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ABSTRACT

For the first time an ocean model is used to assimilate oceanic tomography data
in an upper ocean model of the northeast Pacific with the goal of estimating the
time independent density field, and thus the slow manifold circulation structure.

The assimilation procedure works by minimizing the cost function, which gener-
alizes the misfit between the observations and their model counterparts, in a least-
squares sense, plus a penalty term. This minimization is done consistently with the
constraint that the model dynamics must be exactly satisfied. The model consists
of integrating the model equations forward in time over the period which data are
going to be assimilated. Data misfits between the model and the observation are
then calculated and the adjoint equations of the model are integrated backward
using the data misfits as forcing. It is necessary to determine the gradient of the
cost function with respect to the control variables (the density field). The gradient
is found using the model and adjoint variables and it is used in a minimization
algorithm to determine a new density field. The minimization procedure utilizes a
limited memory quasi-Newton method.

The results indicate that the assimilation procedure works very well. For the
twin experiments, the final estimated density recovers the Levitus density field as
expected and as fast as in 10 iterations. For the experiments with the Navy layered
ocean circulation model (NRLM) output, the density can be estimated through
the assimilation procedures. The estimated density field improves the the Levitus

climatological density data which are biased and makes the subtropical gyre stronger

in the northeast Pacific region.



The proof of the identity between the discretization of the continuous adjoint
equations and the adjoint equations which are from discretized model equations with

the Arakawa C has been carried out.



1. INTRODUCTION
1.1 Overview of Oceanic Data Assimilation

The immensity and geometrical shape of the ocean, combined with difficulties
of observation, make measurements of the ocean both expensive and a formidable
technical challenge. As a result, not only are oceanic data relatively more sparse
than atmospheric data, they are nonuniform. Satellites provide good coverage of
the ocean surface and provide data such as sea surface temperature (S55T) and sea
surface height (SSH), but collection of these data was begun recently to establish
climatic trends. Even much less is known about conditions below the surface. In
the past, most of the oceanic data have been collected along ship tracks, from
moorings, or from drifting buoys. Since the oceanic data were sparse in space
and time, as well as inaccurate, or the sampling was not suited for determining.
oceanic variability of such phenomena as ocean currents,temperature and density, it
has been exceedingly difficult to conduct so-called objective analyses which refers to
procedures that are robust enough to work without human intervention and without
consuming an inordinate amount of computer time (Daley, 1991 and Thiebaux.
1987).

Nevertheless, the body of data available does contain some information about
the climatology of ocean. To make use of this information, there is a need to ex-
tract the maximum amount of information from a measurement and to combine it
with the time evolution of the data analysis system based on past observations. In
addition to observations, the laws of physics provide a basis for numerical models
used to simulate the ocean circulation. Such numerical models can be useful tools

for providing the dynamic predications and carrying temporal information forward.
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Those ocean models can play on important role in reconstructing a realistic pic-
ture of ocean circulation. The technique for extracting and filtering the information
from data has become known as data assimilation. Data assimilation provides an
output analysis which is better than the model alone or just an analysis using the
data. In addition, data assimilation is one way to test and, improve a model. Like
other fields of physical oceanography, oceanic data assimilation has been greatly
influenced by the work of meteorologists. There has been extensive development
of data assimilation methods in meteorology and increasing application of those
in oceanography. The methods of data assimilation are now comprehensively de-
scribed by Ghil and Malanotte-Rizzoli (1991) and Daley (1991). More recently,
Bennett (1992) has summarized the rapid development of inverse methods and data

assimilation in physical oceanography over the last decade. The methods of data

assimilation will be discussed in the next section and in chapter 2 in more detail.

1.2 Ocean Circulation and Modeling

There is both observational evidence and theoretical confirmation that the time-
mean, direct wind-driven circulation over most of the ocean is restricted to the mixed
layer and the upper thermocline of the oceans. However, since density surfaces in the
oceans come in contact with the atmosphere somewhere on the globe, the density of
the ocean water and stratification are determined by air-sea interaction processes.
The deep circulation is forced by either the time-dependent eddy mixing processes
that receive their energy from the time-mean wind driven circulation by the effects
of the deep convections that are forced by the combined effects of intensive buoyancy
loss and wind mixing in the surface layers when the thermocline is eroded.

