).
The above equations can be rewritten as:
(hT) = nh , : (86)
L] TX
(hu) - £ (hv) = ' (87)
o Y
(o]
. A Ty
(hv) + £ (hU) = === (88)
o 0
O
N2h2T = 2mu’ . (89)

W

Equation (86) can be integrated over time in order to obtain

T in terms of h:

_h constant]

T =3 [1-r———7§7——— (90)
_h constant]

T =3 [l+——h2 (90)
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The constant of integration cannot be determined by the initial
conditions, since the boundary-layer technique breaks down at the
incipient deepening, when the mixed layer and thermocline are not
well-defined. But, equation (90) is identical to the global

heat budget (61), which is an exact result for all times. The
constant of integration is therefore —3m2,u:2.:/N2 and,

_h 3m? |
T -5(1—@.—) ) (s1)

which reduces to (62), because Ri is much greater than one.

Equations (87) and (88) are the classical transport equations,
whose general solution contains inertial oscillations superimposed
on an Ekman drift to the right of the wind stress. For a time-

dependent wind stress, the solution is:

t

hU = h U+ LJ[’( (1) cosf (t-1) + 1 (1) sinf (t-t)ldT ,
o o o] X o) y o
o
0
t
l ) 3 -
hv = hovo + E;f[ Ty(T) cosfo(t—r) ~ TX(T) 31nfo(t T)Jldrt

o

The last relation (89) combined with (91) is the prognostic

equation for the mixed-layer depth, and is discussed in the next
section. Finally, the vertical profiles valid throughout the

water column are:

5 . DT (92)
mh+w ?

T, [P (1-E) hUE

. (93)
4= w + 2mh >
- _ I:-L_r\ . g'[jr
- Ti/p°( £) + g (33)
w + 2mh ?
- Ty/po(l—é;) + hVE (ou)

W + 2mh >
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where W is implicitly given by:
v’ o+ 3mhw? = ud(1-g2) . (95)
It is evident from the structure of this final solution (92)
to (95) that similarity solutions do not exist. None of the
variables can be expressed as single products of time dependent
and &-dependent functions. The approach of Kundu (1980b) is

therefore not justified.

11. MIXED-LAYER DEEPENING

Equations (91) and (89) form a coupled set of equations for
T and h. Eliminating T, a prognostic equation for h is obtained:
(N?h? + 3m2ui)ﬁ = Mmuz R (96)

which reduces to

N?h2h

dmuy (97)

since it was assumed that Ri>>1. This last equation is the

turbulent kinetic energy budget for a TEM without dissipation,

expressing that the time rate of change of potential energy equals

the turbulent kinetic energy input by wind at the surface. If the

wind-stress amplitude is constant with time, the mixed-layer depth
1

increases in time as t°.

In a dimensionless form, (96) and (97) become:
2m

E = A 5 (98)
Eg—+Ri

and o smgﬂ . fna
_37—+Ri

and g =M (99)
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respectively, where E and Ri are defined by (66) and (64). The
dependence of the entrainment rate on the inverse of the frictional
Richardson number has long been observed in the laboratory (Kato
and Phillips, 1969) as well as in oceans and lakes (Kullenberg,
1977; Price, et al., 1978; Dillon and Powell, 1979).

Various values of m are proposed by authors while more can be
computed from data in the literature. A summary is shown in Table
1. From the table, one concludes that all the values of m agree
rather well, approximately one or.slightly larger. Values of f,
the fraction of area occupied by thermals, were computed by (2u)
and are found of order of 10%. Thermals are thus rather small
disturbances among a return flow which occupies most of the
available surface. This result agrees with numerical calculations
(Piacsek, 1968) and laboratory observations (Turner, 1973), which
all show that thermals or plumes are narrow and occupy a small
fraction of the total area of any level. For a system where the
roles played by thermals and anti-thermals are perfectly symmetric,
one can argue that the value of f ought to be 50%. However, in
the present situation, thermals are locally generated very near
the surface while anti-thermals are progressively formed in the
water column as they rise, and an excess of momentum is input
locally at the surface, while it is progressively consumed for an
evenly-distributed momentum increase of the water column. These

asymmetries explain why thermals are narrow and anti-thermals

\JVCLA.L] TULOLL LU LTU Vil LUl Liiclr'casce vl LHIT walLcl COLUldl,. LilcbC
asymmetries explain why thermals are narrow and anti-thermals
diffuse and thus why f differs markedly from 50%.

The correction in the denominator of (98) is reminiscent of
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0f the one proposed by Kim (1976):

E - 2m
- (c_/u,)?+Ri
m "»

2
m

1 . . . .
where 7c‘ is the average turbulent kinetic energy across the mixed

layer. For m = 1.25, Kim proposes (cm/u*)2 = 9, while (98) yields
3m? a

- = 2.34., The corrections are thus of the same order of magnitude.

The results of this section permit justification of the
assumptions which were stated before solving the equations. One
has to show that the approximations

T<<T, U<<U, V<<V
hold in the mixed layer as long as Ri>>1. In the mixed layer,
w is of order of u,, its surface value, which is much larger

than h according to (99). From (92), (93) and (94), one obtains:

h

ota
«“

o nRiTie< 1,

=332
<<

APy
U

which validates the method of solution chosen for this problem.
12. THICKNESS OF THE THERMOCLINE

Due to non-linearities, the boundary-layer method applied
here differs from classical applications to linear systems, and
caution must be exercised when one evaluates the boundary-layer
thickness. At first, one could think that the thermocline is the
region wherehﬁ is of order h, so that corrections in the denominators

of (92) to (94) become important. This argument leads to a

Lreglon wnere w 1S OI oraer h, SO that corrections 1n the denominators

of (92) to (94) become important. This argument leads to a

3

dimensionless thermocline thickness of order Ri °, which is
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much too small. There is a thicker layer where boundary corrections
start to appear in the solution. Indeed, in the temperature

equation (55),

R

O A
-T -~ m§€-+ M &
(

(a) (b)

3
3

o

9, ~~
= - QE(WT) N
(d

(821

c) )

The right-hand side, term (d), balances term (a) in the mixed layer,
while it balances term (c) in the thermocline. The top of the
thermocline is thus the level where term (c) begins to take over
term (a). Boundary corrections therefore start to appear where
these two terms compete, i.e., where

.« h_T
n - o
TV EsE o
where 8¢ is the dimensionless thermocline thickness. Because
the boundary layer is a thin region, & is almost one, and,

hu-.':
according to (89) and (92), T is of order of R35 , so that:

A (100)

The balance of the vertical-momentum equation (58) combined with

(89) requires:

ﬁz U*3
TE v = (101)
Combination of (100) with (101) finally yields:

3
S& nv RiT Y, (102)

1
W v ouRiCH (103)
3
N

Therefore the dimensionless thickness of the thermocline is Ri~
rather than Ri ™3

In a studv of tnrhnlence and entrainment within tha intanfansiol
rather than Ri 3.

In a study of turbulence and entrainment within the interfacial

zone bounding a mixed layer, Long (1978) concludes that turbulent
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Flw

patches have a dimension hRi ', and that the rms vertical velocity
1
in the mixed layer near the interface is of order u*Ri_E. The
agreement between the two approaches is perfect, and supports the
modelling by two interacting fluids as a theory of convective
turbulence.
The actual dimensional thickness of the thermocline is:
3

u

7 .1
h8E = [’N‘J h?, (10u)

and decreases as the mixed layer deepens. This interface shal-
lowing was observed in laboratory experiments (Kato and Phillips,

1969) and in numerical experiments (Kundu, 1980a).
13. VERTICAL PROFILES

Solutions (92) to (95) govern the vertical variations of
rms fluctuations throughout the mixed layer and thermocline.
They can be used in (51) to (54) to yield the profiles of mean
quantities they can also be combined to form vertical fluxes.

Figures 6 to 13 are ploté of vertical profiles of physical

quantities of interest. The wind stress is taken in the

X-direction:

H
N
©
[e]
I
[
N

<
\
O
o
I}
o

and mean currents at 45° to its right:

and mean currents at 45° to its right:
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The values assigned to the various parameters are:
Ri = 100, m = 1.25 (£ = 0.11), k = 7.

Figure 6 is a plot of the turbulent vertical velocity, which
is proportional to the thermals!' vertical velocity. Thermals
leave the surface with the friction velocity imposed by the
surface stress. As they sink, they become slightly buoyant and
decelerate. Their velocity vanishes precisely at the bottom of
the thermocline.

Figure 7 shows the mean temperature profile. The temperature
is almost homogeneous in the mixed layer and equal to -I'h/2, as
required by heat conservation. There is however a slight stable
gradient of order Ri~!, so that thermals progressively become
buoyant and decelerate as they sink through the mixed layer. The
thermocline is well-defined, and its thickness corresponds to (102).
Figure 8 shows the development of the mixed layer and the shallowing
of the thermocline as time goes on.

Figure 9 shows the vertical profiles of horizontal velocity
components, u and v. The mixed layer is quasi-homogeneous as
required by the assumptions made in order to solve analytically
the governing equations. This excludes Ekman veering with depth,
and separates the flow into a depth-independent inertial oscillation
and a quasi-steady shearing flow that carries the turbulent stresses
downward through the mixed layer. This is similar to the results

of Kundu (1980a) for time scales greater than the inertial period,
whon hic mAdal hasamac A TEM . Tha sralanider v 2m wdln A2anaslan ~C

of Kundu (1980a) for time scales greater than the inertial period,

when his model becomes a TEM. The velocity u in the direction of
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the surface stress increases slightly with depth. The reason is
the following: as thermals sink, they progressively exchange with
anti-thermals the extra momentum they have received near the sur-
face. This reduces the turbulent fluctuations, and increases the
mean value accordingly. The v-profile does not exhibit such
behavior since there is no extra-momentum in the y-direction given
at the surface. In the thermocline, both profiles curve sharply
and vanish so as to match the bottom boundary conditions.

Figures 10a and b show the vertical profiles of the Reynolds
stresses, -uw and -vw, scaled by the surface stress. Both
stresses vary linearly through the mixed layer, from the imposed
value at the surface, to a residual value at the top of the thermo-
cline. These residual values are hU and hV, and are precisely the
jump conditions imposed by authors of bulk models (Niiler, 1975,
for example). The stresses decrease rapidly through the thermo-
cline to zero so as to meet bottom boundary conditions.

From mean profiles and stresses, one can compute eddy

viscosities defined by:

gl

= TUW = I
vu = EE_ and vv 22
0z 0%

Figures 1la and b show the results. The eddy viscosity in the
x-direction is negative in the mixed layer due to the increase
of u with depth. The negative values are correlated with a

transfer of momentum from turbulent motions to mean current.

of u with depth. The negative values are correlated with a

transfer of momentum from turbulent motions to mean current.

The turbulence generated at the surface by the wind is progressively
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Figures 10a and b. Profiles of the Reynolds stresses -uw and —v_w,
scaled by the surface stress u,2 in the
x-direction.
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structured to increase the mean current. In the y-direction, no
turbulence 1s supplied at the surface, and fluctuations increase
downward due to differences between sinking thermals and rising
anti-thermals. At the level where u is maximum, a little above
the thermocline, vu is unbounded, as a result of its definition.
Below that level, in the thermocline, the strong shear of the
mean flow generates turbulence, and eddy viscosities are both
positive. They vanish at the bottom of the thermocline, where
stresses vanish, and shear is maximum. It is worth noting that
vu is quasi-constant near the surface, and that v, increases

linearly from the surface like

SR

in agreement with the classical theory of turbulence. The
corresponding Von Kirmin constant is
1

K=-2—m=0.‘1-0,

for m = 1.25. This result is encouraging. There is therefore a
link between the parameter m and the Von Karmin constant. The
laboratory value obtained for m is in perfect agreement with
laboratory measurements of turbulent flow.

Figure 12 shows the profile of the vertical convective heat
flux. Mixing brings cold water from below, cools the surface
layers and heats the fluid recently entrained in the convective
process. There is therefore downward transfer of heat. This is

the reason why the heat flux is negative everywhere. The constant

process, There 1s therefore downward transfer of heat. This is
the reason why the heat flux is negative everywhere. The constant

gradient through the mixed layer corresponds to a homogeneous
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cooling of the fluid, as stated by the heat equation (15). The
maximum negative value at the top of the thermocline is close to
—%Fhﬁ, which is the jump condition across the thermocline, used
in bulk models (Kraus and Turner, 1967, for example).

Figure 13 shows the profile of the eddy heat diffusivity

defined by

It is positive everywhere, and has a profile similar to v,

14, MONIN-OBUKOV LENGTH

The Monin-Obukov length is a measure of turbulence in
convection. It is generally defined as (Turner, 1973;

Zilitinkevich, et al., 1979):

where u, is the friction velocity characteristic of the turbulence,
K the Von Karman constant, and B the vertical buoyancy flux.
In the present case, the vertical buoyancy flux is noted
B = oglwl| ,
which is zero at the surface and at the bottom of the thermocline.
It is maximum near the top of the thermocline. The value of that
maximum is obtained (at the leading order in Ri“!) as the limit

of the mixed-layer buoyancy flux as & tends to one:

endanuan L0 WU LA LUTU \duL LUT Lsaunily, vLuel 4Ll Jags J 4ab>S ulle Ldaiiliu

of the mixed-layer buoyancy flux as & tends to one:

B = lim ag|wT| = N2hT ,
E>1
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by using (10), (14) and (74). Using this value in the definition

of %, one obtains:

2u,’
u'.: 1

T kNZhB T 2xm hos

by virtue of (89). The Monin-Obukov length is therefore propor-
tional to h. The coefficient of proportionality (2km) ' equals
unity for « = 0.40 and m = 1.25. This result has a physical
reason: the wind-mixed layer is a convective system generated
by surface turbulence; therefore, turbulence and convection
have equal importance, and the Monin-Obukov length has to be
proportional to and of order of the depth of the layer i.e., h.
Inversely, this physical argument could have been used
independently, by writing a priori & = h (Zilitinkevich, et al.,

1

1979). The model would therefore conclude that (2xm) ! equals

one, or
m = 1.25,

for K = 0.40. The value of m can thereforg be inferred from the
theory, and be compared to observations and laboratory experiments
(see Table 1). The agreement is excellent.

