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Introduction to ODIP and SAMOS 
 
The Ocean Data Interoperability Platform (ODIP) is an international effort to remove the 
barriers hindering the effective sharing of data across scientific domains and international 
boundaries. ODIP includes many of the major organizations engaged in ocean data 
management in EU, US, and Australia. ODIP organizes workshops for building standards, 
and develops prototypes for evaluation [1]. It essentially allows for the dissemination of best 
practices and tools for the ocean sciences community.  
 
The Shipboard Automated Meteorological and Oceanographic  System (SAMOS) initiative is 
one of the core programs at Florida State University’s (FSU) Center for Ocean-Atmospheric 
Prediction Studies (COAPS). Participants in the SAMOS initiative collect continuous 
navigational (position, course, heading, speed), meteorological (winds, pressure, 
temperature, humidity, radiation), and near-surface oceanographic (sea temperature, salinity) 
parameters on research vessels while at sea. One-minute interval observations are packaged 
and transmitted back to COAPS via daily emails, where they undergo standardized formatting 
and quality control. The SAMOS initiative is one of the programs tapped to contribute to the 
ODIP prototype addressing data interoperability and discovery [2]. 
 

 

ODIP and SAMOS Objectives alongside the Semantic Web 
 
The objectives of ODIP and SAMOS mesh fairly well in both the short-term and the long-term. 
The ODIP emphasis on discoverability aligns with a more long-term objective for the COAPS 
data center. As an existing program with a scientific user-base, SAMOS provides the unique 
opportunity to mix high-level ODIP goals with interesting use-cases. If we view utilization as a 
measure of success, then it is important for potential science users to have some way of 
easily discovering SAMOS data. Any modern search for data will start from established 
search portals, so any effort towards discoverability should allow data to be indexed by these 
portals in order to increase exposure to potential users. 
 
The ODIP emphasis on interoperability also easily aligns with long-term COAPS objectives. 
There are many instances where SAMOS data needs to be presented in different contexts to 
gain new insights. Let us consider a scenario between the SAMOS initiative and the Rolling 
Deck to Repository (R2R) program (for which COAPS is a funded collaborator). The R2R 
program handles another set of data from research vessels that overlap with the set of 
SAMOS vessels. While SAMOS’ data is collected daily, R2R’s data is collected per cruise. 
For those ships that fall under both SAMOS and R2R, it is important to be able to map 
SAMOS daily files to R2R cruise collections since the different organizations provide different 
types of quality control and post-processing that scientists are interested in comparing.  
 
The long-term objectives mentioned are fairly typical for scientific organizations and are 
usually addressed individually through new web services, but what if there was a more 
generalized approach to interconnected data? The Semantic Web, a World Wide Web 
Consortium (W3C) effort, aims to be a solution to the demand of generalized, machine 
readable, more interconnected, yet organizationally separate data. The W3C describes 
Semantic Web as a technology stack to support a “Web of data.” Semantic Web technologies 
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enable people to create data stores accessible to the Web, build vocabularies, and write rules 
for handling data. The Semantic Web technology stack includes standards such as RDF, 
SPARQL, OWL, and SKOS [3] .The technology stack was introduced to SAMOS as an ODIP 
recommendation. A quick overview of the components follows. 
 

 

Semantic Web Overview 

The Resource Description Framework (RDF) is a standard for data interchange on the Web. 
RDF has features that facilitate data merging even if the underlying schemas differ, and it 
specifically supports the evolution of schemas over time without requiring all the data 
consumers to be changed. 
RDF extends the linking structure of the Web to use Uniform Resource Identifiers (URIs) to 
name the relationship between things as well as the two ends of the link (this is usually 
referred to as a “triple”). Using this simple model allows structured and semi-structured data 
to be mixed, exposed, and shared across different applications [3].   
 
SPARQL is an RDF query language that is able to retrieve and manipulate data stored in the 
RDF format [4]. 
OWL and SKOS are ontology building tools. Conventional database structure is specified 
using schemas, but in the Semantic Web world, structural specifications are called ontologies. 
The term is borrowed from Philosophy and its usage tries to capture the point of view of the 
Web as an organization of knowledge, primarily by logical relationships. Therefore, in 
computer science and information science, an ontology is a formal framework for 
representing knowledge. This framework names and defines the types, properties, and 
interrelationships of the entities in a subject domain [5]. We use ontologies to limit complexity 
and to organize otherwise free-form information. 
 