Although modeling global ocean and climate will undoubtedly require sophisti-
cated ocean models, physical intuition about the ocean circulation may be gained

from simpler models. Consider the classical example of a homogencous ocean
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(p = p, = constant) of uniform depth H driven at its surface by wind stress.
In this idealized setting, after appropriate simplification of the equations of motion,
the steady response of the ocean to the applied stress can be determined directly.
The development of increasingly sophisticated and efficient models is a great
challenge; however, it may not be the single greatest constraint on future progress. In
order to be able to apply and validate the increasingly realistic models of the future,
an increasingly comprehensive observational description of the ccean circulation
itself, including its variability, and the exchange of momentum with the atmosphere
will be required. This will remain a problem for oceanographers, as already noted
above for the following reasons. First, data sets are difficult to collect and are sparse
and inhomogeneous. Furthermore, the great bulk of the ocean will continue to be
incompletely (even poorly) observed, unless efficient acoustic means of observing the
oceanic interior can be developed (Munk and Forbes 1989, see the next section).
One idea which is being intensively explored in regional and basin-scale ocean
models, and which may ultimately prove practical for application to global models
as well, is the application of optimal and suboptimal methods for combinations of
prognostic model-data synthesis. Several alternative approaches are under evalua-
tion. One family of approaches, broadly practiced in meteorology, is the systematic
combination of dynamical (usually model-produced) and observational information
to produce increasingly accurate representations (usually predictions) of large and
meso-scale motions (Ghil and Malonotte-Rizzoli 1991). Assimilative techniques from
the atmospheric sciences, appropriately adapted for the ocean case, are being used
with simulated data to explore the impact of assimilation on steady and transient
ocean response. Of particular interest is the determination of which space/time
scales of oceanic motion are effectively “constrained” by assimilation of different

kinds of data.
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Another approach that is complementary to the combined analysis of oceanic
models and observations is the formulation of an optimal control or inverse prob-
lem. Formulated in this way, poorly-known model parameters, along with some
estimate of how well their values are constrained by the data, can be explicitly
calculated. The computational requirements associated with the optimal control
approach can be severe and expensive. Nonetheless, efficient implementations of
the optimization approach are possible (e.g., based on adjoint equation techniques).
Applied to simple ocean models, the resulting formulation allows the optimal es-
timation of parameters, such as the bottom friction and forcing functions such as

the wind stress, and provides a particularly attractive approach (Yu and O’Brien,

1991).

1.3 Acoustic Monitoring of Global Ocean Climate

The oceans play a major role in the dynamics of climate through their large
capacity for the transport and storage of heat, moisture, and C'O;. The oceans .
are driven by the atmosphere, and their response to changes in atmospheric forcing
represents one of the most important couplings within the complex system of climate
feedbacks. The ocean-atmosphere coupling has a strong impact both on the response
characteristics of the climate system of external forcing and on internal natural
climatic variability.

Detecting climate changes expected as a consequence of the increase of atmo-
spheric greenhouse gases has become increasingly important. Several attempts have
been made to analyze historical data records and to compare them with the ex-
pected signal in both ocean surface and air temperature and ocean hydrographic
data. Munk and Forbes (1989) have proposed measuring the changes in travel times
of long-distance acoustic transmissions from Heard Island in the southern Indian

Qcean to receivers scattered around other ocean basins. The change in travel times
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over a period years would be used as a climate change detection strategy since
they are primarily a measure of the average temperature change along the acous-
tic ray paths. The “acoustic thermometer” (Spiesberger, 1983) has the advantage
of producing integrated quantities, which significantly reduce the noise level from
measurement at individual locations and , thus, minimize the higher-frequency noise
problems. Spiesberger and Metzger (1991) have demonstrated the practical feasi-
bility of this method across the basin scale (3000 km).

1.4 Thermohaline Circulation

The oceans carry heat from the tropics to polar latitudes and carry cold water
from the poles towards the equator. The details of these transport processes, which
are restricted to certain depth ranges, are hidden in the Sverdrup circulation. They
have to be resolved if the ocean’s role in climate variability and climate change is
to be understood.

It is known that the ocean carries ahout as much heat towards the poles as
the atmosphere does, but since its time scales are so much larger, the ocean has a
larger capacity to act as a damping mechanism for rapid fluctuations in our climate.
Conversely, much of the long-term variability of the climate may be related to the
ocean as it slowly releases heat stored from ecarlier rapid climate changes.

The radiative heating of the atmosphere causes motion because it leads to density
differences. Perhaps this can be said in a less tutorial manner; also, it is customary to
define symbols as they are used, e.g. gp that are important. These density changes
are proportional to the depths of the ocean by turbulent diffusion, subduction, and
convective mixing. As a result of this, a pressure field and associated thermohaline
circulation develops in the world ocean.