When a buoyancy flux (cooling or heating) is imposed at the
surface, convection or re-stratification may dominate turbulence.
In such a case, the Monin-Obukov length is expected to be smaller
or larger than h, and the resulting values of m are expected to

be greater or smaller than 1.25.




15. CONCLUSIONS

A new model of convection and mixing was applied to the
study of mixed-layer deepening under the action of wind stress.
It is based on a modelling by two interacting fluids. Emphasis
was not on the energetics, but rather on the dynamics of mixing.
Turbulence production by mean shear near the thermocline was
neglected in order to simplify the vertical-momentum equation.
The model is thus a turbulent erosion model, for which the
potential-energy incfease required for deepening is provided by
turbulence input at the surface.

A simple analytical solution was found in the case where the
mixed layer is well-mixed and separated from the underlying
quiescent fluid by a sharp thermocline. The results are valid
if the frictional Richardson number is much greater than unity,
the condition for a sharp thermocline to exist. Expressions for
the thermocline thickness and turbulence scale near the thermocline
are in very good agreement with previous results of turbulence
theory.

Vertical profiles were then plotted. The turbulent vertical
velocity decreases monotonically from a maximum value at the
surface down to zero at the bottom of the thermocline, without
showing any sudden variations in the thermocline. The temperature

profile is composed of a quasi-constant value through the mixed
laver and af a r»anid wvariatinn in +the thovrmanlina ValAnd ter

profile is composed of a quasi-constant value through the mixed

layer and of a rapid variation in the thermocline. Velocity
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profiles show the separation of the flow into a depth-independent
inertial oscillation and a quasi-steady shearing flow that carries
the turbulent stresses downward through the mixed layer. In the
thermocline, the profiles curve sharply in order to match the zero
mean velocity in the underlying stable fluid. Reynolds stresses
and vertical convective heat flux vary linearly through the mixed
layer from their respective imposed surface values to residual
values required for entraining new fluid in the mixing process.

In the thermocline, they rapidly decrease to zero. Resulting

eddy diffusivities of heat and momentum were computed and plotted.
The eddy viscosity of the flow in the direction of the wind stress
is negative near the surface, implying that a part of the turbulent
energy supplied at the surface goes to the mean flow. In the
direction perpendicular to the surface stress, the eddy viscosity
varies like the eddy heat diffusivity, vanishing at the surface
and at the bottom of the thermocline, and reaching a maximum
somewhere at mid-depth. Finally, an argument based on the pro-
portionality between the Monin-Obukov length and the mixed-layer
depth led to relate the parameter m, ratio of the turbulent
kinetic energy input to the cube of the friction velocity, to the
Von Karman constant. The value was found to be equal to the one
proposaed by Kato and Phillips (1969) and in good agreement with

field observations.

Llicld ODSEr'vatlons.




APPENDIX C

The entrainment layer

The results presented in the previous section [equations (92)
to (95)] were based on the assumption of a constant fraction of
area occupied by thermals throughout the mixed layer and thermo-
cline. This, however, leads to some inconsistencies. At the
bottom of the thermocline (z=-h), the anti-thermals' variables

are given by:

1-f

|} —

e=-35rh
£

| B -

u 158 U > (c1)
£

" -

viE-ioE Y

At that level, however, anti-thermals are constituted of newly
entrained fluid, and the expected values are
T" = -Th, u" = v" =0 . (c2)
The values (Cl) reduce to (C2) if f = 0.
Therefore, these inconsistencies can be removed by including

a new boundary layer below the thermocline, here named the

entrainment layer. The role of this layer is to allow f to decrease

from its constant value in the mixed layer and thermocline, through
this entrainment layer, down to zero in the quiescent fluid under-
neath it.

The purpose of this appendix is to show that, based on scaling

arguments, this entrainment layer is in fact very thin and, thus,

The purpose of this appendix is to show that, based on scaling
arguments, this entrainment layer is in fact very thin and, thus,

cannot have any effect on the dynamics of the whole system.
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In a thin layer of large gradients, the mean-temperature
equation reduces to (78), implying that the scale for the vertical-
velocity fluctuation, w ., is h. Physically, this scaling
expresses that, in that region, thermals sink at a velocity
comparable to the rate of deepening.

Assuming that heat transfers between thermals and anti-

thermals are controlled by molecular diffusion in the entrainment

layer, one can write
B o
g AT = (c3)

where d 1s the thickness of the layer, AT, the scale for the
temperature difference between thermals and anti-thermals, and v,
the molecular heat diffusivity (v = 1.4x10 ’m2s”!, for water at
15°C). From the above equation it appears that the layer
thickness is:

)

d = - (CLI-)
h .

For typical oceanic values, h is of the order of 10 "

1 and,

ms
therefore, d is of the order of the millimeter.

In conclusion, the entrainment layer, where thermals are
converted to anti-thermals by molecular diffusion, is a very

‘thin layer and is not capable of controlling the evolution of

the overall mixing processes.




CHAPTER FOUR

PENETRATIVE CONVECTION
DUE TO SURFACE COOLING




1. INTRODUCTION

In early fall, the upper ocean usually has a continuous,
moderately stable density distribution, bounded at its top by a
thin daily wind-mixed layer. Past mid-fall and during winter,

a net cooling of the ocean surface sets in. Instability and
natural convection occur. Cold elements produced near the
surface become unstable and sink through the water column,
eroding the stratification built up during the previous summer.
Contrary to the diurnal thermocline formation, this erosion is
accomplished at a slow but continuous rate throughout the winter
period. A mixed layer is formed, penetrating the stable strati-
fied fluid below and entraining new fluid in the convective
process. The lower boundary is marked by a density change that,
on a macroscopic scale, is almost discontinuous. As deepening
proceeds, this density jump, called the seasonal thermocline,
becomes deeper and stronger. The maximum depth of the winter-
time erosion marks the permanent thermocline.

Wind stirring plays an important role at the start, but
rapidly convection dominates the process. Thermal instability
itself supplies the kinetic energy required for stirring and
deepening. In the present modelling, therefore, the wind effect
is ignored. The system is highly convective, and molecular

diffusion of heat is not important.
The nrahlem hace TAana sntomcdonna in e+nddiacn AF +ha ~dman

diffusion of heat is not important.
The problem has long antecedence in studies of the atmos-

pheric boundary layer. Indeed, convection above a heated ground

30
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exhibits the same features of upper-ocean mixing due to surface
cooling (Scorer, 1978). The models of Yamada and Mellor (1975),
and Zeman and Lumley (1976), based on second-order closure
hypotheses, realistically predict the structure of buoyancy-
driven mixed layers. Comparisons with laboratory experiments
(Willis and Deardorff, 1974; Heidt, 1977) and observations
(Telford and Warner, 1964; Warner and Telford, 1967; Lenschow,
1970) support these theories.

The present study shows that simple analytical calculations
as opposed to sophisticate turbulence numerical models, can
describe the general features of a convective layer. The phi-
losophy resembles the one of Manton (1975) in a study of penetra-
tive convection in a stratified fluid due to a field of thermals.
The present work, however, describes the dynamics and turbulent
characteristics of convection in more detail.

Although the results presented here focus on convection in
the upper ocean forced by surface cooling, they apply directly

to convection in the lower atmosphere above a heated ground.

2. THE MODEL

The model is based on a new parametrization of mixing and
convection (Chapter two). It can be applied-to the most general

case of mixed-layer deepening under variable wind stress and/or

S T a— v . - -——T e ~ - = > = -
e e - S [ ~ P M et LY LTIV L el G

case of mixed-layer deepening under variable wind stress and/or
variable surface heat flux. The present work is a direct appli-

cation to upper ocean convection due to surface cooling.
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The model envisions convection as the relative motion of two
interacting fluids of different properties. The active sinking
elements are called thermals, and the rising return flow, anti-
thermals, by analogy. The model describes the individual dynamics
of thermals and anti-thermals, and their interactions. Mean
properties and relative differences then result from the solution.
This permits direct computation of mean profiles and vertical
fluxes of momentum and heat.

Throughout the mixed layer and thermocline, a saturation
equilibrium between thermals and anti-thermals can be assumed
(Manton, 1975; Chapter two). This leads to assigning a constant
value to f, the fraction of area occupied by thermals. This
hypothesis closes the set of equations without introducing any
empirical coefficient of entrainment by thermals.

Parcels of fluid rising through the convective layer are
given, near the surface, negative buoyancy by the outward sur-
face heat flux (see Figure 14). These elements, the thermals,
become heavier than their environment, and sink back into the con-
vective layer. They accelerate and gradually mix with the upward
return flow until they reach the neutral level, where they are no
longer buoyant. Because of their non-zerc velocity and their
inertia, they overshoot that equilibrium level, become buoyant,
and progressively decelerate. As the mean temperature profile

begins to curve at the bottom of the mixed layer, the elements'

Ten— pevssYoUa VUL Yy MLLLLLLULG 1o LT HITall LTuiperaturc prol Lie
begins to curve at the bottom of the mixed layer, the elements'
buoyancy increases sharply, and their vertical velocity decreases

rapidly. Since the newly-entrained fluid is subjected there to
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Sketch of penetrative convection in the upper ocean due
to surface cooling by an imposed heat flux Q. In the
mixed layer, the mean temperature T is almost constant,
while the convective heat flux wT decreases with depth.
In the thermocline, T varies sharply, while wT increases
rapidly. The neutral level is the level where thermals
and anti-thermals have the same temperature. The

dotted curve is the mean temperature profile at a

later time, showing the cooling in the mixed layer

and the heating in the thermocline.
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the largest temperature changes, the vertical convective heat flux
wT (downward) is large. A decreasing vertical velocity there-
fore implies larger temperature contrasts and increasing buoyancy,
which in turn decelerate the sinking elements even more. The
process is cumulative, and gives rise to the formation of a thin
layer of rapid variations, the thermocline, which lies under the
mixed layer and above the quiescent stably-stratified fluid.

Above the neutral level, thermals transport a lack of heat
downward. The heat flux is thus positive (upward) in that region.
It decreases with depth as the temperature difference between
sinking and rising fluids is progressively reduced by mixing.
Below the neutral leQel, the sinking elements are buoyant and
carry an excess of heat downward. The heat flux there is
negative (downward). At the bottom of the thermocline, thermals
stop, and the heat flux vanishes again. The heat-flux profile
therefore behaves as shown on Figure 1lh, with a negative
minimum value near the bottom of the mixed layer. The level at
which the minimum value of wT is reached can be thought of as
being the top of the thermocline.

The heat-conservation equation is

CE R (1)
A

and implies that, in the mixed layer, the mean temperature T
decreases, while in the thermocline, it increases with time.

After a short while, the temperature profile will behave like

decreases, while in the thermocline, it increases with time.
After a short while, the temperature profile will behave like

the dotted curve in Figure 14. The water temperature therefore
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does not change at the top of the thermocline. Of coursé, that
level deepens with time, allowing every layer of fluid to be
somewhat heated before being cooled. This heating process in a
system forced by cooling only is explained by the ability of

convection to generate its own kinetic energy for mixing.
3. GOVERNING EQUATIONS

Thermals and anti-thermals have different properties, here
noted by primed and double-primed quantities, respectively. If
f represents the fraction of area occupied by thermals at any
level, the fraction available to anti-thermals is (1-f), so

that one may define

the mean vertical velocity w=fw'+ (1-F)w" (2)
the mean temperature T=fT'+ (1-£)T" , (3)
the vertical convective heat flux §T==fw'T’-+(l—f)w”T” . (W)

Root-mean-square (rms) fluctuations can also be defined (Chapter

two):
W =VE(1-F) (w'-w") , (5)
rrms
T = V£(1-f) (T'-T") . (6)
rms

Note that, according to these definitions, rms fluctuations can
be positive or negative.

In the absence of lateral variations (one-dimensional model),
continuity requires w to be constant with depth (Chapter two).

Since there is no overall upwelling nor downwelling in the system,

continuity requires w to be constant with depth (Chapter two).
Since there is no overall upwelling nor downwelling in the system,

W vanishes everywhere. As a consequence, the vertical convective
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heat flux, as defined by (4), may be rewritten in terms of rms

fluctuations only:

Wl = w T . (7)
rms rms
With these definitions, and in the absence of horizontal

velocity, the one-dimensional model of convection (Chapter two)

can be summarized as follows:

. T _ 3 .
Heat equations: rallire (Nrms Trms) , (8)
2 (FnT_ ) = 0 (9)
3z rms ’
ow
Vertical momentum equation: 3mw rms - agT + 6, (10)
rms 9z rms

where m is a coefficient depending on f only, defined by:

_1-2f
2VE£(1-f)

(11)

The first equation expresses that the time rate of change of the
mean temperature is due to the divergence of the convective heat
flux. The second equation relates mean and rms temperatures in a
simple linear way, and is a direct result of the assumption that
turbulent motions respond quasi-instantaneously to local variations
in the system (Chapter two). The third equation expresses that
thermals' inertia is balanced by the buoyancy force and a friction

force, §. The friction force was not included in the model of

chapter two, but is introduced here because of its importance in
deep convection processes. The Monin-Obukov similarity theory

(Wyngaard, Coté, and Izumi, 1971), theoretical studies (Lenschow,

deep convection processes. The Monin-Obukov similarity theory
(Wyngaard, Coté, and Izumi, 1971), theoretical studies (Lenschow,

1974), laboratory experiments (Willis and Deardorff, 1974), as
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well as atmospheric boundary layer observations (Lenschow, et al.,
1980), suggest that the rate of dissipation of kinetic energy is
constant with depth, but decreases rapidly toward zero near the
interface. This implies that & behaves like |w msl_h except in
the thermocline where it has to remain bounded. On the other
hand, global turbulence arguments suggest that the total dis-
sipation is proportional to the cube of turbulent velocity scale.

