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Abstract

A variational-adjoint analysis technique is used to assimilate both
meteorological and oceanographical observations with the aid of a
modified oceanic Ekman layer model. By fitting the model results to the
data, the unknown boundary condition (wind stress) and the unknown
vertical eddy viscosity distribution can be deduced simultaneously from
the data, and an optimal estimate of the current field can be obtained as
well.

The variational-adjoint analysis is conceptually simple. It
provides a practical procedure for handling the data in a systematic,
quantitative way. The wind stress and eddy viscosity are varied until a
cost function, which measures the misfit between the model results and
the observations, is minimized while the model equations are treated as
strong constraints. The best fit is determined by a system which consists
of a dynamical model and a corresponding adjoint model driven by the
model-data misfit. The Lagrange multipliers calculated from the
adjoint model transform the information about the data misfit into the
gradient of the cost function, which then determines the amount that
the wind stress and eddy viscosity should be changed. Thus, the misfit
can be reduced and the cost function can be modified toward its optimal

value.

can be reduced and the cost function can be modified toward its optimal

value.
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Four identical twin experiments are performed in which the
"observations" are created by the dynamical model. The fast
convergence and the excellent results promise that the variational-
adjoint method is a feasible approach for data assimilation.

The field measurements from LOTUS-3 are also used in our
study. The results show that, though the model is simple, the
variational assimilation technique is capable of extracting useful
information from the available observations. The wind stress and eddy

viscosity estimated are all in their own reasonable ranges.
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1. Introduction

An understanding of the direct inference of wind stress and
turbulent mixing using meteorological and oceanographical datasets
can help us to illucidate the dynamics of the upper ocean currents. Most
existing numerical models, though they have become very sophisticated
in recent years, normally prescribe a specified wind stress and
turbulent parameterization, in order to simulate the ocean. Usually
there is no direct information about the observed currents so these
numerical models are not capable of using the observations to estimate
the wind stress and eddy viscosity distribution.

The purpose of this paper is to demonstrate how the variational-
adjoint technique can use a modified Ekman equation to simultaneously
deduce the wind forcing and the eddy viscosity distribution from
observed data. The variational-adjoint analysis technique, which derives
from the optimal control theory (Lions,1971), provides a practical
procedure for handling the observed data in a systematic, quantitative
way. The basic idea is to define a cost function which is a sum of the
squared discrepancies between model results and data and treat the
dynamical model as a strong constraint (Sasaki,1970). The resulting
functional is minimized by finding its gradient with respect to an
unknown wind stress parameter and unknown eddy viscosity profile.

Descent algorithms such as conjugate gradient or quasi-Newton are

UNKNoOwn wina StresSs parameter and unknown eaaqy viscosSily Pproi1iie.

Descent algorithms such as conjugate gradient or quasi-Newton are
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implemented to iterate towards the optimal state. The wind stress
parameter and eddy viscosity are computed by fitting the model results
to the data, and an optimal estimate of the current fields is obtained as
well.

The problem of finding the minimum of the cost function with the
dynamical model as a constraint is referred to as a constrained
problem. A systematic approach for solving problems of this type is to
define an Augmented Lagrange function by using undetermined
Lagrange multipliers to enforce the model constraints. The introduction
of Lagrange multipliers greatly simplifies the derivation of the gradient
of the cost function. The minimum of the cost function coincides with a
saddle point of the Augmented Lagrange function. The condition that a
saddle point exists is equivalent to the condition that the gradients of the
Augmented Lagrange function with respect to the model variables
vanish. This yields the adjoint equations from which the Lagrange
multipliers are calculated. The Lagrange mﬁltipliers transform the
model-data misfit into the gradient of the cost function, which then
provides the information to adjust wind forcing and eddy viscosity.
Hence, the misfit can be reduced and model results can be modified.

Meteorologists have long concentrated on using the variational
method for weather forcasting by adjusting some initial state of the
model. Recently, Derber (1985) and Lewis and Derber (1985) have applied
the variational-adjoint technique to multi-level quasi-geostrophic

forcasting models. Their results promised the feasibility and usefulness

the wvariational-adjoint technique to multi-level quasi-geostrophic
forcasting models. Their results promised the feasibility and usefulness

of this approach. Le Dimet and Talagrand (1986) have presented a
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general formalism for the use of the variational-adjoint analysis in the
context of data assimilation. The numerical experiments which were
performed on a one-dimensional nonlinear equation showed satisfactory
convergence of the optimization process. This technique was also
utilized by Hoffman (1986), Talagrand and Courtier (1987), Courtier and
Talagrand (1987), and Lorenc (1988) for four-dimensional data
assimilation. For a review of the development of the variational and
optimization methods in meteorology, see Lorenc (1986) and Le Dimet
and Navon (1989).

The last few years have also seen more investigations in utilizing
the variational method in oceanography. Thacker and Long (1988) have
described the variational-adjoint method for a model fitting process in a
simple equatorial wave model to calculate optimal initial conditions in
order to fit simulated observations. Fitting a model to inadequate data is
also discussed in Thacker (1988). Wunsch (1987, 1988) has analyzed the
oceanic transient-tracers data by an optimal control method, and has
demonstrated its advantages in the case of time-dependent data.
Panchang and O'Brien (1988) have determined the bottom stress in a
channel flow problem by the variational-adjoint equations approach.
Smedstad (1989) has implemented an efficient conjugate-gradient
algorithm to improve the convergence rate of the variational method. He
used island sea level data to determine the basic stratification of the
equatorial Pacific ocean. Tziperman and Thacker (1989) have presented

adding error estimations to an adjoint formalism. This information has
equatorial racific ocean. ‘'I'ziperman and ‘L'hacker (1Y8Y) have presented

adding error estimations to an adjoint formalism. This information has

been shown to be very valuable for critically evaluating how well the data
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determine the parameter's values.