The quantity —g¢p is called the buoyancy, the minus sign being used because a

particle is said to be the more buoyant when it has less weight. The ocean moves
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because of buoyancy contrasts, but these are due to differences in temperature and
salinity. These differences are created by the fluxes of heat and water at the ocean
surface. For example, evaporation decreases buoyancy in two ways: by cooling and
by increasing salinity. Temperature differences generally make greater contributions
to density differences than salinity differences in the ocean. The circulation that
is driven by the buoyancy flux is called the thermohaline circulation. The com-
plete ocean circulation consists of both wind-driven circulation and thermohaline
circulation.

The thermohaline forcing, like the mechanical wind-driven ones, is external, but
the pressure field formed by these factors is internal. The largest contribution to
the development of thermohaline circulation is due to thermal processes; the heating
and cooling of ocean waters.

The general circulation of the world ocean, especially below the surface layer,
is intimately linked with the distribution of oceanographic characteristics such as
density, temperature, etc.. These characteristics have long been used as indicators,
or tracers of motion, although they show only the qualitative aspect of the circu- A
lation. This is because the world ocean is filled with inhomogeneous waters whose
characteristics vary continuously within the world ocean. On the other hand, the
distribution of these characteristics is rather regular and is mainly the result of ad-
vection and diffusion of the properties. Thus, by fixing the water characteristics at
the source of water masses formation and tracing changes in these characteristics
in space, objective qualitative conclusions can be drawn about the spread of these
water masses.

An interesting feature of a surface-driven thermohaline circulation is the extreme
asymmetry between rising and sinking regions. Whenever conditions produce sur-

face water dense enough to sink to the bottom, it does so and spreads over the

bottom.
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Thermohaline circulation and its role in the general dynamics of currents were
investigated at the early stages of development of oceanography. The following
question was energetically posed at the time: What type of circulation, wind-driven
or thermohaline, plays the dominant role in the total circulation? Now, it is known
that both types are important and that they are related to each other. This makes
the analysis of ocean currents more complicated that that of atmospheric motions.

The observed effects of thermohaline forcing (which directly governs the density
of the ocean waters) and mechanical forcing lead to formation of the resultant field
of density of the world ocean. The density field, thus formed, determines the pres-
sure field. However, it is impossible to divide the ocean circulation into wind-driven
and thermohaline since the motion components are generated by different, but in-
terdependent, factors. The resultant currents cannot be represented by a simple
linear superposition of thermohaline and wind-driven currents even if they could be
separately determined by some method. The interaction of wind-driven and ther-

mohaline forcing in the generation and maintenance of the ocean currents has not

been investigated sufliciently.

1.5 Objectives

In considering the thermohaline circulation, it is natural that the advection of
heat and salt by the circulation or their combined effect, density changes, is central
to the problem and cannot be neglected. Therefore, the model used must be so-
phisticated enough to account for active thermodynamics and the salinity structure.
Examples of this are the Occan General Circulation Model (OGCM) and the U.S.
Navy layered ocean model for which tremendous computational effort and hence

huge quantities of supercompnter time are needed. An alternative way to study the

thermohaline structure is as follows:
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Formulate and modify a model from a nonlinear, reduced gravity model which
has been used successfully to study two preferential cyclonic ocean eddy generation
sites along the California coasts (Liu and O’Brien, 1995) and to investigate the
variations in the thermocline depth of the northeast Pacific ocean during 1970-1989
(Meyers et al. 1995). In contrast with the models which assume a constant density
in a layer, horizontal variations in the upper layer density are considered. This
assumption instantaneously leads to the thermohaline forcing which is not included
in the above mentioned models. On the other hand, oceanic tomography data imply
both wind-driven and thermohaline information. In this study, an effort is made to
develop a method to estimate the density field as well as the thermohaline structure
in the upper Northeast Pacific ocean, from a simple model associated with acoustic

tomography data, using variational data assimilation.



2. DATA ASSIMILATION

With respect to the problem of assimilating observations into numerical ocean
models, a variety of different methods already exist, most of them originally devel-
oped in meteorology. An extensive review of these methods can be found in Ghil
and Malanotte-Rizzoli (1991) and Le Dimet and Navon (1988). Data assimilation
methods can be classified as (a) function fitting methods (b) statistical interpola-
tion methods (c) nudging data assimilation and (d) variational (adjoint) methods.
The latter method is described in detail in the following section, but first, the other
methods are introduced.

