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ABSTRACT
The seasonal predictability of mean temperature and precipitation is evaluated for a
version of the National Centers for Environmental Prediction (NCEP) Medium-Range
Forecast (MRF) climate model (see appendix). Hindcasts of 3-month climate forecasts
with a 10-member ensemble are made 1979-1999 at a 2-month lead time. Initial
conditions are updated yearly. A simple diagnostic approach is taken to determine the
ability of the model to predict seasonal temperature and precipitation patterns. Special
attention is given to the ability to forecast patterns associated with EI Nino Southern
Oscillation (ENSO) and Arctic Oscillation (AO).

Ensemble mean temperature is shown to have a cold bias in the eastern United
States, especially around the Great Lakes and Northeast, and there are cold biases in the
Southwest. Model precipitation rates are higher than observations throughout the
country. The only exceptions are along the northern Gulf coast and a narrow strip along
the Pacific coast.

Prediction of temperature and precipitation anomalies associated with ENSO was
poor but better for cold than for warm events. For cold events, temperature anomalies
were forecasted well, although the magnitude of the anomaly differed in different
regions. Precipitation anomaly predictions were poor for some events but improved over

warm events for others. For warm events, anomaly patterns for both parameters on
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warm events for others. For warm events, anomaly patterns for both parameters on
average were poorly represented in the model, although for some individual events

anomalies were predicted accurately. With regard to the Arctic Oscillation, the model
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showed no skill in predicting patterns associated with negative and positive events. This
result suggests the model is unable to predict or maintain low frequency modes in the
atmosphere.

Finally, anomaly correlations for both seasonal mean temperature and
precipitation were low with no regions of correlations greater than 0.5. Skill scores
calculated in comparison with climatology are negative almost everywhere, indicating
that model forecasts for both parameters are not an improvement over climatology.
However, skill scores calculated in comparison with persistence show improvements in
the Great Plains and Pacific Northwest for temperature and the northern Gulf states and

California for precipitation.



1. INTRODUCTION

The climate of the U.S. varies on time scales ranging from monthly to decadal and
longer. The ability to predict these changes is a challenge presented to the climate
community. The goal is to create models that can accurately forecast climate variations.
A consistently high degree of accuracy in seasonal forecasting is needed if a global
climate model is to be a useful tool. Previous studies (e.g., Kumar et al. 1996) have
shown that given accurate forecasts of certain long-lived boundary forcings useful
seasonal climate predictions can be made for both the tropics and extratropics.

The difficulty in seasonal predictions is that given a particular state of ocean sea
surface temperatures more than one atmospheric state is possible. Therefore, small
changes in physical parameterizations in a General Circulation Model (GCM) can yield
significantly different large-scale flows and model sensitivity to boundary forcing as
shown in previous studies (e.g., Palmer and Mansfield 1986; Meehl and Albrecht 1991).
From this fact, the claim can be made that a GCM containing improved sensitivity to
boundary forcing offers the best chance for accurate climate predictions (Kumar et al.
1996).

Before implementation of a GCM, its accuracy in predicting seasonal variability
should be investigated. This investigation uses climate simulations and hindcasts, which

are compared to observations. In order to achieve an accurate comparison, a large enough
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are compared to observations. In order to achieve an accurate comparison, a large enough
sample size must be used to decrease internal variability and model noise. Because

seasonal atmospheric responses are sensitive to initial conditions, an ensemble of model



integrations is made with identical boundary forcings as done in Kumar et al. (1996).
Evaluating a GCM’s ability is not straightforward; therefore only through averaging over
many cases of similar boundary forcing can the predictable signal be identified (e.g.
Kumar et al. 1996). Ensemble averaging acts to reduce the influence of random internal
variability, and the ensemble mean shows the region where the observed anomalies are
more likely to occur (Kumar and Hoerling 1995, 2000).