Given the measurements of meteorological and oceanographic
fields, the practical procedure of variational data assimilation starts by
defining a cost function which measures the distance between model
results and observations. The cost function is therefore a function of both
the observations and the control parameters (here, wind stress and eddy
viscosity). In the present study, given the initial guesses for the control
parameters, the Ekman model is used to calculate the value of the cost
function. The corresponding adjoint model is then used to calculate the
gradient of the cost function with respect to the control parameters.
Next, a conjugate gradient descent algorithm uses the gradient
information to obtain a new estimate for the parameters, reducing the
value of the cost function. Several iterations of the conjugate gradient
descent algorithm are required to obtain the minimum value of the cost
function, where model results and observations are as close as allowed
by the level of measurements noise. The optimal estimate for the
parameters, in a least-squares sense, is that corresponding to the
minimum value of the cost function.

The methodology is given in Section 2, including the modified
Ekman model description, the variational formalism and the numerical
scheme. Section 3 presents the results obtained using the variational
algorithm. The identical twin experiments are used in which the
"observations" are created by the Ekman model. In Section 4, the

solutions obtained by applying the variational technique to observed

upservarions are created DY TNe KLKmMan model. 1IN DeCTtion 4, tne
solutions obtained by applying the variational technique to observed

meteorological and oceanographic fields are discussed. The data used
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are taken from the LOTUS-3 (Long-Term Upper Ocean Study-3) records.

A summary of the results and the conclusions are given in Section 5.
The derivation of the finite difference version of the equations is

included in an appendix.




2. Problem Specification

2.1 Model Dynamics

Consider a continuously stratified and horizontally unbounded
ocean surface layer with depth H. Take the z-axis vertically upwards,
with z = 0 at the surface, and z = -H at the bottom. The ocean is rotating
about the z-axis, and the Coriolis parameter, f, is taken to be constant.
Neglecting the changes of the ocean surface, the modified Ekman model
is

aat—w+ifw=%(A%—V;) 1.1
where horizontal velocity components u and v (u positive to the east, v
positive to the north) are combined into one complex vector w = u + iv;
the eddy viscosity A(z), which is the parameter to be calculated, is a
function of depth.

Surface and bottom boundary conditions for this upper ocean are

as follows:

At the surface, the forcing is given by the wind stress t = T +ir

(7 in the x-direction, v in the y-direction), that is

P Aaa—vzV = T at z=0 (1.2)
P A%—VZV =1 at z=0 (1.2)
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where p,, = 1.025x10 kg/m3 is the density of water.

The wind stress is calculated from

T=P,Cp | W, | W,

3. . .
where p, = 1.2 kg/m is the density of air; w, is the complex vector of

wind speed; Cpis the drag coefficient. Besides estimating the eddy

viscosity A(z), we estimate the drag coefficient, Cp,i.e., we also adjust

the wind stress by fitting the current observations in an optimal way.

At some depth, we assume no momentum flux; that is

d
Aaizv =0 at z=-H (1.3)

H is not the bottom depth of the ocean surface layer but some
depth of the computational domain chosen by the given ocean data.

The initial condition for this dynamic system is

W =W, at t=0 (1.4)

We are going to determine two parameters, one is the wind stress,

which enters in the upper boundary condition in the dynamic model; the

We are going to determine two parameters, one is the wind stress,
which enters in the upper boundary condition in the dynamic model; the

other one is the eddy viscosity profile, which represents a physical
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property of the flow and varies with depth. For convenience, we use a

nondimensional form of the model.
Since the motions in the upper ocean are dominated by the

1
inertial oscillations, the inertial period O( 7 ) is chosen as the time

scale. We introduce the following nondimensional variables into the

model and the boundary and initial conditions.

' t 1 1

Lot _w z
- Tf’ w —U7 Z_DJ

, A 1 cD 1 Wa
A- =", CD=—, Wa——-—
S, S, U,

2
-1 Sa Pa Ua
where T, =f , D= -, U=(—15s.)
f N 7 Ny

Pw

The typical values of eddy viscosity and drag coefficient are s, =

2 9 -3
5x10 m /sec and s, =1.2x10  respectively.

The nondimensional problem takes the form (after dropping all

primes)

0 . 0 0

%+1W=E(Aa—2) (2.1)
with

with
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0
Aa_vzv =cp |l wol w, for z =0 (2.2)
0 H
AT =0 forz= -3 (2.3)
and
w=w, fort=0 (2.4)

2.2 Variational Analysis

We now apply the variational method to this model problem. A
cost function is constructed first which measures the misfit between the
model results and the data. Our objective is to find the current field
generated by the model such that the departure from the observations is
minimized. Considering the linear dynamics of our model, we choose a

least squares fitting for the cost function. The cost function is defined as

T (w, A cp)=3Ky, | [ w-w?dac+ 3K, T[ (A-A)? dg

tz z

1 A
+5 KTH (cp - ¢p )2 (3)

where the carrot denotes the observations or estimates; the coefficients
K., K, and K, are the Gauss precision moduli controlling the best fits

YWLIITL T LIIT LALLlUL UTLIULTD LI UUDCL YAULLULLID Ul ©DdLiuiauved, LIS LUUCLLIUITCLLILD

K., K, and K, are the Gauss precision moduli controlling the best fits
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for each type of data; The nondimensional parameters T and H

represent the total integration time and depth in the model, respectively.