In function fitting methods (a), which are the early data assimilation methods,
the idea is to expand the data misfit in terms of some interpolating functions. The
observations and the first-guess are weighted with prescribed weights that decrease-
with distance from the observation (Bergthorsson and Doos, 1953). Cressman filters
are a commonly used meteorological assimilation technique. Neither knowledge of
the statistical property of the data nor a numerical model is used. Comprehensive
studies of these methods, together with their historical perspective, are provided by
Thicbaux and Pedder (1987), and Daley (1991).

The statistical interpolation methods in (b) include both optimal interpolation
(OI) methods and Kalman filter methods. The OI methods, which combine the
model field and the observed data to estimate the correct field in a way consistent
with the estimated accuracy of each of the two, are the most commonly used methods
in major forecasting centers. The OI scheme requires knowledge of spatial error
covariances for the model field and the observations. since the weights needed to

minimize analysis error depend on these covariances (Gandin 1963; Lorenc 1931,

1986).

9
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The Kalman filter represents a sequential assimilation procedure. It is based
on the statistical concept of optimal interpolation. That is, at each observation
time, the Kalman filter (Kalman 1960, 1961) optimally interpolates between the
model forecast and the observations to obtain a new state vector with reduced error
covariance. This state is subsequently used as the initial state for the model to
compute a forecast for the next observation time. By repeating this assimilation
cycle and keeping track of the error covariance of the model state in a sequential
manner, the model absorbs the information of the sequence of observations step-by-
step (Cohn, 1982; Ghil et al., 1981). The crucial point is that for this technique to
be optimal, the time evolution of the covariance matrix of the model errors must be
computed. Neither the forecast error covariance matrix nor the observation error
covariance matrix are known. It is the corresponding computational cost which, for
present purposes, rules out the use of the Kalman filter.

In (c), nudging data assimilation (NDA) (Anthes 1974), which is called optimal
nudging data assimilation in the work of Zou et al. (1992c) and Wang (1993)
combines the aforementioned data assimilation schemes in an efficient way. The
original idea of optimal nudging data assimilation was put forward by Le Dimet.
A parameter-estimation approach is used in the framework of the variational data
assimilation algorithm to simultancously determine the best initial conditions for
numerical weather prediction (NWP) and optimal coefficients for the NDA scheme.
The goal is to find the best initial conditions and optimal nudging coefficients which

hest assimilate the given observations.

2.1 Optimal Control: Theory and Application

The data assimilation problem can be stated in a general sense as the determi-
nation of the model evolution which is the closest solution to the observation. This

is equivalent to looking for the parameters which optimally fit to the observation.



11

2.2 History and Background of Variational Calculus

The development of variational calculus in the seventeenth and eighteenth cen-
turies was motivated by the need to find the minima or maxima of rapidly varying
quantities. Many early applications of this calculus were to the problems of classical
mechanics where they provide attractive alternatives to Leibniz and Newton. The
appeal of variational procedures is that they consider a system as a whole and do
not deal explicitly with the individual components of the system. Thus, it is possible

to derive the behavior of a system without the details of all the interactions among

its various subcomponents.

2.2.1 A formal definition of optimal control

A system which is defined by some variable X is conidered . The system also
has some input described by a variable U/. The output of the model, which can be
observed, is defined by O. It is assumed that, once the input has been fixed, the

state of the system is uniquely defined through a relation:

F(X,U)=0 (‘2.1).
from which the output is given by another function

G(X,0)=0 (2.2)

Therefore, O is an implicit, function of U/ through X thanks to [Eq. (2.1)] and
[Eq. (2.2)]. Oy is a given state belonging to the spaces of the model output, 0. We
may state the problem as follows:

How can U/ (the control variable) be acted on in such way that the resulting
output O will be as close as possible to O4, an estimation of the proximity between
O and Oy as some cost functional J. The problem of optimal control is to determine
the 7" leading to the best adjustment of a solution of the model to the observation.

If such a controlled " exists, then it will said to be optimal.
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In order to solve this problem, most of the time a scheme of the following form

will be used:

o Frame the problem in an adequate mathematical context, especially

if the state of the system belongs to an infinite dimensional space.
e Characterize the optimal control U~.

e Derive numerical algorithms to implement the optimal control.

2.2.2 Variational method

As one of the most classic and elegant methods in physical and mathematical
sciences and as a powerful tool of optimization and numerical analysis, variational
calculus has been employed in many areas of the geosciences, including meteorology,
oceanography, hydrology and geophysics within the last few decades to interpret and
assimilate geophysical data and to simulate geophysical phenomena.

The theoretical aspect of variational calculus is comprehensively described in the.
book by Courant and Hilbert (1953) and in other mathematical physics books and
it is not repeated here.

