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ABSTRACT

The mesoscale variability along the southwest coast of Mexico is studied using
sea surface height satellite altimeter observations and the Naval Research Laboratory
Layered Ocean Model. The study is divided into three parts: The formation and fate of
El Nifo/Southern Oscillation (ENSO) related eddies, the existence and genesis for
anticyclonic eddies near Cabo Corrientes, and the life cycle of the Tehuantepec eddies.

Investigation of ENSO related eddies indicates that during strong warm ENSO
events the upper ocean circulation along the southwest coast of Mexico is destabilized.
The effect of ENSO appears as three distinct stages. First, a coastal jet characterized
by strong vertical shear flow develops. Second, the shear flow strengthens, increasing
both its horizontal dimension and the amplitude of its oscillations. Finally, the jet
becomes unstable and breaks into anticyclonic eddies, which separate from the coast
and drift southwestward. The genesis and strengthening of the jet is due to the
simultaneous occurrence of the poleward-flowing currents along the southwest coast
of Mexico and the poleward circulation associated with warm ENSO events.

Examination of the generation of anticyclonic eddies near Cabo Corrientes
indicates that the arrival of downwelling coastally trapped waves at Cabo Corrientes
corresponds to intensification of local currents. The interaction of these intensified
currents with the coastline geometry generates anticyclonic eddies. Comparison of

different numerical simulations suggests that the bottom topography and the local
X1ii



wind are not responsible for the eddy generation. In contrast, the coastline geometry,
most notably the cape at Cabo Corrientes, causes the formation of eddies. The
existence and timing of the modeled eddies are validated with sea surface height
altimeter observations and temperature hydrographic data.

Analysis of the life cycle of the anticyclonic eddies generated in the Gulf of
Tehuantepec suggests that: The interannual variability of the number and strength of
the Tehuantepec eddies is directly related to the El Nifio-La Nifia cycle. These eddies
migrate ~5000 km, weakening (decreasing their maximum sea surface elevation) and
disappearing when exposed to the cyclonic shear between the North Equatorial
Current and the North Equatorial Counter Current. Outside of the equatorial region,
the Tehuantepec eddies are the most energetic signal in the Eastern North Pacific

Ocean.



1. INTRODUCTION

A peculiar characteristic of oceanography is that the locally observed processes
are not always completely explained in terms of local factors. In fact, they are often
elucidated in light of processes that originate far away in time and space, and have the
ability of be transmitted through the ocean. Ocean waves are one of the better
examples of this oceanic remote forcing.

Equatorial oceans are natural wave laboratories where waves in all frequencies
and scales can be generated. Some of these equatorial waves propagate eastward until
they reach the eastern boundary coast, which may be used as a new wave-guide to
continue a freely coastally trapped poleward propagation. In some cases, the
propagation can be of thousands of kilometers [Figure 1; Moore, 1968; Cane and
Sarachik, 1977; Busalacchi and O’Brien, 1981; Clarke, 1992; Ripa, 1997]. In our
particular case of the Northeastern Pacific Ocean, specifically the southwest coast of
Mexico (12° N-23° N), there are several different topographic changes, coast-line
variations, and ocean currents regimens that modify the characteristics of the freely

poleward propagating coastally trapped waves.
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Figure 1. Latitude-time section of sea surface height anomaly (in
centimeters) measured by TOPEX/Poseidon (T/P) along the 200 meters
isobath along the North America West Coast. The latitudes of the T/P
observations are indicated by the open circles. Note how the 1997-1998 El
Nifio event shows up as a coherent signal from the equator to the high
latitudes, and how the signal starts to decay at the latitudes of the Baja
California Peninsula (23° to 32° N).



The first obstacle (progressing northward from the equator and along the
Pacific Coast) is found at the Gulf of Tehuantepec (with center close to
94.5°W-15.5°N). There, the continental shelf changes abruptly from a wide shelif to a
narrow shelf (Figure 2). Thus, when the coastally trapped waves arrive to at Gulf of
Tehuantepec topographic discontinuity, some of them will be transmitted through the
narrow shelf and some will be reflected [Ripa and Carrasco, 1993]. Nevertheless, for
low frequency waves (i.e., periods of few years) the Gulf of Tehuantepec topographic
discontinuity poses no obstacle.

The next coastal area where the tropical waves can be altered is found from the
northwest of the Gulf of Tehuantepec to the southeast of Cabo Corrientes
(105.6°W-20.3°N) (Figure 2). In this case, the poleward-flowing local coastal
currents can couple to the currents generated by the coastally trapped waves and
produce a strong coastal vertical shear flow, which can destabilize and break into
eddies (section 3). Continuing their northward propagation the waves interact with the
topographic variation that starts close to Cabo Corrientes. There is a transition from a
narrow to a wide shelf, the coastline changes its orientation from northwest to
approximately eastward, and the Maria Islands Archipelago works as an extension of
the continental shelf (Figure 2). The arrival of downwelling coastally trapped waves at
Cabo Corrientes corresponds to the intensification of the local currents. The
interaction of these currents with the coastline geometry generates anticyclonic eddies
(section 4). The effect of the next coast-line-topographic obstacle, the Gulf of

California, is not included in this study. Equatorial generated waves are evidence of
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Figure 2. Continental shelf bottom topography (color contours in meters)
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and how the Maria [slands work as an extension of the continental shelf.
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the existence of oceanic remote forcing that contributes to the mesoscale variability
along the southwest Coast of Mexico. In contrast, the Gulf of Tehuantepec strong
intermittent winds are an example of atmospheric remote forcing.