The cost function (3) is composed of three terms. The first one is
called the data misfit which is the squared difference between the model
solution and the observations. The last two terms measure the closeness
of the estimated parameters to the previous guess. Since parameter
estimation is our main interest in this paper, the added terms represent
prior information about the parameters which increase the chance that
the cost function will be convex and therefore lead to a unique solution.
Thus the model solution resulting from minimizing the cost function
will best agree with the observed data and the new estimate of the
parameters will not deviate far from the previous values. In this sense,
the parameters' initial guess should be as reasonable as possible so that
the optimization process can perform efficiently.

The minimum of the cost function generally is not expected to be
equal to zero, because the observations have errors, and the model is
ideal and, thus its solution is not exactly compatible with the
observations. In the particular case, where a simulated field is used, the
exact consistency between the "observations" and the model dynamics
will make the optimal value of the cost function vanish. The model
solution is expected to completely satisfy the characteristics of the
"observed" field in these test runs called identical twin experiments.

Our next task is to find the correct parameters from the model

equation that optimizes the cost function. The dynamic system described
Our next task is to find the correct parameters from the model

equation that optimizes the cost function. The dynamic system described

by the linear Ekman equation, relates the control parameters, i.e., the
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wind forcing term, to the current field of the system. This defines one set
of constraints. The problem of directly inferring the wind stress from
the measurements of ocean currents is identified as the mathematical
problem of selecting the external forcing so that the resulting model
solution satisfies the functional constraints and minimizes the cost
function. It is a standard procedure to introduce the Augmented

Lagrange function associated with this constrained problem, given as

Low, A e W =d+ | [ 0, Qe fw- 22 atds (4)
t z

where {, } is the inner product of two vectors; A =2  + i\, is the complex

vector of the undefined Lagrange multipliers. (A for the u-component

model equation, A, for the v-component). The model equation represents

a strong constraint according to Sasaki (1970), that needs to be satisfied

exactly. The constrained optimization problem is now replaced by a

series of unconstrained problem with respect to the variables w, A, cp

and A. But not all model variables are independent. The Augmented

Lagrange function allows the independent variables A and cp to vary

while the subsequent variations of the dependent current field are given
by the model equations. The boundary condition does not appear as a
constraint with its own Lagrange multiplier because it enters into the

model equation through the forcing term in the finite-difference

Commm v thaa v T A UAL AU VT AR At s GAaapy AALUAA VA ALAVA  AMUNVLAMALY AU VALUVA L AAAUV UiAv

model equation through the forcing term in the finite-difference

formalism.
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The problem of minimizing the cost function subject to the model

equation becomes a problem of finding the stationary points of the

Augmented Lagrange function corresponding to all variables w, A, cp

and A. This is equivalent to the determination of w, A, ¢, and A under

the condition that the gradient of the Augmented Lagrange function

vanishes, which yields the following set of equations:

AL(w, A, cp, 1)
oL(w, A, cp, M)
ow =0 (6)
AL(w, A, cp, &)
IL(w, A, ¢p, A)
=0 (8)
aCD

Equation (5) recovers the original model equation, while (6)

results in the adjoint equation, given by

oL . 0 oA A
o ikt (A5 )=K (w-w) (9)

Note that we have used the following natural boundary and initial
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conditions when deriving the adjoint equation: the net flux of the adjoint
variable A is required to be zero both at the top and at the bottom of the

chosen computational domain; that is

%:O at z=0 and z=-%

the initial condition is
A=0 at t=T

Comparing with the original model equation, it is worth noting
that the adjoint equation has a similar form to the model equation,
except for two important features. The friction term in the adjoint
equation has the opposite sign than in the model equation. The stability
of the well-posed problem thus requires the integration of the adjoint
equation to be backward in time. In addition, the driving factor for the
adjoint equation is the square root of the data misfit. The Lagrange
multipliers carry the information about the data back to the initial time
to influence the reconstruction of the model state.

Through (7) and (8), the gradient of the Augmented Lagrange
function L with respect to A and ¢y yields the equations

A 1
¢p=p +KC—THJ(|wa|uaxuz=0+|wa|vaxvz=0)d«: (10)
t
A 1
¢p = Cp +KCTHJ(|wa|uax”=0+|wa|vax”=0)dr (10)

t
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A=A+ KT W*'Eg)dt (11)

a

N
(az
t

These are the equations for the control parameters.

Equations (9) - (11) can be simplified if we define

=K,

the three Gauss precision moduli K, K, and K are replaced by K, and

K,. In general, if one has n precision moduli, the number can be

reduced to n-1 by scaling. Rewriting equations (9) - (11) (dropping all the

primes)
oA . 0 oA A
¥+1X+£(A‘a7)=(w-w) (9"
A 1 .[ '
ep=Cp + TR ) (1Walty g g +1W 1 ¥ Ay g ) dE (1)
t
A=A+ ‘a;ﬁ*'ﬁﬁ)dt (119
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There are six unknowns u(z,t), v(z,t), A(z), cp, A, (z,t) and A (z,t),

and six equations (2), (9'), (10") and (11'), so the system is closed. The

parameters A(z), /(\:D, T, H, K, and K, must be specified. The numerical

scheme used to solve this optimal control problem will be described in

the following subsection.