The variational approach consists minimizing the distance between a model so-
lution and available data, usually to be distributed in space and time. The measure
of the distance is called the cost function. Sasaki (1969, 1970a, b) first introduced a
number of variational techniques whereby the imposed constraints are satisfied only
approximately, not exactly. In particular, a cost function can be defined so that
the solution does not have to obey the dynamics of the model exactly by adding a
term that measures the model error as in the representer method (Bennett, 1992).
The minimization of the cost function gives rise to the weak constraint minimization
problem. When the solution is required to satisfy the model exactly, it is referred

to as strong constraint minimization. By integrating a nonlinear model forward
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in time, followed by a backward integration of an (non-homogeneous) adjoint lin-
earized system forced by the observations, the cost function can be reduced. By
defining the cost function as an inner product, Lions (1971) showed that the result
of the backward integration of the adjoint model to initial time, is the gradient of
the cost function with respect to the control variables, e.g. the initial conditions in
his case. He also pointed out that a descent method can be used to iterate toward
the minimum of the cost function.

The first application of variational methods in meteorology was pioneered by
Sasaki (1955, 1958). Stephens (1966, 1968), Sasaki (1969, 1970a, 1970b, 1970c) and
others have given a great impetus towards the development of variational methods
in meteorology.

In the strong constraint case, control theory has been used to develop a compu-
tationally efficient method called the adjoint method. Control theory is a branch of
mathematics developed to solve optimization problems of functionals such as those
arising from the variational formulation.

The optimal control methods may be mathematically described by

ngn J(U) (2.3)
FU,X)=0 (2.4)

where F(I/, X) is the dynamical constraint; the cost function J(U/}) is defined as

J(U) =/JHI O(X) = Oy |2dS (

[
N
=

where X denotes the various prognostic fields, O the output, Oy the local obser-
vations of O over £. O(X) in [Eq. (2.5)] is equivalent to the implicit function,
G(X,0)=0in [Eq. (2.2)]

The classical variational approach of 6.J = 0 leads to the Euler-Lagrange equa-

tions which also depend on the constraint F(U7,X) or the model equations. In a series
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of basic papers Sasaki generalized the application of variational methods with either
the strong or the weak constraint formalism in meteorology to include time varia-
tions and dynamical equations in order to filter high-frequency noise and to obtain
dynamically acceptable initial values in data void areas. In all these applications,
the Euler-Lagrange equations were used to calculate the optimal state. Stephens
(1970) derived the general form of Euler-Lagrange equations with a coupled PDE
system of a mixed type of well-posed initial-boundary value problems. There are also
so-called Augmented Lagrangian methods which consider both a strong constraint
and a weak one (Navon and de Villiers, 1983) to prevent numerical instabilities.

Variational data assimilation solves the Euler-Lagrange equations by directly
minimizing a cost function measuring the misfit between the model solution and the
observations with respect to the control variables.

It is well-known that solving the above constraint problem [Eq. (2.1) and
Eq. (2.2)] is very difficult or sometimes impossible. Introducing an inner prod-
uct (.,.) compatible with the norm || .|| into the function space, one defines the

Lagrangian functional (Le Dimet and Talagrand, 1986b)

LU, A) = J(U) + (A, F(U, X)) (2.6)

where A is the Lagrangian multiplier. as the so-called the adjoint method. and
reduces a constrained minimization problem to an unconstrained one. The advan-
tage is that Euler-Lagrange equations can be solved numerically by classical descent

algorithms which are a popular topic in the mathematical optimization literature.

2.3 Parameter Estimation

Parameter estimation is an aspect of data asstmilation. It assimilates the ob-

servation into an atmospheric or oceanic model in order to obtain an estimate of a
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designated model control parameter and, at the same time, to obtain an optimal
state of the atmosphere or the ocean. This process is able to provide an exact con-
sistency between the analysis and dynamics using various kinds of available data
sets.

The unknown parameters of the model can be deduced simultaneously by min-
imizing a cost function that measures the distance between the model results and
observation in which the model parameters are the control variables. The system-
atic application of the variational adjoint methods to parameter estimation prob-
lems in oceanography proceeded with O’Brien and his colleagues. For example, the
barotropic gravity-wave speed in a two dimensional reduced-gravity, linear-transport
model for the equatorial Pacific Ocean was used as a control variable (Smedstad and
O’Brien, 1991). Recently, Kamachi and O’Brien (1995) used a similar model to as-
similate the trajectories of drifting buoys. In the work of Panchang and O’Brien
(1988), the friction coefficient for a one-dimension tidal-flow model was the param-
eter to be estimated from the observations. Yu and O’Brien (1991) sought to use
measurements of the upper ocean currents to determine the eddy mixing coeflicients
in the Ekman layer together with the surface drag coefficient.