A parametrization of the friction force which satisfies all

these requirements is:

where D is a dimensionless parameter, and w, the scale of the
turbulent vertical velocity, which will be defined in the next
section. The small term mh in the denominator is introduced to
yield a friction force bounded everywhere; its form is chosen
for further convenience in the mathematical formulation of

the solution. The vertical length scale is chosen to be «h,
the Von K&rmdn constant times the convective layer depth.

The problem consists of three non-linear first-order
coupled differential equations. It requires thus three boundary
conditions. At the surface, z = 0, the convective heat flux
equals the imposed surface flux, and a friction velocity pre-

scribes the rms vertical velocity:

W T =Q , (12)
rms rms

W = -y, . (13)
rmas o~

Y rms Trms = Qs (12)

W = -y, . (13)
rms %

The surface flux Q is the kinematic heat flux (heat flux divided
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by pOCp), and is positive in a cooling situation (upward flux).
The rms vertical velocity is negative since thermals sink while
anti-thermals rise (w'<0<w'').

At the bottom of the thermocline, z = -h(t), the mean
temperature ought to match the temperature of the underlying

stratum: _
T = -Th , (1w)

where [ is the initial temperature gradient of the water (see
Figure 1u4).

In the formulation of the problem, the mixed-layer depth,
h(t), is still unknown. An extra boundary condition has thus to
be imposed in order to close the problem. This condition is
precisely the definition of the base of the thermocline, i.e.,

the level beyond which thermals do not penetrate:
which implies: W =0 . (15)
L. CHANGE OF VARIABLE AND FUNCTIONS

Since the mixed layer is constantly deepening, it is
advantageous to use the similarity variable & = -z/h which varies
from zero at the surface to one at the bottom of the thermocline.

On the other hand, one may immediately integrate equation
(9) with respect to z, and define:

T = -TT(t) - mIT(t,£) , (16)

(9) with respect to z, and define:
T = -TT(t) - mIT(t,) , (16)

Toms ~ IT(t,8) , (17)
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where T is a function of time only, and T is a function of both
time and £. Note that, due to the presence of the factor I', the
new temperatures T and T have the dimension of a length. The
rms vertical velocity may be redefined:

Woe T -w(t,8) ., (18)
in order to work with a positive variable.

With these changes of variable and functions, the governing

equations (8) and (10) become:

. 3T RooT _ 1 9 .-

-T - msjt- + mig—ag =5 B—E—(WT) s (19)
9% _ N?h ~ D W3
¥eE = Tm T T ¢ Femh (20)

where N2 = agl is the square of the Brunt-Vdis&dld frequency in
the underlying stratum, and where a dot represents a time
derivative. The boundary conditions become:

F0) = —2 . a(0) =
T(O) - —ru* ) w(o) - u* 9 (21)
and
T

£(1) % F(1) = 0 . (22)

This constitutes a set of two coupled non-linear first-order
differential equations which require two boundary conditions.
However, they contain two time-dependent unknowns: T(t) and h(t),
for which two additional conditions are prescribed. The system

is thus closed and self-consistent.

5. SCALES AND THE RICHARDSON NUMBER

5. SCALES AND THE RICHARDSON NUMBE

The characteristic parameters of penetrative convection due
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to surface cooling are the buoyancy flux at the surface B = agQ,
the mixed-layer depth h, the Brunt-Vdisdld frequency in the
underlying stable fluid N = (angé, and the friction velocity u,
(computed from the surface wind stress). The comparison of wind-
induced turbulence to convective motion is expressed by the
Monin-Obukov length:

(23)

For very convective situations (h>>%), when wind-stirring becomes
a negligible part of the kinetic-energy release from potential
energy, the turbulence structure in the mixed layer no longer
depends on uy (Kaimal, et al., 1976). The characteristic velocity
becomes the convective vertical-velocity scale: |

W, = (KBh)l§ = (Kagthlg . (2w)
According to the assumption that wind-stirring plays a secondary
role in the deepening process, w, is the correct scale in the
mixed layer if:

wf_f>>u,i ) (25)
by virtue of (23) and (24).
The total buoyancy in the mixed layer is
B=gpoh,

where Ap is the density jump across the thermocline, and o, the
reference density. Since Ap = p_aAT, where AT is the temperature
jump across the thermocline, the total buoyancy may be rewritten

as:

jump across the thermocline, the total buoyancy may be rewritten

as:

B = agh AT. (26)
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The Richardson number is defined as the ratio of the total
mixed-layer buoyancy, B, to the square of the characteristic

vertical velocity, w,,

aghAT
Ri = ——ii———zg . (27)
(kaghQ)

As the mixed layer deepens, the temperature jump across the
thermocline increases (Willis and Deardorff, 1974; Heidt, 1977).
The Richardson number therefore increases with time. It is well
known, too, from observations and laboratory experiments that
when the mixed layer is deep enough, it is quasi-homogeneous and
bounded below by a thin layer of large gradients. It will be
shown here a posterior? that this situation corresponds to:

Ri>>1 . (28)
For penetrative convection in the upper ocean due to winter
cooling, typical values are
Qv3x10 "ocms™!, rvo.1°Cm !, « = 0.40, u,N10 Zms” !, ATAIOC, hh100 m
which corresponds to: .
Bv3x10™/m?s” 3, Nn107%sTl, 2410 m, w,n2.3 10 %ms !, Rin1S0.
It is therefore seen that, for the purpose of this work, the
inequalities h/2>>1 and Ri>>1 are met. The latter permits use
of a boundary-layer technique to solve the equations, while the
former will simplify the discussion of mixed-layer deevpening, as

shown later.
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6. SOLUTION

Mathematicaily, it is assumed here that the mixed-layer and
thermocline system may be treated as an interior and boundary-
layer problem. The solution found here will therefore apply if
Ri is much greater than one.

The system is thus divided into two regions, the interior
region, where the temperature is quasi-constant with depth, i.e.,

;—g= 0(1) , T<<T , (29)
and the thermocline, where vertical gradients are anticipated to

be very large:

3 ~
5E>>l , TAT (30)

These assumptions will be verified a poster<ori, and it will be

shown that they are correct provided that (28) is met.

a) Solution in the mixed layer:

Assuming a quasi-homogeneous mixed layer, equations (19)

and (20) become:

. 1 3 -
=T = == —(w 1
T o BE(WT) R (31)
3
~ 2 N Dw,‘.‘,
gl o Nh g ® (32)
9 m KW

The left-hand side of (31) is independent of &, and an integration
can he nerfarmad TTea AF ctntnFanma hanimAasey manAd+3 ama (D1 ~2cn

The left-hand side of (31) is independent of &, and an integration

can be performed. Use of surface boundary conditions (21) gives:
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=3O

Te —r7—. (33)

=

Replacing T by this expression into (32) yields a single
differential equation for @:

3 .
a_ﬁ_E_NzhzTg__D_w:"

3~2
W RES mk m K

whose solution is:
s (34)

after the surface boundary condition (21) has been used.

b) Solution in the thermocline:

The dominant terms in the equations are now those which
include derivatives with respect to §. However, since this
boundary layer lies near & = 1, £ may be replaced by one where

it appears. Equations (19) and (20) now reduce to:

h 9T 193 .4
mﬁa—— Y BE(WT)’ (35)

Dw3

L9 _ N%n *
3w 32 m T- k (W+mh ) (36)

These last equations can be easily integrated with respect to £.
The constants of integration are determined by using the bottom

boundary conditions (22). The implicit solution is:

~ _ (h-T)h
T E e 37

2 .
w3+ ¥mhw? = (g—hih:zlé-fg-wg](l—g) (38)
= =, " (37)

vi+mh

2 .
@3+ ¥mha? = (W+%w§](l—&) : (38)
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c) Matching of solutions:

The two sets of solutions were obtained independently for
the mixed layer and thermocline by using surface and bottom
boundary conditions, respectively. However, they ought to be
the asymptotic forms of a unique set of solutions valid throughout
the whole water column. This requires imposing matching con-
ditions. As a result, two prognostic equations for the time-
dependent functions T and h will be obtained.

Mathematically, matching conditions are obtained by writing
that, for each variable T and w, the mixed-layer solution for £
approaching unity is identical to the thermocline solution for

% much greater than h. The resulting relations are:

Q .
T emn
w W i
- 21,24 _ 2128
W3 4 LomD s NZhT {1 meg_NhT] (1-¢) =
w KM w 2m Kkm ¥ m
2 _ .
[N h(h-T)R , D s] () )
m Koo
They can be rewritten as:
(hT)" =hﬁ+%, (39)
3 )
w'.': 21,27
__ Nh TJ + mul = Tg-wﬁ . (40)
< 2 T e M

Equation (39) is the global heat budget of the system.
Indeed, the overall heat budget expresses that the temperature

difference from the initial value, T'z-T, integrated over the

Indeed, the overall heat budget expresses that the temperature
difference from the initial value, Tz-T, integrated over the

water column is equal to the time integration of the net surface




heat flux, Q:
o t
J (rz-T)dz =f Qdt . (41)
~-h o

Using expression (16) for T and the vertical momentum equation
(20) to eliminate T, one obtains:
1 3

2 ~ w.'v‘. 2 t
hT—m—J(3ﬁg—w+ —r)dE=L+J%dt. (42)
(o) O

Ao
=
+
3
jox

The integral is estimated to be of order wg. The second term

aghAT

of the left-hand side is thus found to be of the crder of i

Estimating AT to be comparable to T (somewhat smaller according
to laboratory experiments), this term is estimated to be not

T . . .
greater than hT , which is much smaller than the first term for

Ri
Ri>>1, as assumed previously. The global heat budget thus
reduces to:

2 t
hT=g—+f%dt, (13)
O

whose time derivative is precisely (39).

Equation (40) is the turbulent kinetic energy budget of the
system. It expresses that the turbulent kinetic energy is in
quasi-equilibrium at all times (Chapter two), so that the sum
of the release of potential energy and the surface input equals
the rate of dissipation in the water column. Indeed, the release

of potential energy is:

= = , (u4)
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according to (7), (17), (18), (2u), and (33); the surface input is

3
rms

mug (45)

5 w(w-w)?| -mw3  (z=0) ,
Z=0

according to (13).

Combined with (39), equation (40) yields the prognostic
equation for the mixed-layer depth. Due to its importance and
its consequences, that equation is derived in the next section.

The vertical profiles of T and # valid throughout the water
column are, after matching:

. -%—+ hfa
TS emRE (46)

1-mD

@l o+ ¥mha? = ud(1-£2) + w £(1-8) . (47)

Since the friction velocity u, cannot exceed the convective
velocity scale, equations (45) shows that w, is, indeed, the
appropriate vertical-velocity scale, as assumed previously.
It is worth noting that the solution is implicit in W%, but

vertical profiles can be plotted without real difficulties.

7. MIXED-LAYER DEEPENING

Equations (39) and (40) form a coupled set of equations for
T and h. Eliminating T yields a prognostic equation for h,
which can then be solved if the time variations of Q and u, are

known. Such a substitution is nossible. However. it i<

which can then be solved if the time variations of Q and u, are
known. Such a substitution is possible. However, it is

advantageous to consider T as a function of h. Eliminating then

e ————————
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the variable t between (39) and (40) yields:

dT

m 2 dT _
2(l-mD)(l+1_—H5 H)(ha—}_l + T-h) = hﬁ . (u8)

Although an exact solution can be found, an approximate solution
is obtained without great difficulty, based on the inequality
2<<h .

The method of regular perturbation yields:

_ Km 2
T = t—:h[l—mg] (49)

where the coefficient € is defined by:

_ 2(1-mD)
~  3-4mD

(50)
The constant of integration was chosen such that T remains

bounded for h = 0. At the leading order (&/h = 0), (49) reduces

to: T = ¢h . (51)

The mean temperature in the mixed layer is thus proporticnal to
the depth of convection. This has been shown to be the case in
laboratory experiments (Heidt, 1977). The coefficient of pro-
portionality, noted € by Heidt, is given by (50).

Now eliminating T in (39) by use of (49) leads to the
prognostic equation for the mixed-layer depth:

KM &y, _ Q
T Db = (3-4mD)F (52)

(1-

For a given surface heat flux, Q, and friction velocity, u,,
known as functions of time, this equation can be integrated by

auadratnre. Tf O ie ateadw =2nd 1f +he mivad_laven 1ec Aaan

known as functions of time, this equation can be integrated by
quadrature. If Q is steady, and if the mixed-layer is deep

enough (h>>2), the depth of the layer increases as t2. This
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rate of growth was found by most of the bulk models and laboratory
experiments (Betts, 1973, and Heidt, 1977, for example).

From the previous relationships, one may compute the temper-
ature jump across the thermocline, the heat flux at the base of
the mixed layer, and the Richardson number. The temperature
jump across the thermocline is:

AT = -TT + Th ,

= 1=2mD rp gy

Km 2)
3-4mD

(I-mD)(1-2mD) h’ ° (53)

according to (49). The temperature jump increases with time as

h. The heat flux at the base of the mixed layer is the limit

for & approaching one of the mixed-layer flux wT = -TwT derived
from (33):
Wwi| = Q-nhl,
= —Q[l—2mD+2Km§] ) (5u)

according to (49) and (52). That heat flux is negative (down-
ward), and thus opposite to the surface flux (upward). This
results from the previous description of thermals' dynamics.
Thermals are buoyant in the bottom of the mixed layer, below the
neutral level. They thus carry an excess of heat downward.