In our experiment, a 10-member ensemble of the NCEP MRF climate model is
investigated in order to determine skill in predicting winter (JFM) mean temperature and
precipitation patterns over the U.S. The goal of the study is to examine the model’s
ability to predict seasonal patterns, not to investigate the model’s physical
parameterization or to suggest possible changes. Comparisons are made for seasonal
means, extreme events, and as a function of ENSO and AO phase. ENSO and AO are
two of the leading patterns of natural climate variability. It has been argued that skill in
climate forecasting will come from an ability to forecast these patterns (Higgins et al.
2000). The AO was used in this study and not the North Aflantic Oscillation (NAO),
because Thompson and Wallace (1998) showed that the AO accounts for a substantially
larger fraction of the variance in Northern Hemisphere surface air temperature than NAO.

Because seasonal prediction is viewed as a boundary forcing problem instead of
an initial value problem, atmospheric initial conditions are largely ignored. Though not
proven, the possibility exists that atmospheric initial conditions can have impacts on
seasonal prediction. In this new seasonal prediction system, atmospheric initial

conditions are included. The initial conditions include both high and low frequency
SCasLLIdl PIEUICUOon. 1N LIS NEw seasonal prediction system, atmospheric nitial

conditions are included. The initial conditions include both high and low frequency

components. Examples of the low frequency modes are the Pacific North America



(PNA), NAO, and AO. If the model is capable of predicting or maintaining low

frequency modes then atmospheric initial conditions may be of importance (Kanamitsu et
al., in press). The model’s ability to predict these low frequency modes is another reason

AO patterns are examined in this study.




2. MODEL AND OBSERVATIONAL DATA

a. Model Data

In our study, 21 hindcasts of the model were made from 1979 to 1999. The model
is a coupled ocean-atmospheric model with 10 ensemble members. The lead time is two
months, and initial conditions, both atmospheric and oceanic, are updated yearly. For the
10 member ensemble used in this study, the corresponding initial conditions are chosen
from 5 days prior to the beginning of the month at 12 hour intervals. Because JFM is the
season and the lead time is two months, the initial conditions are from October 27-31 at
00Z and 12Z. The model has T621.28 resolution with output on a 2.5° x 2.5° grid. The
major forcing of the model is a Pacific Ocean basin GCM that covers the domain 45° S-
55°N and 120° E-70° W. A more detailed description of thé model is given in the

appendix.

b. Observations

NOAA/NCEP Climate Prediction Center (CPC) provided the observations used in
our study. The data for mean temperature and precipitation are observed station data

from 1979-1999 over the U.S. placed on 1.0° x 1.0° grid.
our stuay. 1he gata ror mean temperature and precipitation are observed station data

from 1979-1999 over the U.S. placed on 1.0° x 1.0° grid.
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ENSO and AO, classifications of ENSO and AO events were needed. The ENSO

In order to investigate the model’s ability to predict patterns associated with

classification is subjective and based on the pattern and magnitude of the SST pattern in
the equatorial Pacific. Some of the processes involved are described in Rasmusson and
Carpenter (1983) and Ropelewski and Halpert (1987) for warm episodes and Ropelewski
' and Halpert (1989) for cold episodes. Table 1 shows the classification of years into
ENSO warm, cold, or neutral events.

The AO classification is also provided by CPC. 1t is based on the Thompson-
Wallace methodology (Thompson and Wallace 2000). The indices classified by CPC and
Thompson-Wallace methodology have a 0.99 correlation, so they are virtually identical.
The AO indices were normalized as in equation (1) (Wilks 1995).

Normalized AO = XTX

M

s

where x is each individual seasonal index, X is the mean from 1979-1999, and s is the
standard deviation of all x. Normalized values greater than 0.5 were considered positive
AO events, and normalized values less than —0.5 are considered negative AO events.
Figure 1 shows the yearly values of normalized AO index, and Table 2 lists the AO

classification.




Table 1. Yearly classifications of ENSO warm, neutral, and cold events from JFM 1979-
1999 based on the pattern and magnitude of SST anomalies in the tropical Pacific.
Classifications of ENSO events are by NOAA/NCEP Climate Prediction Center.