A general question with any kind of numerical modeling concerns the sensitivity
of the results to the input parameters of the model. A numerical model can be
described as a process which starts from a set of input parameters and produces a
sel of output parameters. In the case of meteorological or occanic models, which
integrate the equations governing the temporal evolution of ocean circulation. the
input parameters could be the initial and boundary conditions which, in this study.
is the upper layer density. The output parameters are the geofluid fields produced
at successive times by the integration and also the varions quantities which can be

computed from these fields such as energy and potential vorticity.
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The determination of the uncertainty of the model’s output results from the
uncertainty of the input. For instance, the uncertainty on the horizontal transport
U,V and the upper layer thickness h is due to the uncertainty of the density which

is the control variable in this study.

2.4 Uniqueness, Identifiablity, and Stability

It is widely recognized that, whereas there are situations in which the inverse
problem defined below has no solution, there also are many circumstances under
which a meaningful solution is possible, albeit in a limited sense. The important
thing is to recognize the circumstances that may or may not allow solution of the
problem and, if a solution is possible, to impose on it the proper limitations so as to
make it mathematically well-posed and physically meaningful. Achieving this goal
requires clear definitions of the terms uniqueness, identifiability, and stability. In
addition, one must understand how each of these aspects affects the behavior of the
inverse solution and how their adverse effects can be mitigated.

The inverse problem can be defined as follows: let a functional rcla,tionship,.
X = F(p), be given between parameters p which in this case is the density field
and X which represents the state variables of our problem, ({7, V,#)T. The inverse
problem will be to determine the parameter p on the basis of X and the inverse
relationship p = R(X). The problem is said to be well-posed if (1) for every X
there corresponds a solution p (i.e., a solution exists); (2) the solution is unique for
any given X; and (3) the solution depends continuously on X (i.c., the solution is
stable). If the inverse problem fails to satisfy one or more of these three requirements.
it is said to be ill-posed.

Uniqueness can be defined in the following way. If X} = F(p) and Xy = F(p,)

are two solutions of the inverse problem, then

[X1—=Xol[=0&lp—pl =0 (:

8%
-1
—
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where || || represents a norm over the appropriate space. In a practical problem, X
is only given at discrete points in space and in time and R represents a minimization
of a functional J as given in the previous subsection.

While uniqueness refers to the inverse problem, R, identifiability refers to the
forward problem, F. If two sets of parameters lead to the same function X, the
parameters are said to be unidentifiable. Uniqueness, on the other hand, is concerned
with the problem whether different parameters may be found for a given X. If so,
the parameters are non-unique.

Stability can be defined in the following way. For every € < 0 there exists a 6

such that for p; = R(X;) and p2 = R(X;) one has

X7 —Xall <6 [lp—pal <€ (:

|88
oo
~—

[Eq. (2.8)] states that small errors in the variables must not lead to large changes

in the computed parameters.

2.5 Adjoint Method

Adjoint equations, also called backward or top-down differentiation, are the tools
of the theory of optimal control for solving a number of optimization and sensitivity
problems which arise in the general context of numerical modeling of atmospheric
and oceanic circulation. It has been developed in the last twenty years and generally
deals with questions of how to “control” the input parameters of a numerical process
in order to “optimize” its output parameters. The idea of applying adjoint equations
to meteorological problems is by no means new and it was first suggested by J. Lions.

In many situations, one is led to consider a problem whose solution requires, in
one form or another, the explicit determination of a number of output parameters
with respect to a number of input parameters. Among such situations. we can

mention the following ones in particular.
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(1) One wants to solve an inverse problem, i.e. to determine values of the input
parameters corresponding to given (e.g., observed) values of output parameters.
Such inverse problems will normally be solved as an optimization problem, i.e. one
which will determine the values of the input parameters which minimize a prescribed
scalar function of the output parameter of the model (e.g., a function which measures
the fit of the output parameter to observed quantities). A typical example of such
an inverse problem is an assimilation of observations which will be described below.

(2) One wants to determine which of the input parameters was at the origin
of some observed feature in the output parameters. A typical example might be a
situation in which a numerical weather forecast has been erroneous in some respect
and one wants to determine what, in the model physical parameters or in predicting
the rapid deepening of a depression was the cause for the error.