2.3 Numerical Method

In solving equations (2) and (9') - (11') the numerical model is
formulated using a finite difference discretization on a grid with spatial
increment Az and temporal increment At. Its vertical structure is
schematically shown in Figure 1. The w points are staggered in space
with the A points. The equations are integrated in time using an
implicit scheme (O'Brien, 1986).

The finite-difference form of (2) is

n+l n n+l n n n n+l n+1
WJ - WJ W_] + W_] 1 Wj—l - W_] Wj-l - WJ
A T o e T A AT Az
n n n+l n+1
Wi - Wi Wi - Wi
A Az AT A )=0 (12.1)

forall j=1,2, ...... ,J andn=0,1, ...... , N - 1.
forall j=1,2, ...... ,J andn=20,1, ...... ,N-1.

with boundary conditions
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=1 z=0
=2

j=J

j=J+1 z=-H

Figure 1 Diagram for the vertical structure of the numerical model
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n n
Wo-Wi
n n P
AlT =cp lw,l wy (12.2)
n n
W7- Wil
Aj Ay, =0 (12.3)
forn=1,2, ... ,N-1
and initial condition
0
Wi = W (12.4)
forj=1, 2, ...... ,d
where w? is the complex vector of the current velocity at grid z = - jAz
and t = nAt.

Rearranging the terms in equation (12.1) and applying the
boundary condition properly to the equation, the evolution of the new

state w over the time step At is given by

" n+l ' ' n+l ' n+tl .  n+l
Ay win L+ A+ AW - Ay Wi+ TaW;

= A wig+(1-A - AW + AL Wi - dow) (13.1)

For j = 1, the equation takes the form

For j = 1, the equation takes the form
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' n+1 " n+l .  n+l
Q1+A)w; - AAwyg + iaw,

1 ! 1)
n n . n n _n n+l  n+l
=(1-A) wy + Agwy - 1wy + o (IW, [ W +|W, |W, )

(13.2)
For j = J, the equation is
- Awa}fll + (1 + A; )er]l'+1 + iocw?;l
= Ay wig + (1- Ay wy - iaw] (13.3)

1 At . At !
whereAj=’2EAj»f0rJ=1’2’ ...... ,J;(XZE anch=%cD.

Separating equation (13) into two components u and v and
combining them to form the matrix

B q"'=C_q"+F" (14)

m

where the column vector q is comprised of all the u and v components;

the column vector F represents the forcing term and the 2JX2J matrices

B, and C_, are constant with time. Their respective forms are as follows
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(0| _c'D(lw: ul + |W:” u™h|
up 0
q"= ui = ° 1|, n+l
vl CD(‘W: vi+ IWL” v
Vy 0
V5 i 0 1
B - R, -—aol o - R al
m al 9{+ m -l 92_

A, -A, 0' 0
-A2 1+A2+A3 -A3 0
0
0

0 -Ay, 1+AJ_|1+AJ -AJl
i 0 0 -AJ 1+AJ_

U -AJ_1 1+AJ_|1+AJ -AJI
I 0 0 -AJ 1+AJ_
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oy 8 :
Ay 1-Ay-Ag Ay O
0
R_= Aj1-A-ALy AL
0
Aga BB by Ay
] 0 0 Ay 1-AJ_

Equation (14) is a linear dynamic model with the state vector q,

the forcing vector F and the dynamical operators B, and C_ . It is clear

that through the finite-difference form the boundary condition is

connected to the current field W? at any point j and n. Therefore, the

forcing term serves as an updating of the current field and its own value
is updated at each iteration also.

The cost function (3) in the discretized version can be written as

N J
An 2
I, Ay e =3 K, Y Y - Asat +

n=1 j=1

J
1 A2 1 A
KT Y (4y-4)) Az +5K.TH (cp- )0 (15)

+5K T, (A-A) A2+ 5K TH (¢p-cp)’ (15)

=1
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Applying the finite-difference scheme to the adjoint model (9) and

following the same procedure as for the dynamical model, the adjoint

model is transformed into the matrix form

n+l

n n+l
BxA = CxA -D (16)

where the column vector A consists of all the Lagrange multipliers A
and A,; the column vector D stands for the data misfit; the 2Jx2J

matrices B, and Ck are the transpose of B, and C_. They can be

expressed as:

A ] [At(u? - "]
Ano At(u; —13)
O Do - | Attug—1aj)
AL, At(vy —v3)
A | At(vy—¥]) ]
R ol R, —al
B, =| -
S =i =]

The discretized form of the equations for calculating the control

Navarnitana A Aaend A Aan mternem 2 1N LA 710N

The discretized form of the equations for calculating the control

paramters, A and cp, are given in (17) and (18)
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A 1 1 1 1
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1 1
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With the equations (14) - (18), our procedure for using the

variational method to solve this system can be fully described as follows:

(1)

(2)

(3)

(4)
(5)

(6)

(6)

begin with a best initial estimate for the control parameters A

and cpy .

integrate the model equation (14) forward in time and calculate
the value of the cost function.

compute the data misfits (w - W).

integrate the adjoint equation (16) backward in time.

use equations (17) and (18) to calculate the components of VJ (the
gradients of the cost function) corresponding to A and ¢y with

solutions for A and w from steps (2) and (4).
with the gradient information, apply the unconstrained

minimization descent algorithm to obtain the new values of A

with the gradient information, apply the unconstrained

minimization descent algorithm to obtain the new values of A
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and c, simultaneously.