Warm Events Neutral Events Cold Events
1983 1979-1982 1989
1987 1984-1986 1999
1992 1988
1998 1990-1991

1993-1997
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Figure 1. Yearly JFM values of normalized AO index from 1979-1999. Using equation
1, AO values were normalized. Normalized values greater than 0.5 are considered
positive events and normalized values less than —0.5 are considered negative events.

There are 5 positive events, 7 neutral events, and 9 negative events.



Table 2. Yearly JFM classifications of AO positive, negative, and neutral events from
1979-1999. Seasonal AO indices were provided by NOAA/NCEP Climate Prediction
Center. AO values were normalized using equation 1. Normalized values greater than
0.5 were considered positive events, and normalized values less than —0.5 were
considered negative events.

Positive Events Neutral Events Negative Events

1989 1982-1984 1979
1990 1986 1980
1992 1988 1981

1993 1991 1985
1997 1994-1995 1987
1999 : 1996

1998




3. DATA PROCEDURE

The model outputs analyzed are daily maximum and minimum temperature and
daily precipitation rate. Daily mean temperatures are obtained by combining the
maximum and minimum temperatures. For both mean temperature and precipitation the
single ensemble average is obtained by averaging the 10 ensemble members. The
differences in mean temperature and precipitation between each ensemble model run are
small, meaning the internal variance (i.e. ensemble spread) of the model is small, and
therefore the differences between the model and observations are caused by external
variability. Once the model ensemble data are placed in a single continuous daily record
from 1979-1999, it could be compared to observations. Comparing the forecasts to
observations requires the two datasets to be at the same resolution or grid spacing, so
both datasets are regridded to 0.25° x 0.25° resolution.

For extreme events, gridded model and observed data are also ranked from high to
low. The top and bottom 1%, 5%, and 10% were compared for mean temperature but
only the top 1%, 5%, and 10% for precipitation (precipitation is not normally distributed,
and the most common occurrence is no precipitation). For ENSO and AO comparisons,
model and observed averages were computed for all years that fell into a particular
category (i.e., all ENSO warm events were averaged). Model ensemble anomalies are

obtained by comparing seasonal forecasts to model climatology from 1979-1999, and
calegory (1.€., all BINDU warm events were averaged). Model ensemble anomalies are

obtained by comparing seasonal forecasts to model climatology from 1979-1999, and

observed seasonal anomalies are obtained by comparing seasonal observations to



observed climatology from 1979-1999. Comparing the data in this fashion eliminates
any inherent biases in the model or observed data.

Other statistical metrics are used, such as root-mean-square error (RMSE),
anomaly correlation (AC), and skill score (SS). The equations used are standard for
verifying data sets and can be found in Wilks (1995). Like the ENSO and AO, model
forecasts are compared to model climatology and seasonal observations are compared to
observed climatology.

The equations are:

RMSE = \/iz(y ~0,)’ @

m=|

where M =21, y=individual seasonal forecasts of variable y, o= individual seasonal

observations of variable y, and m = each individual event of the variable y,

M

D[ = C,)M0, = C,)]
AC ©)

[Z(ym - Cm )2 2(0", — Cm)z ]I‘/2

m=] m=1

where C, = the climatological value of the variable y_ in (y, —C,)and o, (o, -C,),

m

RMSE ,,
SS =100« (1-——2=) “4)
RMSE,,,
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4. RESULTS

We begin our evaluation of the model forecast by computing the ensemble mean
over the 21-year period. The model (Fig. 2) has a cold bias throughout the Northeast, the
Mid-Atlantic, the Great Lakes states, and in the southwest along the Rocky Mountains.
The biases are greater than 2°C per day throughout much of New England, as well as
Ohio and Michigan. Small regions of warm bias are located in the northern Great Plains
and Florida.