In some situations, one will be interested in the sensitivities of a large number of
output parameters with respect to a large number of input parameters such as the
density field of the upper ocean of the northeast Pacific in this study. In situations
where one wants to determine the gradient of one output parameter with respect to

a large number of input parameters the method of adjoint equations is powerful.

2.6 Numerical Optimal Algorithms

The useful implementation of data assimilation depends crucially upon the fast
convergence of a large-scale unconstrained minimization algorithm. The aim of the
application of variational optimization for this study is to iteratively search for the
set of the parameters that minimizes the cost function, using the knowledge of its
gradient with respect to the control variable.

Since problems in oceanography often contain many degrees of freedom O(10%).
Conjugate-Gradient (C-G) methods (Navon and Legler, 1987) and Limited Memory

Quasi-Newton (LMQN) methods are the only ones under consideration due to the
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fact that only information from the first few iterations can be saved due to huge
memory requirements. For experience and details concerning various algorithms,
see a recent review paper by Zou et al. (1993c).

Shanno and Phua (1980) proposed an extension of the (C-G) method which
requires more vectors of storage and resembles a Quasi-Newton (QN) method and
is a LMQN method. The LMQN method of Shanno and Phua is a two-step LMQN
like the CG method which incorporates Beale restarts. Only seven vectors of storage
are necessary.

LMQN algorithms use the following procedure for minimizing J(X), X € ®™

(1) Choose an initial guess Xo, and Hp, a symmetric and positive definite initial
approximation to the inverse Hessian matrix (Ho may be chosen as the unit matrix).

(2) Compute

9o = ¢(Xo) = VJ(Xo) (2.9)
and set
do = —Hogo (2.10)
(3) For k=0,1,---,n 41, set

Xit1 = Xi + apdy (2.11)

where ay is the step-size obtained by a line search to satisfy a sufficient decrease.

(4) Compute
Jky1 = v.](‘\,k.*.]) ( .

| SV
—_—
(O]
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(5) Check if a restart is needed (see the discussion below).

(6) Generate a new scarch direction, dy4;, by setting

diy1 = = Hiprgi41, (2.13)
(7) Check for convergence: if

lgisill < emar{L, | Xl (2.14)



then stop, where ¢ = 107°. Otherwise continue from step 3.
Step-sizes are obtained by using Davidon’s (1959) cubic interpolation method to

satisfy the following conditions of Wolfe (1968):

J(Xi+ ardi) < J(Xi) + Bargi” i, (2.15)
VJI( Xk + ardi)Tdx
THREBAS S < p (2.16)
i T di

where 8 = 0.0001, and 8 = 0.9.

The following restart criterion is used:
lgkr1 " gx] 2 0.2]|grs ]I (2.17)

The new search direction dy41, defined by Eq. (2.19), is obtained by setting (in
the BFGS Q-N update of rank-2)

meqiT Hy + HeqpiT o Hegre pipn”

Hiwr = Hy - +(1+ : 2.18
i Pl qn pT gk kT qx (213)
If a restart is required, Eq. (2.13) is changed to
disr = —Higra, (2.19)
where pr = Xip1 — Xk and gk = gr41 — gr,
T T T T T
. q q @ ¢ pp
M = (1 - P T G qepen pepe (2.20)

pTq. peTge T g nqe

Here the subscript ¢ represents the last step of the previous cycle for which a

line scarch was made. The parameter 5, = p;Tq:/q: T q. is obtained by minimizing
the condition number H, ' Hy1.

Shanno and Phua's method implemented in CONMIN uses two pairs of vectors,

¢ and p, to build its current approximation of the Hessian matrix. The advantage
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of CONMIN is that it generates descent directions automatically without requiring
exact line-searches as long as (gx,px) are positive at each iteration. This can be
ensured by satisfying Wolfe second condition in the line search. The CONMIN

algorithm is globally convergent with inexact line searches on strong constraint

problems.



3. ESTIMATION OF THE TIME INDEPENDENT DENSITY FIELD

IN THE UPPER NEP OCEAN

3.1 Oceanic Model

In this study, we use a nonlinear, reduced gravity model to simulate the northeast
Pacific Ocean. Due to the large latitudinal extent, spherical coordinates are used
with ¢ (longitude) increasing toward the east and 8 (latitude) increasing toward the
north. The domain for this model is as shown in Fig. 3.1. The actual configuration
of the northeast Pacific Ocean and its topography used is from 18°N to 50° N and
from the west coast of North America to 155°W, the longitude of Hawaii, with %’
(C-grid spacing in both horizontal directions. In the reduced gravity model driven by
observational winds, the ocean is assumed to consist of two layers of slightly different
density (p, p2), with the interface as the thermocline. Similar models have been
successfully used to simulate the ocean circulation of the northeast Pacific Ocean
(e.g., Pares-Sierra and O’Brien, 1989; Johnson and O'Brien, 1989). After modifying
the local phase speed and including the bottom topography in the above models.
Liu and O’Brien (1995) studied the eddy formation sites and eddy migration in the
same area. In another study with same model, Meyers (et al., 1993) investigated the
interannal variations in the thermocline depth of the northeast Pacific ocean during
1970-1989.