The processes that generate the Gulf of Tehuantepec winds are reasonably well
understood. The North American cold season is characterized by cold fronts traveling
southward, and the route of these fronts is sometimes determined by continental
topography. For example, when the cold fronts arrive at the Gulf of Mexico they find
that the Sierra Madre Mountains are a natural barrier. These mountains do not allow
cold fronts to travel freely over the Mexican mainland. However, this barrier is broken
by a low-altitude, narrow mountain gap, Chivela Pass, which runs north-south from
the Gulf of Mexico’s Bay of Campeche to the Pacific Ocean’s Gulf of Tehuantepec
(Figure 3). The resultant pressure gradient drives strong winds along the mountain
pass. On the south side of the pass these winds can be intense, with maximum gusts
around 60 m/s [Stumpf, 1975]. These winds are locally referred as “Nortes” (meaning
northerly), but they are frequently referred to in scientific literature as
“Tehuantepecers” or “Tehuanos”. They blow offshore across the Gulf of Tehuantepec
coast, favoring strong nearshore oceanic mixing, intense lowering of sea surface
temperatures, and the generation of anticyclonic eddies [Hurd, 1929; Roden, 1961;
Stumpf, 1975; Clarke, 1988; McCreary et al., 1989; Lavin et al., 1992; Fiedler, 1994;
Trasvifia et al., 1995]. Satellite altimetry observations reported in this study indicate
that the anticyclonic eddies generated at the Gulf of Tehuantepec can travel

approximately five thousand kilometers westward (section 5).
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Bourassa et al. [1999].



Ocean eddies can be extremely long lived marine systems that have the ability
to migrate thousands of kilometers transporting water, heat and energy and playing an
important role in the biota concentration and related fisheries. Thus, in addition to the
physical intrigue of the problem by itself, it is interesting to study the generation and
evolution of the southwest coast of Mexico eddies for fisheries and the related
biological processes [Blackburn, 1962; Robles-Jarero and Lara-Lara, 1993; Firber-
Lorda et al., 1994; Lukas and Santiago-Mandujano, 2001].

This work is devoted to the study of the oceanic and atmospheric remote
forcing effects on the southwest coast of Mexico. The results presented in sections
three and four are being reported for the first time. It is hoped that this piece of work
contributes to initiate a new line of research dedicated to study the mesoscale
variability off the southwest coast of Mexico.

This dissertation is organized as follows. Section 2 includes a description of
the model and data utilized. In section 3 a generation hypothesis of a strong coastal jet
and anticyclonic eddies is presented and validated using the results of a numerical
ocean model and satellite altimetry observations. Section 4 includes observational and
numerical evidence about the anticyclonic eddy generation on Cabo Corrientes. In
section 5 the eddies generated in the Gulf of Tehuantepec are studied. A link between
the interannual variability of the number and strength of the Tehuantepec eddies and
El Nifio-La Niifia cycle is presented. Finally, the conclusion section draws together the
results of this entire study. Sections 3, 4, and 3 are intended as stand-alone reports and

thus contain their own introductions and conclusions.



2. THE MODEL AND DATA

2.1 The Numerical Model
The Navy Layered Ocean Model (NLOM) has been extensively documented
by Wallcraft [1991], Hurlburt and Metzger [1998] and references therein. Here we
give a brief description of the hydrodynamic version of the model used in this study.
The equations solved for each of the n-layer in the model are:
v,
ot

+ ma'x(o’—wk—[ )G k-1 [max(O, @y, )+ rnax(O, @, )}‘7 et max(O, ), )‘7 k+1 (D
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Where, k=l1....n if it refers to layers, and £=0.....n if it refers to interfaces between
layers with k=0 at the surface. Details about the parameters and notation in (1) and
(2) are provided in appendix A. Equations (1)-(2) are solved numerically in the Pacific
Ocean model domain that extends from 20°S to 62°N and from 109.125°E to
77.2031°W. The eddy-resolving (1/16° resolution in latitude by 45/512° in longitude),
non-linear model is characterized by a semi-implicit time scheme, Arakawa C grid,