The heat flux is therefore negative (downward) and opposite to
the surface flux. The same situation commonly occurs in the
atmosphere. The atmospheric convective boundary layer, which
forms above a heated ground (upward heat flux), is capped by an

inversion, at the base of which a downward heat flux is observed.

forms above a heated ground (upward heat flux), is capped by an
inversion, at the base of which a downward heat flux is observed.

This phenomenon was first reported by Ball (1960), and since
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then has been reported in many observational surveys.

The heat flux at the base of the mixed layer is proportional
to the surface flux, Q. The coefficient of proportionality,
noted A by various authors, is:

2

A=1-2mD + 2 m = (55)

The Richardson number, defined by (27), can be computed

from (53). At the first order in % , it takes the form:

Ri = (56)

1-2nD (INh2)% (. Km L
3-4mD (1-mD)(1-2mD) h

KQ
. . . % : .
and increases with time as h>. The rate of deepening, h,
decreases with time as Ri  *, according to (52) and (56).
The Richardson number can be used to write the prognostic
equation for the mixed-layer depth in a non-dimensional form.
If the rate of entrainment, E, is defined by the ratio of rate

of deepening, h, over the characteristic velocity scale, Wy &

simple algebraic relationship between Ri and E can be obtained:

E = — . (57)

The rate of entrainment is therefore inversely proportional to
the Richardson number. Since Ri is much greater than one, E is
small, and h is much less that Wy . Thermals thus sink much

faster than the mixed layer deepens.

8. COMPARISON WITH OBSERVATIONS AND PREVIOUS MODELS

8. COMPARISON WITH OBSERVATIONS AND PREVIOUS MODELS

Various values of. the coefficients A and € were proposead
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in the literature. These two parameters are not independent.
Indeed, eliminating mD between (50) and (55), one obtains, at
the leading order:

A = . (58)

Table 2 presents an extended version of a table of values
of the parameters A and & compiled by Heidt (1977). Values
proposed in the literature are based on atmospheric observations,
laboratory experiments, and various models of penetrative con-
vection, applied to the atmosphere and ocean. From this table
it appears that (i) no values were proposed in the literature
as a result of oceanic observations, (ii) models without
dissipation yield invariable values (A = 1, e = %3), (iii)
highly dissipative experiments or models yield extreme values
(A=0, e=1), and (iv) atmospheric observations, numerical models,
and laboratory experiments are in satisfactory agreement
(A = 0.12-0.25, € = 0.83-0.90). The scattering of the values
can be explained as follows. By this model, A and e are
related to the parameter m (see Figure 15), which in turn depends
upon f, the fraction of area occupied by thermals. The value of
f strongly depends upon the surface unstable layer where thermals
are generated, and there is no reason to believe that laboratory
experiments and a heated ground generate thermals in the same
conditions.

Simple non-dissipative models underestimate the value of €,

conditions.
Simple non-dissipative models underestimate the value of ¢,

while laboratory experiments, where molecular viscosity acts as



TABLE 2

YEAR AUTHOR(S) SOURCE A €
1360 |Ball Atmospheric bulk model, without
dissipation 1 0.67
1967 |Kraus and
Turner Oceanic bulk model, in case of no
dissipation 1 0.67
1968 |Lilly Atmospheric bulk model
- without dissipation 1 0.67
- for minimum entrainment 0 1
1968 |Lenschow and
Johnson Airplane measurements 0.25 0.83
1969 |Deardorff, Laboratory experiments, strong
et al. %olecular viscosity effect 0.02 0.98
1973 |[Betts Atmospheric bulk model, with
ldissipation; empirical coefficient
from observations in the Tropics 0.25 0.83
1973 |Carson lObservations of the atmospheric
boundary layer 0 - 0.5 0.75 - 1
1973 |Lenschow Observations of the atmospheric
boundary layer over the Great Lakes 0.08 0.93
1973 |Pollard, 0ceanic bulk model, without
et al. dissipation 1 0.67
1973 | Tennekes Atmospheric bulk model, with
dissipation; empirical coefficient
from studies of convection 0.2 0.86
1374 | Deardorff Second-order turbulence numerical
model 0.4 - 0.21]0.85 - 0.89
1974 | Lenschow Bulk model, empirical cocefficients
from aircraft measurements over a
lake 0.15 0.88
1974 |Willis and
Deardorff Laboratory experiments 0.10 0.91
1975 | Manton Simple model of convection, with
strong dissipation 0 1
1976 |Gill and 0ceanic bulk model, coefficient of
Turner penetrative convection estimated from
rtmospheric observations 0.15 0.88
1976 |Zeman and ﬁecond-order turbulence numerical
Lumley odel 0.10 -~ 0.15]0.88 - 0.81
1977 |Heidt Laboratory experiments 0.12 - 0.24 | 0.84 - 0.90
1979 |Roisin Model of oceanic convection due to a
field of thermals, no dissipation 1 0.67
1980 |Cushman-Roisin |Present analytical model, with
dissipation (function of f) 0 - 1 0.67 - 1
Table 2. Summary of values for the parameters A and e proposed in the
1980 |Cushman-Roisin |Present analytical model, with
dissipation (function of f) 0 - 1 0.67 - 1
Table 2. Summary of values for the parameters A and e proposed in the
literature. The parameter A is a measure of the heat flux at
the base of the mixed layer, and e is the coefficient of

proportionality between T and h.
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Figure 15. Plots of the coefficients € and A defined by (50) and
(5§2; ¢ 1s the ratio T/(-Th), and A is the ratio
-(wT)_, /Q.
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a strong dissipative mechanism, overestimate e. The reason is
found in the discussion of the turbulent kinetic energy budget.
The excess of the potential energy in the mixed layer over the

potential energy of the initial state is, at the leading order:

1 °
— PE = -ag J (T-Tz)zdz

% -h
- 38—2 213
= —?;—-N h?,
Its time rate of change is:
fo __
#L-%EE = -ag J wTdz
°s -h
- 382—2 N2h21'.1

For € greater thangé, the time rate of change is negative,
expressing that release of potential energy occurs. The kinetic
energy so produced feeds convective motions and is finally dis-
sipated. A model without dissipation, therefore, does not allow
a net global potential-energy release, and yields € = %/,
establishing a minimum value for €. This value is recovered in
the present model if the friction coefficient, D, is set equal
to zero in (50). Increasing dissipation requires increasing
release of potential energy for convective motions and, therefore,
an increasing value of e. Values of e greater than unity cannot
occur, for, in such a case, the temperature difference across
the thermocline would be destabilizing (mixed-layer temperature

lower than underlying stable fluid temperature). In laboratory

the thermocline would be destabilizing (mixed-layer temperature
lower than underlying stable fluid temperature). In laboratory

experiments for which molecular viscosity plays a dominant role,
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the value to € is close to unity.

Second-order closure turbulence numerical models lead to
decreasing values of ¢ as the mixed layer develops. Indeed, at
the early stage, dissipation is dominant, and € is close to one;
but as time goes on, dissipation has less importance and ¢
decreases slightly. The present analytical study is based on
the assumption of a well-developed mixed layer (Ri>>1), the
value to be assigned to € in the present ﬁodel is thus to be

compared with the lowest values of the numerical models (0.84-0.85).
9. THICKNESS OF THE THERMOCLINE

Due to non-linearities, the boundary-layer methcd applied
here differs from classical applications to linear systems, and
caution has to be taken in the evaluation of the boundary-layer
thickness. At first, one could think that the thermocline is
the region where W is of order h. so that the correction in the
denominator of (46) becomes important. This argument leads to a

3, much too small. There

dimensionless thermocline of order Ri
is a thicker layer where boundary corrections start to appear in

the solution. Indeed, in the temperature equation (19):

. T h, aT 9 ;>
-T = el S
1 mﬁ + m—h-g 5% —(az WwT) 5 (59)

the term on the right-hand side balances the first term in the

mixed layer, and the third term in the thermocline. The top of

the term on the right-hand side balances the first term in the
mixed layer, and the third term in the thermocline. The top of

the thermocline was defined as the level where the convective
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heat flux reaches its maximum negative value, i.e., where the
right-hand side of (59) vanishes. Equation (59) thus requires

a balance between the first and third terms at that level:

h T
T’\‘HEE ,

where 6£ is the dimensionless thermocline thickness. Because
the boundary layer is anticipated to be a thin region, & is
almost one, and according to (u46) and (u9), T and T are of the
order of %%—and h, respectively, so that:

Q

GE"JW . (60)

On the other hand, the balance of the vertical-momentum equation

(20) requires:

~2

Bantnd (61)
Combination of (60) and (61) and use of (2u4) and (56) yield:

: -3
sEVRITA - (62)
and
X
W w,R1 (63)
Therefore, the dimensionless thickness of the thermocline is
3 -
Ri 4*rather than Ri™°.
In a study of turbulence and entrainment within the inter-
facial zone bounding a mixed layer, Long (1978) concludes that

3
turbulent patches have a dimension of hRi % , and that the rms

vertical velocity in the mixed layer near the interface is of

1
AL U ULTLLL h;a\."ﬁco Have a uLinel> Lol Ol N s dliu tidl Lile LS

vertical velocity in the mixed layer near the interface is of

e
.

order of w*Ri— The agreement between the approaches is perfect

and supports modelling by two interacting fluids as a theory of
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convective turbulence.
With dimensions, the actual thickness of the thermocline
is:

0 %

and does not depend upon h. If Q is steady, the mixed layer
deepens with time, but is bounded below by a thermocline of
constant thickness. For typical oceanic values (Qv3x10 “*°Cms™ !,
rv0.1°Cm !, Nv1072s7 1), the thermocline thickness is found to be
of the order of 50 cm.

The boundary-layer method required that (i) T is negligible

compared to T in the mixed layer, and (ii) the thermocline thick-

ness is small compared to the mixed-layer depth. In the mixed

layer, T is of the order F%— , while T is of the order of h, i.e.,
T Q (vQ P4 _.-1
T" Thw,, {rth] MRL

according to (24) and (56). On the other hand, the ratio of

the thermocline thickness to the mixed-layer depth is &, and is
of the order of Ri_%Q It is therefore concluded that the boundary-
layer method is applicable to the present problem provided that

Ri is much greater than unity, as anticipated.
10. COMPARISON WITH SIMILARITY THEORY

The solution presented and discussed in the previous para-

The solution presentéd and discussed in the previous para-

graphs is not a similarity solution, for the ratio thermocline
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thickness to mixed-layer depth is not constant with time.
However, it is shown here that the asymptotic behavior near the
surface takes a similarity form, and is formally identical to
the solution obtained by Wyngaard, Coté and Izumi (1971).
The theory presented by these authors is an extension of the
Monin-Obukov similarity theory to free convection regime under
very unstable conditions (2<<h). Its validity is confirmed
by atmospheric observations (Wyngaard, et al., 1971).

Near the surface, the characteristic dimensionless variable
is:
=1, (65)
where 2 is the Monin-Obukov length defined by (23). For n of
order one, turbulence and convection compete, and the Monin-Obukov
similarity theory applies. For n much greater than one (but
still less than h/%), free convection takes over surface-generated
turbulence, and the theory degenerates in éimple 5@ power laws, as
shown by Wyngaard, et al.

Near the surface (£<<1), the solution of the present model

takes the form:

= .. Q
1 —-FWT (66)
1

wig o, (87)

according to (46) and (47). 1In terms of the variable n, (66)

and (67) become:

1 _L
T = - (142075,

T e

(68)

and (67) become:

1
(l-rl_mDn)—é R

Fu* Km (68)

12
R
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1-mD 1/3

wru, (l+—=n) (69)
= Km

From these expressions for the rms fluctuations of temperature
and vertical velocity, second- and third-order correlations can

be computed. For example:

% 1-mp Lz
wZ =y, (1+ — m 3, (70)

1,
W (T-T) = - 1-mD )73
w(T-T) 2mu, Q(1 + - n) > . (71)

Figures 16a and b are plots of vertical profiles of expressions

(70) and (71), for which Wyngaard, Coté and Izumi (1971) had
observations from the atmospheric boundary layer. The agreement
between theory and data is best for:

1-mD
Km

:5’

and 2m = 0.64 .
These values correspond to a fraction of area occupied by thermals
of 35% (f = 0.348, m = 0.32) and a frictioﬁ coefficient D = 1.125.
From (50) and (58), the values of € and A are

e = 0.82 ,

A

0.28

This is the range of values observed in the atmospheric boundary
layer for unstable conditions (Lenschow and Johnson, 1968;

Carson, 1973). It is worth noting that values of A and e obtained
here are deduced exclusively from surface conditions. The theory

is, therefore, capable of predicting bulk properties of the

here are deduced exclusively from surface conditions. The theory
is, therefore, capable of predicting bulk properties of the

atmospheric boundary layer or oceanic mixed layer by using only
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(a) Dimensionless vertical velocity variance and

(b) Dimensionless vertical turbulent flux of vertical
heat flux near the surface, for (1-mD)/km=5 and 2m=0.64.
Dots correspond to atmospheric observations presented

by Wyngaard et al. (1971).

Figure 16,
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surface turbulence conditions.

11. VERTICAL PROFILES

Solutions (46) and (47) govern the vertical variations of
rms fluctuations throughout the mixed layer and thermocline.
They can be used to compute profiles of mean quantities such as
mean temperature, heat flux, turbulent kinetic energy flux and
variances.

Figures 17 to 24 are plots of vertical profiles of physical

quantities of interest. The values assigned to the parameters are:

m = 0.5, (f = 0.276),
D = 0.8

%= 0.1,

Ri = 20 ,

and were chosen in order to reproduce the laboratory experiments,
run S1, of Willis and Deardorff (1974). The four parameters were
computed to match the Richardson number Ri, the rate of entrain-
ment E, the ratio u,/w,, and the total rate of dissipation.