The simple models for the wind-driven circulation described above assume that
buoyancy variation plays little or only a passive role in the dynamics. This type
of ocean model is quite successful in representing the basic pattern of the upper

ocean circulation and provides the underpinning of much of the theory of the occan

o
[
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circulation. For climate applications, however, it is the spatial and temporal vari-
ations of the temperature and salinity distribution of the ocean and its capacity
for heat storage and transport that are of primary concern. A fuller understanding
of the wind and thermal forcings of the oceanic flows has gradually emerged only
through a number of studies that either invoke some theoretical approximation to
allow analytical solutions or utilize numerical methods.

It is difficult to determine the thermohaline driven circulation resulting from the
joint effects of heat and salt on buoyancy and the reciprocal effects of the circu-
lation on the distribution of water mass properties for several reasons. First and
foremost is the essential nonlinearity of the system. In considering the thermohaline
circulation, it is natural that the advection of heat and salt by the circulation or
their combined effect, density, is central to the problem and cannot be neglected.
Additional complications in modeling the thermohaline circulation arise from the
nonlinear equation of the state of sea water and the presence of double-diffusive
phenomena. Therefore, this requires that the model which is used would be sophis-
ticated enough to account for active thermodynamics and the salinity structure.
Examples of this are the Ocean General Circulation Model (OGCM) and the Navy
layered ocean model for which tremendous effort and huge quantities of supercom-
puter time are needed. An alternative way to study the thermohaline structure is
as follows:

We use mass continuity and the momentum equations as the the governing equa-
tions for the numerical model. In contrast with most layer models which assume a
constant density in a layer, we allow horizontal variations in the upper layer density
[p = p(¢,0)] which are treated as model parameters that can be estimated through
tomographic assimilation using the variational adjoint method. This assumption in-
stantanconsly leads to the thermohaline forcing which is not included in the above

mentioned models (the detailed derivation is in Appendix A).
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The fluid is of the Boussinesq type, which allows the neglect of density variations
in the momentum equations except when coupled with gravitational acceleration,
and to assume the Auctuations in the density are the result of thermal effects (Spiegel
and Veronis, 1960).
The variables U = uh and V = vh are the transports in the east and north di-
rections, respectively, where (u(0, #,t),v(0, ¢,t)) are the depth-independent velocity
components in the upper layer and h(8, ¢,t) is the upper layer thickness (ULT).

The model equations are:

U 1 9 (U?\ 18 /UV\ 2tan0 UV
: = — — _9 . 7
E, ot + acos90¢( ) ( ) (—) — 2Qsin 01

h )T ad0\ h a \h
1 —tan?4d 2tanf OV
- I J — i
A[A(L )+ a? a?cos 0¢]
L B - (o0 = 0 (321)
po  2acosfp,0¢ P2 PRI | = i
ov 1 o /UV 10 [v? tanf U? - V?
g o= VL 9 (UVy 1ofr) et 20sin O
b at +a00500¢( h )+a00(/z) a ( h )+ 20sin 0l
1 —tan?d 2tan 0 U
-4 [A(V) + a? a?cos %]
70 g

0 ) .
| (G (3:22)

oh 1 [ou 0
o= gt ——=lo + 55(Veosl) = 3.2:
£ ol + acosﬂ[a(b + 0()(‘ Coso)] 0 (3:23)
where
A [ 0 1 92 d
V=22 L % a2 3.2
AAL) a? ((?02 + cos? 0 Qp? moao) (3:24)

Ais an eddy viscosity coefficient, « is the radius of the Earth, and € is the Earth’s
rotation rate. The wind stress is 7(¢, 9, ¢) = (7%(¢,0,t),7%(6,0,t)) = Cypa|ju|ju..
where u,(¢, 9, t) is the surface wind, Cy is a drag coefficient and p, is the air density.
Monthly average pseudo-stress was obtained from COADS monthly mean climato-

logical winds and interpolated to the model grid. A linear temporal interpolation