(7) check if the convergence criterion

IVII/1VI 1< 107

for the minimization process is satisfied, where VJ is the value

at the initial iteration.

(8) return to step (2) if the optimal solution is not found.

This minimization determines the best fit of the data when the
optimal solution is approached. Many different minimization methods
are available (Gill et al., 1981). The method we used is the limited-
memory quasi-Newton conjugate-gradient method, which is
implemented in the Shanno and Phua's (1980) CONMIN algorithm. The
conjugate gradient algorithm is superior to the steepest descent
algorithm, as has been shown in many papers. When dealing with the
well-conditioned problem, the conjugate gradient method provides fast
functional reduction within the first few iterations. For linear
dynamics, its convergence should be achieved in at most M iterations,
where M is the number of the control variables. In fact, the rate of
convergence depends to a large extend on the quality of the observations.
Noisy observations poorly reflect the model dynamics, so the conjugate
gradient method will converge slowly and all M iterations will be needed

to obtain the required accuracy.



3. The Variational Analysis Technique Applied to a Simulated Current
Field
In this section, four identical twin experiments are going to be
discussed to demonstrate the feasibility of utilizing the variational
analysis to estimate the wind forcing, as well as, the eddy viscosity
distribution.

The model parameters in the dimensional form are chosen as
Az =10 m
At = 30 minutes

-4 -1
f=10 S

total model integration time T = 10 days

data extension depth H = - 100 m

The scaling parameters D and U are calculated from (2) by using

these values
3
p, =1.2kg/m
3 3

P, =1.025x10 kg/m

2 2
s,=50x10 m /sec

2 2
s,=50x10 m /sec

24



25

s,=12x10"
U, = 10 m/sec

The identical twin experiments obtain "observations" from the
forward run of the original dynamical model. Thus, the data produced
correspond exactly to the model dynamics. Figure 2 shows the eddy
viscosity profile used in the model integration to create the
"observations". The initial state of the system is at rest. Three sets of
wind data are employed to simulate the current field, a constant
westerly wind, a sinusoid wind and a random wind observation.

In order to test the variational algorithm, experiments 1 and 2
start by estimating only the eddy viscosity (assuming that the wind
forcing is known exactly). The third experiment calculates the wind
stress and the unknown eddy viscosity distribution simultaneously. This
is a more complicated but more realistic scenario. Finally, we make use
of the wind observation to recover the wind stress along with the

viscosity from the identical twin data by the optimization technique.

3.1 Experiment 1: Wind is uniformly eastward, estimate only the eddy
viscosity profile
In this experiment, the wind stress is assumed to be known

exactly. The identical twin data is generated by a constant westerly wind
with a magnitude of 10 m/sec. The unscaled drag coefficient cp, is set to
exactly. The identical twin data is generated by a constant westerly wind

with a magnitude of 10 m/sec. The unscaled drag coefficient cp is set to
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Figure 2 The eddy viscosity profile used to create the "observations"
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-3
1.9%x10 .

The data assimilation follows the procedure described in section

2.3. The iterative process begins with the constant initial guess of

2 2
0.8x10 2 m /sec for the eddy viscosity. Figures 3a-3c show the values of

the cost function, its gradient and the data misfit (w - \l?\v) versus the
number of iterations in the minimization procedure. All the values have
been normalized by their own initial values to allow a direct
comparision of the convergence rate. As can be seen in Figure 3a, the

normalized cost function drops dramatically in the first couple of

. -3
iterations. After 4 iterations, J/J, has been reduced to 10 ". The norm of

the gradient (Figure 3b) also experiences a sharp descrease in these two

iterations. lgl/lgy,l (lgl represents |VJ| thereafter) reaches the

convergence criterion after 6 iterations. Figure 3d displays the variation
of the eddy viscosity profile during the iterative process. The bold line is
the converged solution. It shows a good approﬁmation to its true value
(see Figure 2). The value of A in the upper 30 meters experiences a
strong correction in the first iteration. This is because the chosen initial
estimation for the eddy viscosity is relatively small compared with its
true value. The current field generated with this value produces a large
data misfit. The Lagrange multipliers computed from the adjoint
model, are being driven by this big data misfit, and, therefore, have a
great effect on the calculation of the gradient of the cost function. Hence,

a better estimation is obtained. Physically, for a given forcing, the value
great effect on the calculation of the gradient of the cost function. Hence,

a better estimation is obtained. Physically, for a given forcing, the value

of the eddy viscosity has to be large enough to transfer the input
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Figures 3a-3b Results from experiment 1. The variation of (a) the cost
function, (b) the norm of the gradient with the number of iterations
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and (d) The variation of the eddy viscosity profile during the iterative

process (the number denotes the iteration)
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momentum downward. The profile changes slowly for the rest of the
iterative process. Since the data misfit is very small after the first
iteration, this indicates that the Lagrange multiplier propagates with
very little information about the model data misfit thereafter, so little

correction is given to the eddy viscosity profile.

3.2 Experiment 2: Wind is given as a sinusoid pattern and the eddy
viscosity profile only is determined

Assume again that the forcing is known and only the eddy

viscosity distribution is needed to be determined. The simulated

observation is obtained by running the linear dynamical model forward,

: . .21t
using a sinusoid wind pattern w = 10 sin(<™ ) (m/sec), where T, = 10
To

hours.