Figure 17 is a plot of the turbulent vertical velocity, which
is proportional to the thermals' vertical velocity. Thermals
leave the surface with the friction velocity u,. As they sink,
they accelerate under gravity. Due to the combined action of
friction and a decreasing downward buoyancy force due to mixing

with the enviranment . their velocitv vreacrhee A mawimim RelAnr

friction and a decreasing downward buoyancy force due to mixing
with the environment, their velocity reaches a maximum. Below

that level, the buoyancy force 1s still directed downward, but
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Figure 17. Vertical profile of the rms vertical velocity, scaled
by -w,..

0.2 0.4 0.6 0.8 |.0

Figure 18. Vertical profiles of the vertical-velocity variance, w2,
scaled by w%. The solid curve is the solution of the
present model. The dashed curve is the numerical
solution of Zeman and Lumley (1976). The dots represent
the data of Willis and Deardorff (1974), run S1.
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friction dominates, and thermals decelerate. Ultimately, they
become lighter than their environment. Both friction and an
upward buoyancy force bring the thermals' velocity to zero, pre-
cisely at the bottom of the thermocline.

Figure 18 is a plot of the vertical-velocity variance,
defined by w2. It is a measure of the turbulent kinetic energy.
Dots reproduce Willis and Deardorff's data for run Sl. Figure 19
is a plot of the vertical flux of turbulent kinetic energy.

defined by —%wwz, which is the reduced form of the total tur-

bulent kinetic energy when only the vertical velocity is impor-
tant. Dots reproduce Willis and Deardorff's data for run Sl1.
The agreement of the theory with laboratory experiments is
excellent in both cases. The accuracy of the present simple
analytical calculations is comparable to the one of the second-
order turbulence numerical model of Zeman and Lumley (1876),
whose solutions are shown in dashed lines for comparison.
Figure 20 is a plot of the temperature variance, defined by
(T-T)2. It is maximum at surface and decreases with depth as
the temperature difference between thermals and anti-thermals
is reduced by mixing. The temperature variance vanishes at the
neutral level, where thermals and anti-thermals have the same
temperature, and increases below that level, where turbulence
is generated. Dots reproduce Willis and Deardorff’s data for

run S1. The agreement is satisfactory. Although none of the

B e R ] MW L ke VMM Tl O W DU wvd L L D uaLa vl

run S1. The agreement is satisfactory. Although none of the
observed values is zero near the neutral level (as one may

expect in laboratory or in geophysical situations), a



Figure 19.

Vertical profiles of the vertical flux of turbulent
kinetic energy, -*ww2, scaled by w3. The solid

curve is the solution of the present model. The
dashed curve is the numerical solution of Zeman and
Lumley (1976). The dots represent the data of Willis
and Deardorff (1974), run S1.




Figure 20.

Vertical profiles of the temperature variance, (T-T)Z,
scaled by (u*/Q)Z. The solid curve is the solution of
the present model. The dashed curve is the solution of
Zeman and Lumley (1976).- The dots represent the data of
Willis and Deardorff (1874), run Sl.
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well-pronounced minimum is present in the bottom half of the
mixed layer.

Figure 21 is a plot of the vertical temperature profile
through the mixed layer and thermocline. The temperature is
almost homogeneous in the mixed layer. The thermocline is
well-defined, and its thickness corresponds to (62). TFigure 22
shows the profile of the vertical convective heat flux, wT. Near
the sﬁrface, it is positive (upward) and matches the imposed flux.
It decreases almost linearly with depth, corresponding to a
homogeneous cooling of fluid, as stated by the heat equation (1).
The level at which the convective heat flux vanishes corresponds
to the neutral level beyond which thermals become buoyant. Below
that level, the heat flux is negative (downward). The maximum
negative value at the top of the thermocline is equal to -AQ,
which is the jump condition across the thermocline used in bulk
models (Kraus and Turner, 1967, for example). Dots reproduce
Willis and Deardorff's data for run S1. The linear decrease
through the mixed layer was also observed in the atmospheric
boundary layer (Lenschow, 1974).

From the profiles of mean temperature and heat flux, one can

compute an eddy diffusivity of heat, defined by:

Figure 23 shows the resulting profile of v The eddy heat

2z

T

Figure 23 shows the resulting profile of v The eddy heat

T

diffusivity is negative above the neutral level, where the heat
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Figure 21. Vertical profile of mean temperature, T, scaled by Th.
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Figure 22. Vertical profile of the vertical convective heat flux wT,
scaled by the surface flux Q. The dots represent the
data of Willia and Deardorff (1974), run Sl1.




Figure 23. Vertical profile of the eddy heat diffusivity, v

TD
scaled by Q/T.
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flux is positive. The heat taken out of the fluid near the
surface creates thermals, which sink with a heat deficiency.
Along the sinking motions, that heat deficiency is progressively
reduced by mixing between thermals and anti-thermals. The
turbulent temperature fluctuations generated at the surface are
thus progressively structured to change the mean temperature.
The negative sign of the eddy heat diffusivity expresses that
the transfer of energy is from turbulence to mean structure.
Below the neutral level, the heat flux is negative, and the
eddy heat diffusivity is positive. The transfer is from mean
structure to turbulence. The eddy heat diffusivity vanishes
again at the bottom of the thermocline where the heat flux
vanishes, and the temperature gradient is maximum.

Figure 24 shows the terms of the turbulent kinetic energy
budget, obtained from the vertical momentum equation (10):

ow W
2 rms mD 3 rms
+ ag w T - — W ——
rms oz TS rms Koo |w ! +mh
rms!

0 = -3m w

Advection, release of potential energy, and dissipation balance
exactly to yield a zero time rate of change of turbulent kinetic
energy. The release of potential energy is proportional to the
heat flux; release occurs only above the neutral level; below
that level, thermals decelerate under the action of the buoyancy
force and convert the kinetic energy, which was not dissipated,
back to potential energy. The rate of dissipation is quasi-

constant with depth and decreases rapidly through the thermocline.

back to potential energy. The rate of dissipation is quasi-
constant with depth and decreases rapidly through the thermocline.

This is not surprising since the dissipation term was parametrized
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Figure 24. Dimensionless turbulent kinetic energy budget: release
of potential energy (dashed line), transport (solid line),
and dissipation (dotted line).
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for that purpose. Figure 25 reproduces Willis and Deardorff's
computations from their data of run S1. The agreement is
excellent.

Figure 26 to 28 are plots similar to the previous ones, to
be compared with run S2 of Willis and Deardorff (1974). Values
of m and D were unchanged since there is no reason to expect
that the fraction of area occupied by thermals and the friction
coefficient differ from run S1. The ratio 2/h and the
Richardson number were recalculated to represent the different
conditions of the experiment (&/h = Q.l, Ri = 45). Figures 26
to 28 show plots for which data were available for comparison.

The other plots do not differ greatly from those related to run Sl1.

12. CONCLUSIONS

A new model of convection and mixing was applied to the
study of penetrative convection in the upper ocean due to surface
cooling. It is based on modelling by two interacting fluids.
Cold elements produced near the surface become unstable and sink
through the water column while continuity of mass forces an upward
return flow. The model describes the individual dynamics of these
two fluid motions. Mean properties and fluxes up to third-order
correlations are then computed; Dissipation is included in order

to model realistically the deepening of the mixed layer. The

R T e T T L R R et S T e

to model realistically the deepening of the mixed layer. The
new parametrization of dissipation presented here is dictated by

laboratory experiments, atmospheric observations, and turbulence
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Vertical profile of the vertical-velocity variance, w2,
scaled by w#, as on figure 18 but for Ri = u45. The
triangles represent the data of Willis and Deardorff
(1974), run S2.




Figure 27. Vertical profile of the vertical flux of turbulent kinetic

energy, -4 ww2 , scaled by w=.3_,, as figure 19, but for Ri =45,

The triangles represent the data of Willis and Deardorff
(1974), run S2.




Figure 28.
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Vertical profile of the vertical convective heat flux,
wl. scaled by the surface flux Q, as on figure 20 but
for Ri =145, The triangles represent the data of
Willis and Deardorff (1974), run S2.
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arguments.

A simple non-similar analytical solution is found in the
case of a well-mixed layer separated from the underlying quiescent
fluid by a thin thermocline. The results are valid if the
Richardson number is much greater than unity, the condition for
the existence of a sharp thermocline. Expressions for the
thermocline thickness and turbulence scale near the thermocline
are in very good agreement with previous results of turbulence
theory. The asymptotic behavior of the solution near the sur-
face has a similarity form as predicted by the similarity theory
of Monin and Obukov. Moreover, in the interior of the mixed
layer, far away from the surface and the thermocline, the
solution degenerates in simple Eg—power laws as proposed by
Wyngaard, Coté and Izumi (1971).

Bulk properties of the solution were compared with atmospheric
observations of the surface boundary layer, laboratory experiments,
and previous models (see Table 2). Scattering in the values of
the coefficients proposed in the literature implies that no
universal values can be assigned to those coefficients. The
present model does not assign any specific value; rather, it shows
a dependence on the fraction of area occupied by sinking elements.
This fraction of area strongly depends upon the surface unstable
layer where thermal instability occurs, and is not expected to

take the same values in laboratory experiments, in the ocean,
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take the same values in laboratory experiments, in the ocean,

or in the atmosphere.
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Vertical profiles of vertical-velocity variance and vertical
flux of turbulent kinetic energy (Figures 18 and 19, respectively)
have a broad maximum near mid-depth, as observed in laboratory
experiments. At the surface, they match the imposed turbulence
imput by the wind, and, at the bottom of the thermocline, they
both vanish without showing any sudden variations in the thermo-
cline. The temperature variance decreases from the surface down
to zero at the neutral level, where sinking and rising fluids
are at the same temperature. Below that level, it increases
again and has a large gradient in the thermocline. As expected,
observations do not show a vanishing temperature variance at
any level, but a well-pronounced decrease is observed precisely
at the neutral level. The temperature profile is composed of
a quasi-constant value through the mixed layer and a rapid
variation in the thermocline. The vertical convective heat
flux varies linearly throughout the mixed layer. It is positive
(upward flux) above the neutral level, vanishes at the neutral
level, and is negative (downward flux) below it. In the
thermocline, the heat flux rapidly decreases from its maximum
negative value down to zero. A resulting eddy diffusivity of
heat is computed from the mean-temperature gradient and the
convective heat flux. The heat diffusivity is found to be
negative above the neutral level. This implies that the

temperature variance supplied at the surface by the forcing is

Drosreacivelv need +n chance the mean tamneratiime ac ~rnlA

temperature variance supplied at the surface by the forcing is

progressively used to change the mean temperature, as cold
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elements move downward. Below the neutral level, the heat
diffusivity is positive; in that lower region of the mixed layer
and in the thermocline, turbulence is generated by the system
itself. As shown in figures 18 to 28, computed profiles and
available laboratory data agree remarkably well. Moreover,

the accuracy of the simple analytical results presented here

is comparable to that of sophisticated turbulence numerical

models.




CHAPTER FIVE

EFFECTS OF HORIZONTAL ADVECTION:
A CASE OF FRONTOGENESIS




1. INTRODUCTION
The large-scale upper ocean fronts across the central North
Pacific are fronts associated with the convergence of Ekman
transports (Roden, 1976). In that region, the wind field is
dominated by westerlies and the trade winds. This results in
eastward stresses and southward Ekman drifts in the north, and in
westward stresses and northward Ekman drifts in the south. The
region of convergence of these water transports is highly fronto-
genetical. Continuity of mass requires that the water either
downwells (convergence) or escapes laterally in a zonal flow
(confluence). According to Roden (1980), the central North
Pacific is characterized by these two dynamic features. Obser-
vations show two zones of strong surface convergernce of Ekman
transports, one at the southern edge of the westerlies and the
other at the northern edge of the easterlies, and a transition
| zone of confluence in between. What mechanism determines whether
convergence or confluence occurs, remains however unclear.
Wind stresses generate Ekman transports and, at the same
time, vigorously stir the upper layer of the ocean. If there
is no advection, wind stirring erodes the stably-stratified fluid
underneath and entrains heavier water in the mixed layer; the
surface density increases with time as the mixed layer deepens.
On the other hand, if there is no mixing, positive buoyancy advec-

tion (cold or saline water advection) locally increases the sur-
face densitv. while necativa hiamramaes B N S T VR 2T

tion (cold or saline water advection) locally increases the sur-

face density, while negative buoyancy advection (warm or fresh
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water advection) locally decreases the surface density. Therefore,
wind stirring and wind-driven horizontal advection can add or
subtract their respective effects. In the case of an oceanic
front generated by the convergence of Ekman transports, positive
buoyancy advection generally occurs on the northern side, and
negative buoyancy advection on the southern side of the front.
Wind mixing thus reinforces advection north of the front, while

it opposes advection south of the front. As a result such a
front is asymmetric: the horizontal density gradient is stronger
on the northern side of the front than it is on the southern side.
The asymmetry was observed in the subtropical frontal zone in

the central North Pacific (Roden, 1976 and 1980), where fronts
exhibit a well-defined southern edge which separates weak density
gradients to the south from strong density gradients to the north.
The Subarctic Front around 42°N escapes this asymmetry, for temp-
erature and salinity fronts compensate each other, yielding very
weak density gradients (non-baroclinic front).

Another source of asymmetry results from the initial hori-
zontal density gradient. Positive buoyancy advection tends to
transport heavy water masses over lighter water masses and thus
to reduce the density jump at the bottom of the mixed layer.