The regions of largest bias correspond well to the regions of largest RMSE (Fig.
3). Because RMSE include biases in the mean and errors in the variance or spread, the
strong similarities between Figs. 2 and 3 indicate that these biases are fairly persistent
and not skewed by a few large errors.

The model precipitation rate (Fig. 4) is higher than dbservations across most of
the U.S. Only along the Pacific coast and along the northern Gulf is the model not
positively biased. The bias in most places is less than 2 mm/day except in the Pacific
Northwest, where biases are greater than 2 mm/day and as much as 4 mm/day. The
precipitation rate is highest in the Pacific Northwest for the winter season (Fig. 6). The
two areas in the mean that show no positive bias (along the Pacific coast and northern
Gulf) have large RMSE errors (Fig. 5). The large RMSE are most likely due to errors in

the spread of the data and may be a result of errors in extreme events. Though the model
UuII) nave large KIViSL errors (r1g. d). 1ne large KMSE are most likely due to errors in

the spread of the data and may be a result of errors in extreme events. Though the model

11
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Figure 2. Average daily mean temperature bias (°C) of model ensemble compared to
observations for 21 year record. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. Negative biases are located in the Northeast,
Great Lakes, and Southwest, while a positive bias is located in the northern Great Plains.
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Figure 3. Seasonal mean temperature (°C) RMSE of model ensemble compared to
observations for 21 year record. The areas containing the largest errors correspond match
the regions with the largest biases in the mean.
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Figure 4. Average daily precipitation rate bias (mm/day) of model ensemble compared to
observations for 21 year record. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. Positive biases are present throughout the
country except along the northern Gulf and Pacific coasts.
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Figure 5. Seasonal daily precipitation rate (mm/day) RMSE of model ensemble compared
to observations for 21 year record. Errors are small (less than 1.5 mm/day) for most of
the country except in the Pacific Northwest and the Mid-Atlantic. Areas in the mean that
show no positive biases have large RMSE.
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Figure 6. Average daily precipitation rate (mm/day) of model ensemble and
observations for 21 year record. Though the model produces higher precipitation
rates almost everywhere, the spread of precipitation and which regions receive the
most and least precipitation is represented well.
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has a positive bias, it does well in representing which regions receive the largest and
smallest amounts of precipitation during the winter season (Fig. 6).

The model has difficulty producing extreme events (i.e. events for the 1%, 5", 10",
90", 95™ and 99" percentiles). The problem is expected; because climate models are
known to have less variance in their spread, as a result the amplitude of the ensemble
forecasts tends to be less than observations. The highest model daily temperatures at the
90™, 95" and 99" percentiles (Fig. 7) are lower than observations everywhere by at least
2°C and as much as 8°C. However, at the cold extremes the model temperatures are
higher than observations by at least 2°C and as much as 10°C for most of the country
(Fig. 8). The differences between the model warm and cold extreme events and observed
values are opposite but not always of similar magnitudes. For example, in the warm bias
region over the northern Great Plains (Fig. 2) for the warm extreme events (Fig. 7) the
model has negative values ranging from -2°C to -6°C, while for the cold extreme events
(Fig. 8) the model has positive values greater than 6°C throughout. A similar but
opposite pattern exists for the cold bias in the Northeast. The differences in producing
extreme cold or warm events may help increase the magnitude of the cold and warm
biases in the ensemble mean, but since the biases are both extremes they indicate the
biases are consistent throughout. The analysis of extreme events and RMSE indicate that
biases in the mean may be persistent throughout the spread.

For extreme precipitation events (Fig. 9), the model does well at the 90"
percentile, showing only small biases, but by the 99" percentile the model has a negative

bias across the entire eastern half of the U.S. and the Pacific coast by as much as 12
pereenute, suowlilg Ollly silldll D1dses, DUl DYy Lie v percen[ue e moaeit nas a ana[lVC

bias across the entire eastern half of the U.S. and the Pacific coast by as much as 12

mm/day. However, the two regions that show strong negative biases at all three
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percentiles are along the northern Gulf Coast and the Pacific Coast. The lack of extreme
events in these regions helps explain the large RMSE in the regions, and why no positive
bias exists in the mean pattern.