The convergence of the cost function to the optimal value is
illustrated in Figure 4a. Its gradient and data misfit are shown in
Figures 4b-4c. It is obvious that the variational algorithm quickly
improves the estimate for the eddy viscosity in the first few iterations.
The data misfit is corrected to about 0.01 in only one iteration. Within 6
iterations, the cost function is at its minimum. Correspondingly, the
profile of the eddy viscosity in Figure 4d shows rapid approach to its true
solution.

It is important to note that the choice of the initial value for the

unknown parameter is arbitrary, however, the solution is independent
It is important to note that the choice of the initial value for the

unknown parameter is arbitrary, however, the solution is independent

of the initial guess. The fast convergence rate in these two experiments
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is very encouraging. It shows that the algorithm works successfully at
least in variationally performing the data assimilation by adjusting only

the eddy viscosity.

3.3 Experiment 3: Using the identical twin data in experiment 2 to
estimate the wind stress parameter and the eddy viscosity profile
simultaneously

This experiment begins to treat both the wind parameter and the
eddy viscosity as unknowns and to recover them simultaneously by the
optimization. We use the identical twin data from experiment 2 to be the
"observations", which is created by a sinusoid wind.

Relating the unknown boundary condition to the current
observations is advantageous to the data assimilation. The
simultaneous improvement of the prior estimate of the wind stress
along with the eddy viscosity allows a flexible and efficient approach in
combining data with the observations.

The results of the iterative process are shown in Figures 5a-5e.
The algorithm attains its convergence criterion after 11 iterations
(Figure 5b). As before, the cost function decreases greatly during the
first few iterations (Figure 5a). It is interesting to see the plots in
Figures 5d-5e which show the evolution of the eddy viscosity distribution

and the drag coefficient during the optimization. The initial estimates

) -2 2 -3
for A and cp are given as 0.8 x 10 ~ m’/sec and 0.72 x 10 ~ (unscaled),
LT EAV SV ¥ { vl u.Las LUCLI11LICLLIUL u.u.u.us uiicc U}_JUJ.LLLlLaUJ.ULl. 411C 1illuvlal Tduilliauved

- 2 -
for A and cp are given as 0.8 x 10 2 m /sec and 0.72 x 10 3 (unscaled),

respectively. These values are smaller than their true values. The
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funcrion, (b) the norm ot the gradient with the number ot iterations
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Lagrange multiplier containing the information about this large data
misfit makes a big correction to the previous estimates. Figure 5e shows
there is a sharp increase for the drag coefficient during the first
iteration, but it overshoots. Corresponding to this strong forcing, the
eddy viscosity in about upper 50 meters has a relatively large value in
comparision with its true solution. The drag coefficient tends towards
its correct value after the first iteration and the eddy viscosity is also
adjusted gradually. At iteration 11, the profile of the eddy viscosity looks
identical to the one used to create the "observations" (Figure 2).

This experiment indicates that the variation method makes it
possible to determine the model unknown parameter and the external
forcing simultaneously. The forcing term is updated at each iteration.
Its new evolution gives a new model state which determines the
closeness of the model data to the observation. This controls the
information the Lagrange multiplier carries, which in turn has a great
influence on the new estimation for the wind stress and drag coefficient.
The algorithm permits the boundary condition and model to adjust

simultaneously and approach the best model data fit efficiently.

3.4 Experiment 4: The simulated current field is generated by a real
wind, the wind forcing and the eddy viscosity profile are
simultaneously recovered

As in experiment 3, the forcing and the eddy viscosity are all

SLILLLLLILtevuUSLYyY recovereu
As in experiment 3, the forcing and the eddy viscosity are all

regarded to be unknown. The current field is created from a real wind
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observation, instead of the given wind pattern we used in the previous
experiments. The purpose is to test the performance of our variational
algorithm in handling the irregular wind stress. The wind data is part
of the observations which were acquired from a surface mooring set in
the western Sargasso Sea, the details of which will be described in the
next section. Figure 6 gives the 10 days wind observations. We use the
same parameters as before to create the "observations".

The results of using this set of data are displayed in Figures 7a-7e.
It is not surprising to see that there is still a fast reduction in the cost
function at the outset of the assimilation. The cost function reaches its
optimal value within 11 iterations. The adjustment of the drag
coefficient seesaws during the first few iterations (Figure 7e). The eddy
viscosity then oscillates around the true solution.

These experiments have been restricted to identical twin runs,
i.e., the "observations" are results from the model so they are perfect
without any noise. The fast convergence rate and the excellent results
hold the promise that the variational method is a feasible approach to
solve a problem in which there is an unknown boundary condition, as
well as, an unknown viscosity profile. In the following section, we will

apply this technique to a real, observed current field.
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4. The Variational Analysis Technique Applied to an Observed Field

4.1 Data
The oceanographic and meterological field observations used for
our analysis were acquired from the Long-Term Upper Ocean Study -3

(LOTUS-3) buoy by WHOI. This deployment was located in the
0 0
northwestern Sargasso Sea (34 N, 70 W) during the summer of 1982. In

situ current measurments were made by Vector Measuring Current
Meters (VMCMs) fixed at depths of 5, 10, 15, 20, 25, 35, 50, 65, 75, and 100
meters. The wind speeds were measured by the Vector-Averaging Wind
Recorder (VAWR) which was mounted on the tower of LOTUS-3. The
sample interval was 15 minutes. These data were kindly supplied by
Briscoe, Price and Weller from WHOI.