There results an asymmetry in the pycnocline strength between
northern and southern sidés of the front: the pycnocline is

weaker in the north and stronger in the south. Moreover, the

northern and southern sides of the front: the pycnocline is
weaker in the north and stronger in the south. Moreover, the

resistance to mixed-layer deepening is less where the density
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jump across the pycnocline is weaker. As a consequence, the mixed
layer is slightly deeper on the northern side. Observations
(Roden, 1980) and results presented here both show these asymme-
tries in the pycnocline strength and mixed-layer depth in both
sides of the front.

MacVean and Woods (1980) developed a two-dimensional oceanic
frontogenesis model forced by a barotropic horizontal deformation
field associated with meso-scale eddies. Turbulent mixing is
neglected and Ertel's potential vorticity theorem governs the
cross-front velocity. The present approach drastically differ
from this study, for the forcing is a surface wind stress capable
of generating both drift currents and turbulent mixing. The
cross-front flow is the Ekman transport. Moreover, for the
scales chosen herein, mixing effects are found to be as important
as advective effects.,

The present study is aimed at wind-induced frontogenesis
with emphasis (i) on the distinction between convergence and con-
fluence in frontal zones, and (ii) on the dual role played by
the wind: advection and mixing. An initially quiescent ocean
is characterized by linear density gradients in both vertical and
meridional directions. (Heavier water is encountered in the deep
layers and in the northern region.) The vertical stratification
is suppressed near the surface and is replaced by an initially

very shallow vertically-homogeneous upper layer. A wind-stress

F3 AT A crrAAdamTen demdooe Vo C 0 - 03 e S L pnnewna vy S aua Sl Ldaay

very shallow vertically-homogeneous upper layer. A wind-stress

field suddenly takes place and remains constant with time. The
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wind stress is positive (westerlies) at the north, and negative
(easterlies) at the south. Ekman transports to the right of the
wind thus converge toward the middle of the basin, where the wind-
stress curl is maximum. The flow pattern is frontogenetical, and
a density front is progressively generated by heavy water advec-
tion from the north, and light water advection from the south.

A wind-mixed layer also deepens on both sides, reinforcing advec-
tion in the north and opposing advection in the south. The mixed
layer deepens faster away from the front, where the magnitude

of the wind stress is larger, and on the northern side where the
pycnocline is weaker. The two cases of convergence and conflu-
ence are treated separately. In the case of convergence, a down-
welling is superimposed on the system. This effect is maximum

at the front itself where the wind-stress curl is maximum. In

the case of confluence, water flows away laterally along the
front, and no downwelling is present. For the sake of simplicity,
dissipation is not included, the front strengthens endlessly, and
no steady state is reached. The B-effect is neglected, since a

frontal zone has, by definition, a small meridional extent.

2. MODEL
The model developed herein is based on modelling of mixing
and convection by two interacting fluids (Chapter two). The

present work is a generalization of a one-dimensional version of

dud convection DYy TWo 1nteracting fluids (Chapter two). The
present work is a generalization of a one-dimensional version of

the model applied to the deepening of the wind-mixed layer

e ——
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(Chapter three), in order to study the effects of lateral advec-
tion on mixing.

The model envisions mixing as the relative motion of two
interacting fluids of different properties. Parcels of fluid
rising through the mixed layer are given, near the surface, extra
momentum by the wind stress. These elements are pushed back into
the convective layer by turbulence with new properties. Because
they sink in a slightly stratified fluid, they are buoyant and
decelerate. As they sink, they also progressively lose their ex-
cess of horizontal momentum by interactions with the upward
return flow. As they reach the bottom of the pycnocline, they
ha&e a null vertical velocity and lose their ability to carry
heat and momentum. The active sinking elements are called ther-
mals, and the rising elements, anti-thermals, by analogy. The
model describes the individual dynamics of thermals and anti-
thermals and their exchanges.

The one-dimensional model developed in chapter three is
capable of predicting the vertical structure of mean and fluctua-
ting properties throughout the mixed layer and the pycnocline.
Since the level of turbulence responds quasi-instantaneously to
temporal and local variations (advective effects are equivalent
to temporal variations), turbulent fluxes and vertical-structure
properties are given by the one-dimensional model. Therefore,

using the results of the one-dimensional model, an advective bulk

properties are given by the one-dimensional model. Therefore,
using the results of the one-dimensional model, an advective bulk
model is developed and solved. Emphasis is placed on the discus-

sion of mixed-layer depth, mean currents, and horizontal density
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gradient, all bulk properties affected by advection, rather than
on vertical profiles of turbulence structure which are not affected
by lateral advection.

Another generalization is also proposed. Since open ocean
frontogenesis depends on both temperature and salinity fields,
salinity is included in the formalism. Double-diffusive processes
fall out of the scope of the present study, and diffusion is ne-
glected. This simplification permits combination of temperature
and salinity in a unique thermodynamic variable, the buoyancy,

defined by:

b = g( -aT + BS), (1)

where T is the temperature, S the salinity, a the coefficient of
thermal expansion, and B the coefficient of saline contraction.
The so-defined buoyancy is dimensional, greater for cold and
saline water, and smaller for warm and freéh water. The initial

buoyance field is chosen to be:

o
n

bo + P2y - Psz , for z < —hO )

(2)

and

o
1l

1
bo + F2y t 3 Fsho , for ho <z <0,
where bo is a reference buoyancy (pure constant), F2 and F3

the horizontal and vertical gradients, respectively, and ho

where bo is a reference buoyancy (pure constant), I, and T'y

the horizontal and vertical gradients, respectively, and ho
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the non-zero initial mixed-layer depth. The factor %5 is intro-
duced, in agreement with the one-dimensional model of the wind-

mixed layer (Chapter three).

3. GOVERNING EQUATIONS

Thermals and anti-thermals are characterized by different
velocities, densities, and pressures. Primed and double-primed
quantities refer to thermals and anti-thermals, respectively.
If f represents the fraction of area occupied by thermals at any
level, the fraction of area available to anti-thermals is (1-f),

so that mean properties are defined by:

a = fa' + (1-fa" , (3)

where a stands for any physical quantity such as velocity compo-
nents, buoyancy, or pressure (u, v, w, b, or p). Moreover, root-

mean-square (rms) fluctuations are defined by:
—_—1
a = /E(I-E) (a'-a") = £(a-3)% 7 . ()

Rms fluctuations are thus proportional to the difference between
thermals and anti-thermals quantities. They may be positive or

negative. Second-order turbulence correlations are expressed as:

ac = fa'c' + (1-fla"c" , (5)

where a and c¢ stand for any physical quantities. Simple calcula-

tions using (3) and (4) yield:

where a and ¢ stand for any physical quantities. Simple calcula-

tions using (3) and (4) yield:
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ac = ac + a___c . (6)
rMS rms

Throughout the mixed layer and pycnocline, a saturation equi-
librium between thermals and anti-thermals can be assumed (Chapter
two). This leads to assigning a constant value to f, the fraction
of area occupied by thermals. It has been shown in chapter three
that oceanic observations and laboratory experiments suggest a
value close to 10%.

With these definitions and the closure hypothesis, the advec-
tive model is governed by the following non-linear equations

(Chapter two):

.. . ou ov ow
Continuity equation: = 5§-+ 3 - o (7)
Buoyancy equations: —3-5 + —2-3_'+ —é-ﬁ_'— 0 (8)
yaney eq ’ 3t oy 3z - ’
—a(5+mb ) =0 (9)
9z rms ’
Horizontal momentum J - 0 — d — - _
equations: Pl 3y tagg W - fv=0, (10)
T T g
Az v + 5y vv + 37 VWt fou = o 5y (11)
-3——(1—1+2mu ) =0 (12)
3z rms ?
3—(\_/+2mv ) =0 (13)
9z rms ?

Vertical momentum -

equations: %—- 28 =-(1L+Db) , (1)
Vertical momentum 1 55
equations: o 5% = - (1 +b) , (1)




147

0 _
“rms 3z "rms _brms 2 (15)

where fo is the Coriolis parameter (positive and constant), ey

the reference density, and m is a coefficient dependent upon f

only, defined by:

m = . i-2fF . (16)

2VE(1-1)
Three small terms were neglected: (i) a correction due to verti-
cal advection in the hydrostatic balance (14), (ii) a correction
due to a non-zero mean vertical velocity w in (15), (iii) the

pressure term in (15). These simplifications hold as long as

2
wrms<<gh R (17)
w<<|wrms\ , (18)
(52“-’2)2_2 << muz , (19)

respectively. The last requirement is equivalent to neglecting
the turbulence production in the pycnocline by mean shear compared
to the surface turbulence input (Chapter three). This simplifica-

tion is valid for time scales much larger than the inertial period

which is met in the case of frontogenesis.

e =t mm——— - —a B ettt L s e I e LALMALY Lliw dlavL L Pl v

which is met in the case of frontogenesis.
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In the case of frontogenesis, it is reasonable to anticipate
that the zonal mean velocity, u, is geostrophically balanced by
a cross-front mean pressure gradient, 55/8y, and that the meridi-
onal mean velocity, v, is the depth-independent Ekman flow induced
by the zonal wind stress. In the mixed layer, equations (10) and

(11) thus reduce to:

fv = 3—-uw s (20)
o az
and
= __1 3
fou = o 3y (21)

Assuming that b is depth-independent in the mixed layer, (21) can
be solved for u in terms of the horizontal buoyancy gradient (so-
called thermal-wind relationship):

1

3b
'i;; —3—}7(Z+h) . (22)

[=}}

Since u vanishes at the bottom of the mixed layer, the newly-
entrained fluid from below is not given zonal momentum in the
thermocline. The Reynolds stress -uw therefore vanishes at

z = -h, and equation (20) can be integrated to yield:

- TX
VE sy o (23)
0 O
8
v = _pth , (23)
0o O
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where Tx(y) is the local wind stress at the surface, and h(y,t)
the local instantaneous mixed-layer depth. North of the front
T, is positive and v is negative; south of the front T, is nega-
tive and v is positive. These two Ekman flows meet at the front
(y=0), and continuity requires the water to flow either vertically
(convergence), laterally (confluence), or both ways. At the pres-
ent state of knowledge, it is unclear from observations what mech-
anism determines whether convergence or confluence occurs. In
the present work, the two extreme cases of convergence and con-
fluence are thus studied separately. In nature various combina-
tions of these two cases occur simultaneogsly, as described by
Roden (1980).

In the case of convergence, the continuity equation (7) is

reduced to 3v/dy + 9w/dz = 0 and yields:

= (X . (2u)

In the case of confluence, w at the bottom of the mixed layer is
the vertical component of the velocity along the sloping pycnocline
(w = -v 3h/dy as z = -h), and the full continuity equation (7) has

to be used. This yields:

- 3T ZT
- _ 1 3b X X - X 9,1
us (z+h) R W = 5;?5 5§<h) . (25)
- 1 3 x T - e 3,1
u §—-5—-(z+h) + ——?—H-g—i , W = ——?— 5—{50 . (25)
o Yy po o y po o y
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where the origin of the zonal coordinate x is undefined. At the

bottom of the mixed layer, the mean vertical velocity w is:

T
W = b o () (convergence)
o F 3y '™n g
oo
: ht 5 1 (26)
w= - —= (2 (confluence)
pofo 9y "h

The Ekman downwelling in the underlying stratified fluid is given

by:

_ 1 BTx

K 62?;- T (convergence),

=
1

(27)

Wey = 0 (confluence)

The Ekman downwelling is related to the wind-stress curl and is
dependent of the mixed-layer depth. It differs from the mean ver-
tical velocity at the bottom of the mixed layer. The difference
is the vertical component of the velocity along the sloping pycno-
cline.

The expression

+ 3  -d3h . - _ oh

represents the rate of entraimment of fluid from below into the
mixing process. It vanishes if the mixed layer deepens solely

by Ekman downwelling without entraining new fluid in the mixed

mixing process. It vanishes if the mixed layer deepens solely
by Ekman downwelling without entraining new fluid in the mixed

layer.
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The initial buoyancy field in the underlying stratified fluid
is advected downward by the Ekman downwelling velocity given by
(27). If the wind forcing is steady, the buoyancy field under the
mixed layer at any time is:

b (y, z, t) = bO + T,y - F3(z—wEkt) . (29)
where t = 0 corresponds to the initial time when the wind starts

to blow.

4, JUMP CONDITIONS ACROSS THE PYCNOCLINE

Due to the presence of large vertical gradients, the terms
which dominate the governing equations in thé pycnocline differ
from those which dominate the equations in the mixed layer. To
bring out the dominant terms, the governing equations are
advantageously expressed with the similarity vertical coordinate

& = -z/h(t). Replacing z by &, equations (8), (10) and (11)

become:
5 _ dvb _ £ dn 8B _ £ 3h 3vh _ 1 3ub _ 4
3t T 3y T h 3t 8¢ ~ h 3y @8  h 23E

1
o
+
.
o]
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The pycnocline is a very thin layer of large gradients (§%>> 1 for

all quantities except 9p/9%) and is located at the bottom of the
mixed layer (£ =1). Therefore, the above equations can be
simplified by retaining only the terms including derivatives
with respect to § (except 9p/3&) and by replacing £ by one.
Integrations with respect to £ then yield:

= 0oh — 9h dh

b P vb 3y + wb = b_(-h)(§¥ t wEk) > (30)
- dh — 3h — _ (31)
u g Uy gy + uw 0
-~ 3h — dh —
3h -0 , (32)
Vet tVVoay T

where the constants of integration were determined by expressing
that all the rms fluctuations, u, and v vanish below the pycno-
cline; b_(—h) is the value of the buoyancy at the top of the
underlying strétified fluid:

b (-h) = b+ Iy + r3(h+wEkt) s (33)

according to (29) for z = -h.