As stated earlier, for a GCM to be useful, it must be able to predict major climate
variations like those associated with ENSO. The period 1979-1999 contains four major
warm events and two major cold events (Table 1).

Average seasonal anomalies for mean temperature for the warm events are shown
(Fig. 10). Observations show the traditional El Nino pattern, which is warm temperatures
along the northern half of the country and cool temperatures in Florida and the Desert
Southwest. The model (Fig. 10) depicts some warming in the Northeast and Great Lakes,
but the warm anomalies are 4-8 times smaller than observations. The model actually
shows cold conditions in the Pacific Northwest and failed to produce the cold anomalies
in Florida and the Southwest. The modeled precipitation pattern also shows significant
bias (Fig. 11). In regions where positive anomalies are present in observations (e.g.,
California and the deep south) the model has negative anomalies.

Individual analysis of the 1992 and 1998 warm ENSO events are shown in Figs.
12-15. Model temperature anomalies for the 1992 event are negative and completely
opposite of the observed positive anomalies (Fig.12). The precipitation rate anomalies
for the 1992 event correlate well with observations (Fig. 13). The model produces
similar positive anomalies along the Gulf Coast and similar negative anomalies in the
Mid-Atlantic, Northeast, and Pacific Northwest. For the 1998 warm event, the model and

observed patterns show warm anomalies through the eastern half of the country. The

1YLIU=AALIaiity, 1NULUITAadL, alld L avlllv INULUIWESL. L6 Ule 1YY0 WdIIll evenl, UIe ImMoaegl anda
observed patterns show warm anomalies through the eastern half of the country. The

only opposite anomalies are in the Pacific Northwest and Desert Southwest (Fig. 14), but
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Figure 10. Average daily mean temperature anomalies (°C) during ENSO warm events
for model ensemble and observations. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. The model shows warm anomalies in the
Northeast and Great Lakes region, but the magnitudes are much smaller.
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Figure 11. Average daily precipitation rate anomalies (mm/day) during ENSO warm
events for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. The model fails to produce the

positive anomalies in the Southeast.
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Figure 12. Average daily mean temperature anomalies (°C) during the 1992 ENSO warm
event for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. The model shows negative
anomalies everywhere which is the opposite anomaly pattern shown in the observations.
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Figure 13. Average daily precipitation rate anomalies (mm/day) during the 1992 ENSO
warm event for model ensemble and observations. Positive regions are outlined with
solid lines and negative regions outlined with dashed lines. The model produces similar
positive anomalies along the Gulf Coast and similar negative anomalies in the Mid-
Atlantic, Northeast, and Pacific Northwest.
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Figure 14. Average daily mean temperature anomalies (°C) during the 1998 ENSO warm
event for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. The model and observed patterns
show warm anomalies through the eastern half of the country. The only opposite

anomalies are in the Pacific Northwest and Desert Southwest.
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Figure 15. Average daily precipitation rate anomalies (mm/day) during the 1998 ENSO
warm event for model ensemble and observations. Positive regions are outlined with
solid lines and negative regions outlined with dashed lines. The model fails to produce
the positive anomalies along the east coast and California and fails to produce the

negative anomalies in the Pacific NW and Ohio River valley.
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Figure 16. Average daily mean temperature anomalies (°C) during ENSO cold events for

model ensemble and observations. Positive regions are outlined with solid lines and

negative regions outlined with dashed lines. The positive anomalies for the eastern half
of the country are represented well, but the negative anomalies along the west coast and

extreme northern Great Plains are not produced.
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Figure 17. Average daily precipitation rate anomalies (mm/day) during ENSO cold
events for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. Negative anomalies are produced
in the Deep South and Florida, but the positive anomalies in the Ohio River valley are not
represented in the model.
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for precipitation the model fails to produce the positive anomalies along the east coast
and California and fails to produce the negative anomalies in the Pacific NW and Ohio
River valley (Fig. 15).