Ten days data are chosen from June 30 to July 9, 1982. The time
series measurements of wind speed are already plotted in Figure 6. The
current observations at 5, 25, 50, and 75m are shown in Figures 8a-8e.
Inertial oscillations are dominant at 5 and 25m. At 50m the inertial
signal is evident but obviously it is incoherent with the motion in the
upper layer. The same thing occurs at 75m. This inconsistancy is,
perhaps, due to other physical phenomena (e.g. the diurnal tides, the
internal waves) or the observation errors.

The measured currents contain the presure-driven currents (e.o.

internal waves) or the observation errors.

The measured currents contain the presure-driven currents (e.g.

43
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tides, geostrophic motions) besides the locally wind-driven currents. The
mean wind-driven current has an amplitude of about 0.05m/sec, while
the presure-driven current has a root mean square value about five
times larger (Price et al.,1987). Because we have observations at only one
station, it is impossible to compute the presure-driven motions from the
observations. Considering that the time scale of geostrophic motion is
much longer than the period of inertial oscillations, we process the data
at each depth by removing its trend to filter out the geostrophic
components.

Our numerical model has equally spaced grid points in the
vertical, but the data are not available at some depths. Linear
interpolation is used to fill the gaps. However, in principle, we do not

need additional data at grid points where there are no measurements.

4.2 Results
The observed field at starting time (June 30,1982) is taken as the

3 2
initial model state. Initial guesses for A and cp of 0.01 x 10 3m /sec and

-3
1.34 x 10 , respectively, are chosen. The model is first run forward for

10 days with a time step of 15 minutes which is the same as the sample
interval. The data assimilation follows the same procedure as described
in the previous section.

The variation of the cost function with the number of iterations is

wlnbbnd S Tiean O ML ook £ 4t A a1 e e

The variation of the cost function with the number of iterations is
plotted in Figure 9a. The cost function decreases to about 53% of its
initial value after 11 iterations. Figure 9b shows the gradient of the cost
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function. As in the previous experiments, the gradient experiences a
rapid decrease during the first few iterations. After iteration 11, it drops
to 5% of its initial value and reaches a steady state. Further iterations do
not change the results. Since the minimum of a quadratic function of M
variables should be found within M iterations when using the
conjugate-gradient algorithm, we terminate the minimization process
after 11 iterations (there are 11 control variables in our problem). At

iteration 11, the eddy viscosity profile (Figure 9d) has a maximum value
3 2
of 2.9x10 m /sec at the surface and decreases with depth. The drag

coefficient (Figure 9e) experiences a reduction in its value gradually and

-3
reaches 1.26x10 finally. All these values are very reasonable.

The seasonal thermocline is between 20 to 50 meters during this
period. Figure 9d shows that the eddy viscosity decreases greatly within
these depths. This is because the stratification suppresses the turbulent
mixing in the thermocline, so the degree of the turbulence, and
therefore the eddy viscosity, is much smaller than in the mixed surface
layer. Obviously, the stratification is well reflected in the eddy viscosity
profile.

Consider the correlation coefficient which is defined as
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where g and q are the model results and the observations, respectively.

The mean values have been removed from q and q. The correlation

coefficient defined here represents the degree of fitting between the
model results and the observations at different depths. Figure 10 is a plot
of the correlation coefficient as a function of iterations at depths 5, 25, 75,
and 95m. It shows that the correlation coefficient has an increase at all
these depths, with the biggest at 5m and the smallest at 95m, but at 75m
the correlation coefficient has the lowest value. This can be understood
because the motions in the upper 50m are dominant by the inertial
oscillations, while below this level, other dynamical processes and the
observation errors superimposed on the weak inertial oscillations make
the observed current fields very complicated. Our linear dynamical
system successfully reproduces the motions in the upper 50m, but is
only able to describe a portion of the motions below 50m due to the noisy
data. The comparisons of the time series of the modelled and observed
current fields are displayed in Figures 11a-11f. Obviously, there is a very
good agreement beween model results and observations at 5, 15, 25, and
35m. But the erratic changes of amplitude and phase of the observations
at 65 and 75m are not reproduced by the simple dynamical model.
Undoubtedly, most of the residual data misfits (Figure 9c¢) come from the
lower 50 meters. Since both the cost function and its gradient have a big
decrease during the iterative process and reach a steady state after 11

iterations, and the estimates of A and ¢y indeed improve the model

results, we conclude that the solutions of A and cp at iteration 11 are the
1Lerdtlons, ana tne esumates of A and cp Indeed 1mprove the model

results, we conclude that the solutions of A and cp at iteration 11 are the

best ones we can derive from these observations.
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5. Summary and Conclusion

We have demonstrated the utility of a variational-adjoint analysis
technique to analyze an observed current data with the aid of a modified
upper ocean Ekman model. The wind stress and viscosity profile have
been determined simultaneously by fitting model results to observations.
The optimal estimates of the model fields have been obtained as well.