In the mixed layer, b and v are quasi-independent of depth.
From (9) and (13), it results that the rms fluctuations brmS and
Vims 3T much smaller than the mean variables b and v throughout
the mixed layer. Relations (30) to (32), which are applicable in

the pycnceline, can thus be simplified in the limit near the

bottom of the mixed layer. Using (6) and (28), they become:

woo b= hb_(-h)-b1, (34)
U W T -hu(-h) , (35)
Wrms Urms - LLLU_\_ll/_UJ by Ao )
Woe o -hu(-h) , (35)
v W = -hv . (36)

rms rms
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These equations relate the values of variables at the top and

bottom of the pycnocline. They are the classical jump conditions
used in one-dimensional bulk models (Kraus and Turner, 1967, and
Niiler, 1975, for example). It was, however, necessary to derive
them in the context of non-zero lateral variations, for the slope
of the pycnocline and the vertical velocity modify the expression

of the rate of entrainment h.
5. SCALING IN THE MIXED LAYER

Since the front sharpens endlessly with time, there is no
proper cross-front length scale in this problem. Therefore, the
scale, L, of the meridional coordinate, y, is chosen to be the
length scale of the wind-stress field. The buoyancy difference
across the front is scaled by B = T',L, the initial buoyancy
difference over the length scale of the wind-stress field. The
vertical coordinate, z, and the mixed-layer depth, h, are scaled
by H = B/T'3, the initial vertical height corresponding to a
buoyancy difference B. The wind stress is scaled by poUi, the
order of magnitude of its maximum value away from the frontal
zone. In the mixed layer, the along-front mean velocity u is
scaled by U = HB/LfO, the cross-front mean velocity v by V = Ui/foH,
and the vertical velocities w and Wo by W = U;/fOL, as dictated

by (22), (23), (26) and (27). The time variable t is scaled by

ala . ~-al e PR O & o D e T re = dTXa P — = . ~ Y, - — A O L -
Bk —7 %07

by (22), (23), (26) and (27). The time variable t is scaled by
the advective time scale T = L/V. Rms fluctuations in the mixed

layer are scaled as follows: u and w by U, (since -uw =T /0
rms rms w X o
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at the surface), brms by HB/TU,,, and Voms by HV/TU,,, as suggested
by (34) and (36), respectively.

Typical values for scales corresponding to large-scale
oceanic frontogenesis in the central North Pacific can be found
in Roden (1980). Primary and computed scales are proposed in
Table 3. From Table 3, it can be seen that the calculated height
scale of the mixed layer (HV100 m) corresponds to observed values
(Roden, 1980). As anticipated, rms fluctuations brms and Voms
are much smaller than their respective mean values in the mixed
layer. The rms vertical velocity Wons is much greater than w and
ﬁ, since thermals sink from the surface down to the pycnocline in
a time relatively short compared to the time of evolution of the
whole system. The frontogenesis time scale is of the order of
four months, i.e., much larger than a week, which is the response
time of a pre-existing oceanic front to atmospheric variations
(Roden and Paskausky, 1978). From Table 3. it can also be shown
that requirements (17) to (19) are met.

Using unchanged notations for dimensionless variables,

equations (8), (10), (11) and (15) become:

6 . - 3ab - 9b H|? 9
e P Vs, P YWas t [___J dy Vrms®rms

t y z TU,,
9
+ 3E(wrmsbrms) =0, (37)
v, (98, g8 , 728 | Hp 3
Volat ¥ Yoy 7 “az] ¥ LRoay( rms rms
2 (uw ) -v = 0, (38)
9z rms rms 4
Violodt ay 0z ) L UUy  ewmo s
+ 2-—(u W -v =0 (38)
9z rms rms 4
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1l 393 -
+ = L = ) \
Ri Bz(vrmswrms) tuo= 55 ? (39)
o
wrmsggwrms - —Qbrms (40)

b

in the derivation of which continuity equation (7) used. The
dimensionless numbers brought out by scaling are:

- the ratio of entrainment rate to the friction velocity:

H —y
T, N5 o107,
. . U
- the velocity ratio: V-N 0.2 ,
- the Rossby number: Ro = §XE-= (foT)_1 nv107 (41)
o
. . HB
-~ the Richardson number: Ri = V;-% 250 , (42)
2my,,
- ici : = — N
the coefficient: a =gl (43)

The coefficient a is called the mixing parameter.

As the front sharpens, the derivatives du/dy and 3b/dy
increase with time by an order of magnitude (Roden, 1980). These
non-dimensional terms are thus extimated to be of the order of ten.
On the other hand, since the mixed layer is well mixed, 8b/dz and
dv/dz are very small terms. Neglecting all the small terms, the

above equations reduce to:

35 + ‘-l.-a—b = _i(

ot oy dz wrmsbrms) > (44)
ab -0b p)

-~ + —_— =

ot Vay 9z wrmsbrms) > (444)

) (45)

_ 9
V—E(u R

W
rms rms
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- 35
u Ay (46)
d
3 = -
awrmsezwrms ——Qbrms > (47)

and are applicable in the mixed layer only. Equations (45) and
(46) express that v is a pure Ekman drift and that u is geostro-
phically balanced by the cross-front pressure gradient. These
solutions for u and v were anticipated earlier in order to evaluate
the scales of w and rms fluctuations. It is therefore shown here

a posteriori that the hypotheses made on u and v are correct.
6. BULK MODELS: CASES OF CONVERGENCE AND CONFLUENCE

Considerable simplifications result from assuming a homogeneous
mixed layer. A closed set of equations is obtained from (44) to

(47) by assuming that b and v are constant, brms W and Ue W

rms ms rms

linear, and w;ms quadratic with depth. Boundary conditions are:

- no surface buoyancy flux: W b =0
rms ~rms

- surface stress =wind stress: u W = =T at z = 0,
rms rms

-w = friction velocity
rms

1
(Chapter three): W = -|t|?
rms
- jump condition (34): W b = hé
rms ~rms
- jump condition (35): u W =0 at z = -h,
rms = rms
- negligible residual w
rMS .
- Jjump conaltion (so): urmS wrms =v > at z = -h,

- negligible residual w
ms

1
. 2 !
(Chapter three): |wrms|<<|T|
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where T is the wind stress Tx(y), scaled by poUi; § is the
buoyancy jump across the thermocline, function of y and t:
§=b (-h) - b
After replacement of linear and quadratic laws and after

elimination of v and W by (23) and (27), (v = -1/h, Wey = -9T/9y

or zero), the prognostic equations for b and h can be written:

@
o't

T
in the case of convergence h

Q
t

L2 s (48)

|o)
jon
!
IQJ
A
+
Q
-
N

a9t dy hs (49)
) at =
where § =y + h - tdy - b (50)
- - %
. oh _ 1T 9b T
in the case of convergence 7+ = p 3y t a hZ (51)
oh | T %
3% 0% The (52)
where § =y +nh - b . (53)

Equations (48) and (51) express that the time rate of change
of the mixed-layer buoyancy is due to advection by the Ekman
meridional flow and to mixing with newly-entrained fluid from
below. Equations (49) and (52) express that the time rate of
change of the mixed-layer depth is due to the Ekman downwelling,
if any, and to deepening by turbulent erosion. The wind stress,

T(y), acts as the forcing on the system. The mixing parameter, a,

given by (&3), depends upon the global physical characteristics

given by (43), depends upon the global physical characteristics
of the problem. This coefficient controls the entraimment rate

by turbulent erosion: the smaller (larger) a, the less (more)
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intense 18 the entrainment of stratified fluid in the mixing

process, and the slower (faster) is the mized-layer deepening.

7. NUMERICAL RESULTS

The governing equations (439) to (50) and (51) to (53) are
coupled and highly non-linear. Moreover, coefficients depend
upon y through the wind-stress forcing T. The search for an
analytical solution is thus hopeless. However, it is very easy
to implement a numerical scheme to integrate the governing
equations step by step in time, starting from an imposed initial
state.

For the numerical calculations, the wind-stress field is
chosen to be:

T(y) = tanh y ,
positive for y>0 and negative for y<0 (Figure 29). A frontal
zone is thus expected near y = 0. The meridional extent of the
basin, in which the equations'are solved, is chosen to be:

-25y<2

The initial conditions consist of an initially homogeneous mixed
layer of non-zero depth (h = 0.5), in order to avoid an initially
infinite Ekman flow. The buoyancy gradient is chosen to be in the
horizontal and vertical directions, as required by scaling. The

ocean stratification horizontal length scale is thus equal to the

LT LoVl Ul VEL LLLAL ULl CLlauiioy ao LC\iuJ..I:'C\J. Ly ovalralipg.s 1
ocean stratification horizontal length scale is thus equal to the
wind-stress length scale, as it is observed (Roden, 1980). The

mathematical expression of the initial buoyancy field results
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from (2).

log]
"

y -2z , for z<-0.5 , -2gy<2

log]
1"

y + 0.25 , for -0.5<z<0 , -2<y<0
The initial meridional section corresponding to those initial
conditions is presented in figure 30.

The problem requires a boundary condition on b on each side
of the region of interest to characterize the buoyancy of the
water newly advected in the basin. These conditions are chosen

to be:

expressing that, outside of the region of interest, the water
does not feel the presence of the front and conserves its initial
horizontal buoyancy gradient.

The results are divided into two classes: the case of
convergence and the case of confluence. For each class, various
runs were executed in order to compare the combined effects of
mixing and advection.

Figures 31, 32 and 33 show three cross-front sections of the
buoyancy field in the case of convergence, for increasing values
of the mixing parameter a. For these cases, a global Ekman
downwelling given by (27), is superimposed on the system. This
Ekman downwelling is symmetric about the front and is maximum at
the front where the wind-stress curl is the greatest. The result-

ing deformation field in the stratified fluid is increasing linearly

LRI N T oiianam DT mamd DA i eV md e e - A .. . o~

ing deformation field in the stratified fluid is increasing linearly
in time. Figures 31 and 32 are plots corresponding to t = 1.6, i.e.,

about 6 months after the winds start to blow. In figure 33, the
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Ekman downwelling is less apparent, because the cross-section is
made at an earlier time (t = 0,16, i.e., about 18 days after the
winds start to blow).

For a small value of the mixing parameter (Figure 31), the
erosion of the underlying stratification can be significant only
for a very weak density jump across the pycnocline. On the
southern side of the front, negative buoyancy advection from the
south increases the density jump across the pycnocline and thus
prevents any erosion. The mixed layer deepens only be Ekman
downwelling without entraining new fluid in the mixing process.
On the northern side of the front, positive buoyancy advection
from the north decreases the density jump across the pycnocline
and favors entrainment of stable fluid. Entrainment is limited,
however, since the mixing parameter is small. The mixed layer
is somewhat deeper north of the front. Because mixing is not
important on either side of the front, the buoyancy field in
the mixed layer is governed mainly by advection, i.e., the
buoyancy gradient is almost symmetric about the front. There-
fore, as shown in figure 31, the asymmetry of the front is most
pronounced in the pycnocline strength, while mixed-layer depth
and buoyancy profile are quasi-symmetric.

Figure 32 shows a similar section of the buoyancy field for a
greater value of the mixing parameter. Mixing is more pronounced

away from the front, where the wind-stress magnitude is greater.
The mived-laver denth t+hne hae a minimm =2+ t+he middle Af the

away from the front, where the wind-stress magnitude is greater.
The mixed-layer depth thus has a minimum at the middle of the

front where the wind stress vanishes. 1In a real oceanic situation,
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winds fluctuate about a mean value. These fluctuations increase
turbulent mixing and not advection, since mixing is non-linearly
dependent upon the wind stress. Including such fluctuations in
the forcing would therefore reduce the minimum mixed-layer depth
at the front. Mixing is maximum away from the front, while the
Ekman downwelling is maximum at the front; these two effects thus
compete. As shown on figure 32, the result is a maximum mixed-
layer depth on both sides of the front. On the southern side of
the front, negative buoyancy advection increases the pycnocline
strength. Nevertheless, entrainment is effective and tends to
increase the mixed-layer buoyancy. Advection and mixing oppose
each other, and the buoyancy field in the mixed layer is almost
identical to the one of the initial state. On the northern side
of the front, positive buoyancy advection decreases the pycnocline
strength and favors entrainment. The mixed layer deepens faster
in the north. Mixing increases the mixed-layer buoyancy and thus
reinforces the positive buoyancy advection from the north, leading
to the formation of a large frontal buoyancy gradient. The
resulting horizontal profile of the mixed-layer buoyancy is very
asymmetric: the southern side is characterized by a weak gradient,
almost identical to the one of the initial state, while the
northern side is characterized by a strong frontal horizontal
gradient.

Figure 33 shows a cross-front section of the buoyancy field

graalent.
Figure 33 shows a cross-front section of the buoyancy field
for a large value of the mixing parameter. An increasing mixing

parameter leads to an increasing rate of entrainment. The mixed
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layer becomes rapidly so deep that the physical occurence of such
a situation is doubtful. However, it is interesting to study the
modifications brought out in this extreme case. Mixing is now so
intense that it controls the deepening of the mixed layer. Hence
the mixed-layer depth is symmetric about the front. On the southern
side of the front, the density increase due to mixing takes over
the density decrease due to advection from the south. The lines

of constant buoyancy move southward, away from the front.
Frontolysis occurs on the southern side. On the northern side,
however, mixing and advection reinforce each other, and a front
appears. Since advection is not very effective compared to mixing,
the front is a result of differéntial mixing rather than of
differential advection.