Cold ENSO temperature anomalies (Fig. 16) correlate better with observations
than those of warm events. Similar positive anomalies appear from the East Coast to the
Central Plains, although the magnitudes are smaller for the model. Observations show
negative anomalies along the Pacific Coast and the Northwest, and the model shows no
significant patterns (i.e. anomalies greater than |0.25|) in these regions. In fact, no
regions of negative anomaly correlations are present. For precipitation (Fig. 17), the
model produces negative anomalies similar to observations in the Deep South, Florida,
California, and the desert southwest, but it fails to produce the positive anomalies along
the Ohio and Mississippi River valleys.

The results of the ENSO analysis indicate the model’s ability to produce ENSO
patterns, on average, is limited. But the analysis of the individual events suggests that the
model may have the ability to produce similar anomaly pattérns of certain variables for
an individual ENSO event. Errors may come from the forecast of SST anomalies in the
Pacific Ocean basin or model sensitivity to the SST anomalies.

Like ENSO, the AO is a major controller of wintertime climate patterns
(Thompson and Wallace 1998; Higgins et al. 2000). In the 21 years of record used in our
study, five positive and seven negative AO events occurred (Table 2). Temperature and
precipitation anomalies associated with AO positive events are shown in Figs. 18 and 19.

For temperature (Fig. 18), the traditional observation pattern of warm temperatures
PLOLIpLAalULL alluLIdLISs assutIdicd Wil AU POSIIVE €vents are shown 1n rigs. 18 and 1Y.

For temperature (Fig. 18), the traditional observation pattern of warm temperatures

throughout the eastern half of the U.S. is not found in the model average. In fact, the
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model produces negative anomalies over most of the country. For precipitation (Fig. 19),
only two regions have significant patterns in observations; negative anomalies along the
northern California coast and positive anomalies in the Mississippi River valley from
eastern Texas to Kentucky. Negative anomalies are present in the Pacific Northwest
instead of California, and a small positive region shifted to the Deep South.

The model AO negative anomalies for temperature (Fig. 20) fails completely in
producing the cold anomalies throughout the majority of the U.S. For precipitation (Fig.
21), the model again shows no ability to produce the anomalies associated with AO
negative conditions. These results suggest that ocean temperature anomalies in the ocean
model are poor. They also suggest an inability of the model to maintain low frequency
atmospheric modes. The model’s inability to produce the positive precipitation
anomalies along the East Coast during AO negative events, which are representative of
the higher number of winter storms along the coast, is particularly problematic.

Anomaly correlations are calculated so similarities in anomaly patterns can be
detected. This is a very important test for a GCM, because t'he model’s role is to predict
higher or lower values compared to average for the variable of interest. Using equation
3, AC was calculated on a seasonal basis. Correlations for seasonal temperature and
precipitation (Figs. 22 and 23) are poor. Anomaly correlations less than 0.5 imply no
useful skill. In fact, for precipitation many of the anomaly correlations are negative,
indicating that model and observations show opposite anomaly patterns.

Using equation 4, skill scores were computed. Skill scores show areas where the

model forecast is superior in comparison to some reference value, such as climatology or
Using equation 4, skill scores were computed. Skill scores show areas where the

model forecast is superior in comparison to some reference value, such as climatology or

persistence. The improvement is a percent improvement over the reference (e.g., a SS of