The wind stress represents the upper boundary condition in our
model, and enters in the model equation as a forcing term in the
numerical formalism. The simultaneous adjustment of the wind and
eddy viscosity distribution is a positive advantage of the variational
analysis for data assimilation. It allows all the dynamics, boundary
conditions and observations to influence the model solution and thus,
provides a flexible approach in combining the model results with the
observations. |

The variational-adjoint algorithm has been tested using both
identical twin data and real observed data. In identical twin test runs,
the "observations" are created by the Ekman model. Three sets of wind
patterns are applied to the current field, a constant westerly wind, a
sinusoid wind and, a random wind observation, respectively. The first
two experiments are considered a simple scenario in which only the
eddy viscosity distribution is needed to be determined, assuming that the

wind stress is known exactly (constant or sinusiod). The results

eddy viscosity distribution is needed to be determined, assuming that the

wind stress is known exactly (constant or sinusiod). The results
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obtained show that the algorithm is computationally efficient, and for

both experiments, convergence is achieved in 6 iterations. It is
important to note that the model solution is independent of the choice of
the initial guess of the eddy viscosity.

In the following two experiments, the wind stress and the eddy
viscosity are adjusted simultaneously by variationally performing the
data assimilation. During the iterative process, the wind stress serves
as an updating of the current field and its own value is updated at each
iteration also. The results illustrate that, whatever for the sinusoid wind
(experiment 3) or the real wind observations (experiment 4), the adjoint
model algorithm allows the model to fit simultaneously both wind data
and current data. The best model-data fit can be obtained within 11
iterations. The very good approximations and the fast convergence
obtained are encouraging. They show a promise that the variational-
adjoint method is able to solve a problem in which there is an unknown
boundary condition and an unknown eddy viscosity.

Real observations from LOTUS-3 records are also assimilated.
The wind stress parameter and the eddy viscosity estimated are
reasonable. The optimal current field obtained successfully reproduce
the observed fields in upper 50m, while due to the noisy data, they are
only able to describe part of the motions below 50m. No model can fully
describe all the phenomena occurring in the ocean. The observed data
can always be divided into three parts, those which are consistent with

the model dvnamics. those which are incancictont with tha madal

can always be divided into three parts, those which are consistent with
the model dynamics, those which are inconsistent with the model

dynamics and, those which are due to the observation errors. Clearly,
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the important characteristics of the variational-adjoint analysis is that it
is capable of extracting from the available observations that part which
are consistent with the model dynamics and adjusting the final model
state to the intrinsic dynamics.

The variational-adjoint analysis is conceptually simple and
internally consistent. The adjoint model introduced makes the
computation of the gradient of the cost function more efficient than the
direct perturbation method does. It is clear that the systematic and
quantitative approach that the variational-adjoint analysis technique
provided can be utilized for a wide variety of diverse problems. It can
adjust not only the initial conditions of the model, as most
meteorologists do in numerical weather prediction, but also the lateral
boundary conditions (Le Dimet and Nouailler, 1985), in the case of a
limited area model, the upper boundary conditions, such as the surface
forcing by momentum and heat fluxes, and the various physical and

numerical parameters which enter the definition of the model.
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Appendix Derivation of the finite difference equations
The finite difference discretized equation for the Augmented

Lagrange functional in (4) can be written as

n n n n
L(UJ , Vj , A_]’ CD, )"uj’ 7\“,]) =

n+1 n n+1 n n n n+l n+1
N-1 J Uy -y vy FVj 1 Uj.1 - 4y Uj1 -4
n
n=1g T B A AT &
n n n+1 n+l
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n+l1 n n+1 n n, n n+l n+l
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Vi “Vin Vi "V
AT Az T A ) At
1 J A9 1 2
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J
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DO

where superscript n denotes the time level and subspcript j represents
n

the position; kzj and Xr‘tj are the Lagrange multipliers for u;

respectively; K, K and K  are the Gauss precision moduli.

In the discretized version, the Equations (5) - (8), which are found
under the condition that the gradient of the Lagrange function vanishes,

take the form

n

aL(uJI-l, VJI-l, Aj’ Cp» xuj, K?,J)

=0
n
e
BL(u?, VJr-l, A;, cp, kﬁj, 7\33')
=0
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n n n
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=0
n
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n = 0
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ov;
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B-4)

(B-5)
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n
and vj,



70

AL(u;, Vi, Aj, cp, Ay Ayp)

=0 (B-6)

JA,

OL(u;, Vi, Ay ep, Aujr Ay

=0 B-7
aCD

(B - 2) and (B - 3) recover the original Ekman model equations (12).
Using the boundary conditions, the equations of u-component can be

expressed as

n+l n n+l n n n n+l n+1l

) =0 (B-8.1)

forj=2,3, ... ,d-landn=1, 2, ...... , N-1.

Forj =1, the equation is

STS QT 4y Uy seecney UL CALIML AL — Ly Ly cssens y LY=L,

Forj = 1, the equation is
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n n n+1 n+1
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For j = J, the equation is
n+1l n n+l n n n n+l n+l
uy -uy vy +Vvy Uy1-4g Ujg.i1-ug
A T 2 oA Ay Az YA A, =00 (B-83)

The equations for the v-component have the similar forms. For
simplicity, we are not going to give the explicit expressions.
(B - 4) and (B - 5) result in the adjoint models which the Lagrange

multipliers must be satisfied. Let's derive (B - 4) which considers the
gradient of L with respect to u?.

n+l n n n n+l n+l
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the condition that (B - 9) vanishes yields
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expressions as (B - 10.1) - (B - 10.3).
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Differentiation of L with respect to v; yields the similar

The differentiation of L with respect to Aj yields
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Therefore, = 0 gives
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At last from the differentiation of L with respect to ¢ one can

obtain
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