Figure 34 is a summary of the cross-front profiles of the
mixed-layer buoyancy shown in the three previous figures. The
dashed line represents the initial linear profile. For a small
value of the mixing parameter (a = 0.1), the profile is highly
distorted by northward advection in the south and southward
advection in the north. The profile is almost symmetric about
the center of the front (y = 0, b = 0.25). The gradient at the
center is five times greater than the initial gradient, revealing
the presence of a well-defined front. For a greater value of the
mixing parameter (a = 1.0), the profile is totally asymmetric:

linear and almost identical to the initial profile in the south,

B P e ey i, S - JNG. PR FURK SR U IS AU RS A Min smmera raravm

linear and almost identical to the initial profile in the south,
and distorted by southward advection in the north. The maximum

gradient at the center of the front is near the one for a = 0.1,
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but the region of large gradients is reduced by two, revealing a
weaker front. For a large value of the mixing parameter (a = 10.),
the buoyancy profile is displaced southward everywhere as a result
of mixing only. The buoyancy gradient is almost zero on the
southern edge but large on the northern edge of the front. The
frontal zone 1s not a consequence of advection but rather a result
of non-mixing in a region where the wind stress vanishes.

The time evolution of the mixed-layer depth on both sides of
the front is shown in Figure 35, for the three values of the
mixing parameter. As expected, the greater the mixing parameter,
the deeper the mixed layer. For times greater than 0.3 (about one
month), the mixed layer deepens at a constant rate. On the
southern side of the front (y = -0.5), the rate of increase almost
coincides with the rate of deepening by Ekman downwelling. The
reason is clear: due to negative buoyancy advection, the buoyancy
jump across the pycnocline becomes so strong after a month that it
prevents any further mixing. On the northern side of the front
(y = 0.5), the rate of increase is larger because of the tendency
of positive buoyancy advection to reduce the pycnocline strength.
The rate of deepening is remarkably constant with time, although
there is no reason a priori for such behavior. For a = 0.1, the

asymmetry between north and south appears around t = 0.2 (about

20 days), when the pycnocline strength is substantially reduced

on the northern side such that mixing becomes noticeable. For

B B L T o 2R - L i R e N

on the northern side such that mixing becomes noticeable. For
a = 1.0 and 10, the asymmetry appears sooner, and the incipient

deepening is well separated from the Ekman downwelling.
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Figures 36, 37 and 38 show three cross-front sections of the
buoyancy field in the case of confluence, for the same values of
the mixing parameter. They are to be compared with Figures 31,
32 and 33, respectively. The interior is at rest at all times.
For a small value of the mixing parameter (Figure 36), the
pycnocline strength and the mixed-layer depth greatly differ on
both sides. On the southern side, negative-buoyancy advection
has largely increased the buoyancy jump across the pycnocline
and prevented any erosion of the stratified fluid. On the
northern side, positive-buoyancy advection has swept out the
pycnocline almost totally and favored a moderate deepening (small
mixing parameter). TFor a greater value of the mixing parameter
(Figures 37 and 38), the asymmetries of pycnocline strength and
of the mixed-layer buoyancy becomes more asymmetric.

Figure 39°is a plot of the cross-front profiles of the
mixed-layer buoyancy of the three previous figures. Comparison
with Figure 34 reveals that the frontal gradients of buoyancy
are greater by about a factor of three in the case of confluence.
But, the profiles exhibit qualitatively the same shapes.

The time evolution of the mixed-layer depth on both sides
of the front in the case of confluence is shown on Figure 40, for
the three values of the mixing parameter. Comparison with Figure
35 reveals that the rate of mixed-layer deepening is reduced in

the case of confluence, as a result of the absence of the Ekman

3D reveals Tnat The rate O MlXed-layer deepening 1s reduced 1n
the case of confluence, as a result of the absence of the Ekman
downwelling. Because the mixed layer is shallower in the case of

confluence, the cross-front Ekman drift is larger and advection
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is more important. This explains why the horizontal buoyancy

gradients are greater in the case of confluence.

8. SUMMARY AND DISCUSSION

A bulk model for the study of advective and mixing effects in
the upper ocean was constructed from a one-dimensional mixed-layer
model. The aim of the work was to investigate the formation of a
frontal zone by convergence of Ekman transports, as observed in
the central North Pacific. The B-effect and dissipation were
neglected. Temperature and salinity were combined to form a
single thermodynamic variable, called the buoyancy. Scaling
showed that the long-front velocity is in geostrophic balance
with a cross-front pressure gradient and is unimportant. The
cross-front velocity is an Ekman drift, driven by the surface
wind stress, and converges toward the region of zero wind stress,
producing frontogenesis. Continuity of mass near the front
requires that water masses either downwell (convergence) or
escape laterally (confluence). This distinction leads to two
cases, each treated separately. Moreover, the wind stress is
capable of advection and mixing. Emphasis was put on the
interaction of these two effects.

The model reduces to two coupled highly non-linear prognostic
equations for the buoyancy and mixed-layer depth. Numerical

solutions were obtained bv auadrature in time. The main results

equations for the buoyancy and mixed-layer depth. Numerical
solutions were obtained by quadrature in time. The main results

are: (1) the front is never symmetric, (ii), in the case of
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weak mixing, the asymmetry is most pronounced in the pycnocline
strength and in the mixed-layer depth, while the buoyancy field is
almost symmetric about the center of the front, (iii), in the
case of strong mixing, the asymmetry is most pronounced in the
buoyancy field and frontolysis may occur, (iv), after about one
month, the Ekman downwelling resulting from convergence strongly
controls the rate of deepening, and (v) frontal density gradients
are about three times larger in the case of confluence than in the
case of convergence.,

The relative importance of mixing to advection is measured by
a mixing parameter, which results from scaling. It is related to
the Rossby and Richardson numbers. In the case of large-scale
oceanic fronts as those in the North Pacific Ocean, this mixing
parameter is of order one, implying that wind mixing is as
important as wind-driven advection. Zero-mean fluctuations
superimposed on the mean wind-stress field would change mixing
but not advection. These can thus be modelled by increasing
the value of the mixing parameter. For very large values of the
mixing parameter, frontolysis occurs on the side of low-density
advection and strongly weakens the front.

Since dissipation was neglected, the solution of the present
model does not reach a steady state; a front is forming and
sharpening endlessly with time. The model therefore does not

yield any length scale for the width of the frontal zone. However,

. 3 . . L O, R R T S ———— - -3 s o
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yield any length scale for the width of the frontal zone. However,
when the front is sufficiently sharp, dissipation will play a

dominant role and force the system to a steady state. Hence the
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length scale for the width of the front is believed to be con-
trolled by dissipation.

Finally, since there is no advection where the wind stress
vanishes, a coastal wall can be placed at the middle of the front,
without altering the solution. Results of convergence are thus
applicable to a coastal downwelling, forced by a longshore wind
stress increasing offshore. If the mixing parameter is of order
one, it is observed that the maximum downwelling does not occur

at the coast but somewhat offshore (Figure 32).



CHAPTER SIX

SUMMARY AND DISCUSSION
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A new theory of mixing and convection is developed and then
applied to three cases: (i) the deepening of the wind-mixed layer,
(ii) penetrative convection due to surface cooling, and (iii) upper-
ocean frontogenesis by convergence of Ekman transports.

The theory of the model (Chapter 2) is based on the concept
of a two-fluid system: thermals carrying the information from the
boundaries of the system toward the interior, and anti-thermals
forming the return flow required by continuity of mass. The
governing equations are derived from the general dynamical theory
developed by Kelly (1964), Green and Naghdi (1965), and Truesdell
(1969). Pairs of equations are written for two interacting
Boussinesq fluids in a rotating frame, and interaction terms are
parametrized in order to adapt the theory to geophysical situations.
Each pair meets an Invariance Principle as a consequence of
reciprocity in the roles played by thermals and anti-thermals.

Each pair is transformed into an average equation for which
interaction terms cancelled and a very simple equation linking

the two fluid properties. An important parameter of the model is
the fraction, f, of area occupied by thermals to the total area.

A dynamic saturation equilibrium between thermals and anti-thermals
is assumed. This implies a constant value of f throughout the

system. Considerable simplification 13 obtained by assuming that

is assumed. This implies a constant value of f throughout the
system. Considerable simplification 18 obtained by assuming that

the response time of turbulence is much less than the time scale of

182
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evolution of the overall system. This assumption is realized

in all geophysical situations and is a generalization of various
assumptions previously stated by Denman (1973), Niiler (1975),
Niiler and Kraus (1977), and Garwood (1977) for the upper ocean,
and by Lilly (1968), Tennekes (1973), and Lenschow et al. (1980),
for the atmospheric boundary layer. The model neglects dis-
sipation, and its validity extends to any convective situation
where molecular viscosity and diffusivity may be neglected.

The theory is first applied to the study of the deepening of
the wind-mixed layer (Chapter 3). The one-dimensional and fric-
tionless model neglects the turbulence production by the mean-
flow shear in the thermocline. The potential-energy increase
required for deepening is thus supplied by the turbulence input at
the surface (turbulent erosion model). A non-similar analytical
solution 1s found in the case of a well-mixed layer bounded
below by a sharp thermocline, treated as a boundary layer. That
solution is valid if the frictional Richardéon number, Ri, defined
as the ratio of the total mixed-layer buoyancy to the square of the
vertical-velocity scale, is much greater than unity. The model
predicts an entrainment rate proportional to Ri" !, and a ratio of

3/4

thermocline thickness to mixed-layer depth of the order of Ri

lé', as the mixed-layer depth, h,

The thermocline shallows as h~
increases with time. The vertical structure throughout the mixed

layer and thermocline is given by the analytical solution. Verti-

cal profiles of mean values and vertical fluxes are calculated.

layer and thermocline 1s given by the analytical solution. Verti-
cal profiles of mean values and vertical fluxes are calculated.

The comparison of these profiles with those obtained by turbulence-



184

closure numerical models is favorable.

The same model is applied to the study of penetrative con-
vection in the upper ocean due to surface cooling (Chapter 4).
The model is still one-dimensional, but dissipation is included,
since dissipative effects are more important when the mixing
region is deeper. An analogous non-similar analytical solution
is found in the case of a well-mixed layer bounded below by a
sharp thermocline. That solution is valid if the Richardson
number, Ri, is much greater than unity. The model predicted a
deepening rate proportional to Ri_aﬁ, a constant thermocline
thickness, and a ratio of thermocline thickness to mixed-layer
depth proportional to Ri™¥s. If the surface heat flux is con-
stant, the mixed layer deepens in time as t%2. The vertical
structure throughout the mixed layer and thermocline is given by
the analytical solution. The agreement of mean temperature and
vertical fluxes with laboratory experiments is excellent. More-
over, the results of the present analytical calculations are
comparable to that of turbulence-closure numerical models.

Advective effects and their interactions with mixing were
studied in a case of upper-ocean frontogenesis (Chapter 5). A
bulk model including both advection and mixing is derived based on
the one-dimensional model developed in Chapter 3. Continuity of
mass near the front requires that water masses either downwell
(convergence) or escape laterally (confluence). This distinction

led to a study of these two different cases, each treated separately.

(convergence) or escape laterally (confluence). This distinction

led to a study of these two different cases, each treated separately.
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Interactions between advection and mixing result in important
cross-front asymmetries in properties such as mixed-layer depth,
thermocline strength, and/or mixed-layer density. These asymmetries
have been observed (Roden, 1976 and 1980). Results also show

that there exists a critical time scale within which mixing domi-
nates and beyond which advection controls frontogenesis. For a
mixed layer about one hundred meters thick, this time scale is of
the order of one month. Strong mixing is shown to be able to induce
frontolysis on the front side of light-water advection. Frontal
density gradients are about three times larger in the case of con-
fluence than in the case of convergence. Dissipation is neglected,
and the model does not reach a steady state. Hence, the length scale
for the width of the front (believed to be controlled by dissipation
in a steady state) is not provided by the model.

Although the theory presented in chapter two is very general,
the subsequent applications are restricted by various simplifying
assumptions, such as absence of dissipation, large Richardson
number, and decoupling between wind mixing and surface cooling.

The scope of this work is to present a better understanding of the
fine structure of turbulence in the upper ocean. This understanding
could only be acheived by a clear presentation of analytical solu-
tions corresponding to various particular cases. The author is
aware of the limitations brought by those simplifying assumptions
and of the resulting restricted applicability of the mathematical

farmilae nrecented herein. More oceneral and more accurate results

and of the resulting restricted applicability of the mathematical
formulae presented herein. More general and more accurate results

can be sought by numerical solutions of the general equations pro-
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posed in chapter two.

The applicability of the general theory of chapter two is
based on the assumption of a saturation equilibrium between
thermals and anti-thermals, which leads to assigning a constant
value to f, the fraction of area occupied by thermals to the total
area. Although this assumption is supported by physical arguments
and various observations, it may fail in particular situations like
the incipient deepening of convection or in restricted regions such
as those very near the surface or at the bottom of the thermocline.
A discussion of possible variations of f was presented in an appen-
dix to chapter three. It was concluded that, if such a region of
non-constant f exists, it is very limited and does not affect the
overall behavior of the system. On the other hand, the good agree-
ment of the results with observations and with previous models,
despite various other simplifications, is very encouraging.

This work also ignores the presence of internal gravity waves
generated by turbulence. Although waves are important as a mecha-
nism capable of extracting kinetic energy from the system, the study
of their effects on mixing and convection is a recent subject of
research, one which is in its early stage of development, and no
acceptable parametrization has yet been proposed for geophysical
situations.

The model can be applied to various other cases related to
geophysical fluids. The coupled problem of wind mixing and surface

cooling/heating can be investigated as a direct application of the

geophysical fluids. The coupled problem of wind mixing and surface
cooling/heating can be investigated as a direct application of the

results presented in chapters three and four. The model is also
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directly applicable to convection in the atmospheric boundary layer
under a cloud-topped inversion. Moisture can be incorporated in

the formalism without major problems. A dual application of the
model can be that of convection in the lower atmospheric layers
above mixing and convection in the upper oceanic layers. Surface
air and sea temperatures and surface heat flux would then be the
unknowns in the problem. An intersting case would be that of double
penetrative convection, in the atmosphere and the sea, past mid-fall

and during winter when the water is warmer than the air.
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