10 means the forecast is a 10% improvement over the reference). For our study, both
climatology and persistence were used as reference values in computing the SS. SS, with
climatology as the reference, for mean temperature (Fig. 24) shows almost no regions are
present where the model is better than climatology, but because we are examining
seasonal forecasts we expect seasonal differences to be small so persistence is probably
the better comparison. Persistence was used as the reference to calculate SS for mean
temperature (Fig. 25). This calculation shows the model outperforming persistence for
the Central Plains and some other small regions in the country. SS for seasonal
precipitation rate using persistence as the reference (Fig. 26) shows an improvement in
California and in the northern Gulf states. Skill scores for precipitation using climatology

were calculated but showed no regions where the model outperformed climatology.
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Figure 18. Average daily mean temperature anomalies (°C) during AO positive events for
model ensemble and observations. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. The model fails to produce the positive
anomalies that occur in the observations.
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Figure 19. Average daily precipitation rate anomalies (mm/day) during AO positive
events for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. The positive anomalies in eastern
Texas and the Mississippi River valley and shifted in the model to the Deep South and
into the Carolinas.
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Figure 20. Average daily mean temperature anomalies (°C) during AO negative events
for model ensemble and observations. Positive regions are outlined with solid lines and
negative regions outlined with dashed lines. The model fails in producing the negative
anomalies present over most of the country.
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Figure 21. Average daily precipitation rate anomalies (mm/day) during AO negative
events for model ensemble and observations. Positive regions are outlined with solid
lines and negative regions outlined with dashed lines. The model fails to produce the
positive anomalies present in the eastern half of the U.S.
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Figure 22. Seasonal mean temperature anomaly correlations from 1979-1999. Regions of
correlations of 0.5 or higher are areas in which the model demonstrates skill in predicting
anomalies. Correlations of 1.0 represent perfect forecasts. Positive regions are outlined
with solid lines and negative regions outlined with dashed lines. Positive anomaly
correlations are located in the northern Great Plains and the Northeast, but all values are
less than 0.5.
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Figure 23. Seasonal precipitation rate anomaly correlations from 1979-1999. Regions of
correlations of 0.5 or higher are areas in which the model demonstrates skill in predicting
anomalies. Correlations of 1.0 represent perfect forecasts. Positive regions are

outlined with solid lines and negative regions outlined with dashed lines. There are no
large regions of positive correlations, and no values greater than 0.5 are present.
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Figure 24. Skill score (100 ¢ (1 - (RMSEforecast / RMSEclim))) for seasonal mean
temperature versus climatology. Values greater than zero are regions in which the model
forecast is an improvement over climatology. Values are a percent improvement of the
model over climatology. There are no large regions of values greater than zero.
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Figure 25. Skill score (100 ¢ (1 - (RMSEforecast / RMSEpersistance))) for seasonal mean
temperature versus persistence. Values greater than zero are regions in which the model
forecast is an improvement over persistence. Values are a percent improvement of the
model over persistence. Positive skill scores are located in the Central Plains and the
Pacific Northwest.
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Figure 26. Skill score (100 ¢ (1 - (RMSEforecast / RMSEpersistance))) for seasonal
precipitation rate versus persistence. Values greater than zero are regions in which the
model forecast is an improvement over persistence. Values are a percent improvement of
the model over persistence. Positive regions are located along the northern Gulf Coast
and California.

41



5. CONCLUSIONS AND DISCUSSION

The ability of a version of the NCEP MRF climate model to predict NH winter
seasonal temperature and precipitation patterns over the U.S. was examined and assessed.
The examination was based on the model’s ability to produce, on average, the mean
seasonal temperature and precipitation, as well as those associated with each phase of
ENSO and the AO.

For mean temperature, the biases in the seasonal average are consistent with
regions of highest RMSE indicating that the biases are fairly persistent, and therefore
forecasts can be adjusted to include these biases. The model’s ability to produce extreme
events was poor. This fact is expected because the model has a low resolution and
climate models are known to have less variance in their spread. The anomalies for
temperature were negative at the warm extreme events and pbsitive at the cold extreme
events. Analysis of the extreme events and RMSE indicate that the biases are persistent
throughout the spread. For precipitation, the model produced a positive bias everywhere
except along the Pacific coast and along the northern Gulf states, where no anomalies
were present. But these two regions had large RMSE and a lack of extreme events in the
model indicating that the lack of extreme events may be responsible for the small biases
in the mean.