and a free surface. In addition, it includes six isopycnal layers, realistic bottom
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topography and coastline geometry. The last two features are based on a modified
version of the 1/12° ETOPOS bottom topography [NOAA, 1986]. The ETOPOS5 data
set was interpolated to the model grid and twice smoothed using a 9-point smoother.
The idea of smoothing is to reduce energy generation at smaller scales that are poorly
resolved by the model [Leonardi et al., 1999]. The model geometry is determined by
the 200 meters isobath, the minimum depth in the model, which represents the
nominal shelf break. The amplitude of the topography above the maximum depth of
6500 meter was multiplied by 0.8 to confine it to the lowest layer. Layer thicknesses
and densities where chosen in accordance with the Levitus’ [1982] climatology.
Another important characteristic of the model is isopycnal outcropping that is
incorporated by entrainment from the layer below whenever a layer becomes thinner
than a prescribed minimum thickness. Mass is conserved within the layers so that an
accumulation of entrainment mass in one layer is balanced by an equal amount of
detrained mass elsewhere in the model domain [Shriver and Hurlburt, 1997]. The
model boundary conditions are kinematic and no slip.

The latitudinal extension of the model domain (20°S-62°N) has the purpose of
allowing equatorially generated signals (i.e. coastally trapped Kelvin or related waves)
to influence the northeast Pacific Ocean. The roles of these waves as eddy generation
mechanisms are analyzed in two locations along the Mexican west coast (sections 3
and 4).

Wind stress is the only external forcing in the simulations reported here. Initial
conditions were taken from an ocean state snapshot that corresponded to a 1/8°

resolution previous simulation. Then, the model was spun up to statistical equilibrium
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using Hellerman and Rosenstein [1983] (H/R) monthly wind stress climatology. Next,
the integration already spun-up was forced by 12-hourly 1000 mbar winds from the
European Center for Medium-Range Weather Forecasts (ECMWF) [ECMWF, 1994]
from 1981 to 1996. Thus, interannual variability is also present in the numerical
experiment. The 1981-1996 ECMWF temporal mean was replaced by the annual mean
from H/R to produce a hybrid wind set (ECMWEF/HR), as reported by Metzger et al.
[1994]. The last authors determined that a more realistic mean state could be obtained
in the ocean model by using the hybrid wind set. Consequently, the annual mean
solution would still be driven primarily by the H/R data, but seasonal and interannual
forcing would come from ECMWF.

Of particular importance in the study included in section 5, the eddy generation
and migration (partially) depends on the accuracy of the wind used to force the model.
The ECMWF/HR winds incorporate the seasonal strong intermittent Gulf of
Tehuantepec winds, which permit the model to reproduce the observed eddies’
generation and migration. The results reported in section 5 validate the use of the
ECMWE/HR wind set to force the model to study the Gulf of Tehuantepec eddies
generation and propagation. In the case of ENSO related and Cabo Corrientes eddies,
their generation mechanics are explained in terms of tropically generated waves rather
than local wind forcing. Consequently, precise ECMWF winds over the equatorial
Pacific would generate the tropical waves that are crucial for the eddy generation
mechanics discussed in sections 3 and 4.

The minimum depth in the model (200 meters) could be a questionable

limitation for the application of the model on a broad continental shelf. However, that
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is not the case for our area of study. For example, in the Gulf of Tehuantepec area the
winds affect a region that consists mostly of deep waters [Figure 4; Trasviiia, el al.
1995]. Moreover, the shelf is broad off Central America and up to the Gulf of
Tehuantepec, but rather narrow off mainland Mexico [Figure 2; Badan, 1998]. In
addition to this main simulation in section 4 we used several other different
simulations (which are described there) to isolate the crucial elements on the Cabo
Corrientes eddies generation.
2.1.1 Model Large-Scale Circulation

The large-scale circulation off Mexico’s Pacific coast is mainly influenced by
the North Pacific Anticyclonic Gyre and by the equatorial circulation system [Wyrtki,
1966; Badan-Dangon et al. 1989]. NLOM long term climatological seasonal mean
currents (Figure 5) were generated to compare them with the observed wind-driven
seasonal patterns (Figure 6). In general, the model reproduces all the major currents.
From the north the California Current dominates the circulation off the Baja California
Peninsula. It leaves the coast around 22°N, feeds the North Equatorial Current and
usually reaches its maximum southward penetration in April. From the south the North
Equatorial Counter Current feeds the Costa Rica Coastal Current, which flows
poleward off mainland Mexico until around the mouth of the Gulf of California. More
details about this coastal current are provided in sections 3 and 4. The model contains
several different coastal circulation characteristics that are not included in the
observations. Nevertheless, this is an expected result because “no direct measurements
of the Costa Rica Coastal Current exist; the presence of the current is inferred mostly

from the large-scale hydrography” [Badan, 1998]. In any case, this short model-data
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Figure 4. Bottom topography (color contours in meters) used by NLOM.
Depths shallower than 200 meters are indicated with white color. The arrows
represent the NASA scatterometer (NSCAT) wind field on December 17,
1996. The length of each arrow is proportional to the wind speed. Note the
offshore winds off the Gulf of Tehuantepec (GT) and the weak upwelling
favorable winds along the coast just west of the Gulf.
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