Clearly, the most problematic result of this study is the model’s very poor skill in
1n e mean.

Clearly, the most problematic result of this study is the model’s very poor skill in

predicting the effects of major climate controls ENSO and AO. Because ENSO and AO
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have their greatest influence on the U.S. during the winter season, the model’s poor
forecast ability is more troublesome.

On average, skill in predicting ENSO events is limited. For individual events,
the model was able to forecast one variable well, but the other variable for the same
ENSO event was forecasted poorly. Boundary forcing from the predicted SST anomalies
or model sensitivity to the SST anomalies may be responsible for the errors.

The inability to forecast patterns associated with AO shows that the model is
unable to predict or maintain low frequency modes in the atmosphere. Large systematic
errors, which distort the low frequency part of atmospheric variability, may be the reason
for the lack of impact from atmospheric initial conditions. Errors in height anomalies
and/or pressure fields poleward of 20° N, especially in the North Atlantic, may be
responsible for the poor results.

Seasonal anomaly correlations were poor for both variables. In fact, no region
shows a value greater than 0.5, which is the significance level for stating skill in the
forecast. Skill scores calculated against climatology and peréistence underscore the
model’s difficulties. Climatology is a better predictor than the model almost everywhere
for mean temperature and everywhere for precipitation. The model does perform better
than persistence over certain regions for both parameters. But, it is not as large or

widespread of an improvement, as we would have hoped for in an operational model.
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APPENDIX

Model Description

The GCM used in this study is the new version of the NCEP seasonal forecast
model. The new dynamical prediction system was introduced in April 2000. A second
generation of the model was made to further improve the coupled system to refine
wintertime prediction.

The dynamical framework is based on the spectral method of Kanamitsu (1989).
The reduced grid of Williamson and Rosinski (2000) was recently incorporated saving
computer resources by about 30% at T62. The resolution is T62L.28 meaning about 200
km horizontal resolution and 28 vertical layers.

The land model in the new system is based on the Oregon State University land
model (Pan and Marht, 1987). Two soil layers are present aﬁd both soil temperature and
water content are predicted. Canopy water content is predicted, and simple snow physics
is also included.

The ocean model is a Pacific Ocean basin GCM covering the domain 45° S-55° N
and 120° E-70° W. The horizontal resolution is 1.5° in the zonal direction, while in the
meridional direction the resolution is 1/3° between 10° S-10° N and increases linearly to
1° between 10° and 20° N and S then 1° poleward of 20° N and S. The ocean model is

coupled to a T42 (about 300 km) atmospheric model. In the coupling, the total SST from
1¥ between 10~ and 20° N and S then 1° poleward of 20° N and S. The ocean model is

coupled to a T42 (about 300 km) atmospheric model. In the coupling, the total SST from
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the ocean is given to the atmosphere, and the momentum, heat, and fresh water fluxes
from the atmosphere force the ocean model.

For atmospheric initial conditions, the model uses real-time T62L28 atmospheric
analysis from the operational data assimilation (Kanamitsu, 1989). Both high and low
frequency components of atmospheric initial conditions are incorporated. Some low
frequency modes are incorporated. Land surface initial conditions, such as snow depth
and soil wetness, are also included. The soil wetness is derived from a land hydrology
model.

Ocean initial conditions are obtained from an ocean data assimilation system. In
the system, in situ subsurface ocean temperatures from NOAA’s operational ENSO
observing system and SST and sea surface height variations observed from satellite
platforms are assimilated.

The coupled model integration is a 2-tier approach. First, the coupled ocean-
atmosphere model described above is used to predict SST anomalies over the tropical
Pacific. The SST forecast obtained is used as the lower bouﬁdary condition to force the
seasonal atmospheric model, which produces the seasonal forecasts.

From here the 10 ensemble forecasts are made with the first 5 days of the month
at 12 hour intervals as the corresponding initial conditions.

For more information regarding the model and model processes please refer to

Kanamitsu et al. (in press).
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