The selection of the Semantic Web stack will also help us satisfy a more short-term objective. 
Even though we collect and process a large volume of scientific data, our search capabilities 
are still somewhat limited. We also use a set of parameter names local to SAMOS instead of 
more standardized, international parameter names. The focus of this project is to enhance 
our search capabilities for the SAMOS data that we collect and make sure that our parameter 
names are mapped to internationally recognized names. 
 
Satisfying these short-term objectives will enable us to answer questions like the following:  
“What records contain sea temperature within a certain geographic footprint when searching 
using Natural Environment Research Council  (NERC) standard parameter names for sea 
temperature?” We essentially want to be able to search for data by ship, time, observed 
parameters, and geographic location. We will now revisit some of the components of the 
Semantic Web stack in more detail. 
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Technology Background 

 

RDF 
 
RDF is essentially serialized data of the form <URI> <relationship> <URI>. Uniform Resource 
Identifiers (URIs) are intended to be global references for different objects. They can have the 
format of web addresses, or they can be some other globally unique identifier like an ISBN 
number [6]. For example, here are some simple RDF statements serialized in N3 notation: 
  
@prefix	
  ex:	
  <http://www.example.org/>	
  . 
ex:john	
   ex:type	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ex:Person	
  . 
ex:john	
  	
  	
  	
  ex:hasMother	
  	
  ex:susan	
  . 
ex:john	
   ex:hasFather	
  	
  ex:richard	
  . 
ex:richard	
  ex:hasBrother	
  ex:luke	
  . 
  
Here are the same statements serialized in RDF/XML: 
  
<rdf:Description	
  rdf:about="http://abyssal.coaps.fsu.edu/data/john?output=xml"> 
	
   <rdfs:label>RDF	
  description	
  of	
  john</rdfs:label>	
  	
  	
   
	
   <foaf:primaryTopic> 
	
  	
  	
  	
  	
   <rdf:Description	
  rdf:about="http://abyssal.coaps.fsu.edu/john"> 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <j.0:type	
  rdf:resource="http://abyssal.coaps.fsu.edu/Person"/> 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <j.0:hasMother	
  rdf:resource="http://abyssal.coaps.fsu.edu/susan"/> 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  <j.0:hasFather	
  rdf:resource="http://abyssal.coaps.fsu.edu/richard"/> 
	
  	
  	
  	
  	
   </rdf:Description> 
	
   </foaf:primaryTopic> 
</rdf:Description> 
  
It is important to note the machine-readable focus of serialized RDF. The various serialization 
formats capture a large amount of relationships at a time and are not intended to be parsed 
visually. With serialized RDF you get an actual web document, much like an HTML page. In 
order to do anything useful with an RDF document, we have to look at the query language 
component of the Semantic Web Stack called SPARQL. 
 
RDF was introduced above as a way for representing triples of information, but if we consider 
larger amounts of triples related to each other, the information starts to resemble a graph, as 
in Fig. 1. 
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Figure 1. A graph of RDF statements 
 
 
There are many access APIs for each serialization of the data but none of them are truly 
geared for querying graph-like data. X-Path, for example, is one of the more common access 
methods for data serialized in XML, but answering complex questions can require multiple X-
Path API calls alongside programming logic to iteratively sift through results. This is because 
XML as a serialization is geared towards tree structured, or hierarchically structured data.  
 

 
 
Consider the graph in Fig. 2. As users, we might ask a graph questions such as “What is the 
human-readable description for the term TS?” Asking RDF questions requires a query 
language, so this is where SPARQL comes in. 
 
Another important component of RDF are namespaces. RDF namespaces are very similar to 
XML namespaces in that they define syntax, resource types and the interactions between 
these types. They are ultimately expressed using a base namespace defined by the RDF 
standard. Using namespaces we can express restrictions like “the edge called samos:callsign 
has a domain restricted to samos:Vessel, and samos:Datafile” meaning that the callsign edge 
goes from either a vessel resource or a datafile resource to a string literal.  
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SPARQL 
 
SPARQL serves as the primary means to query graph-like data serialized in RDF. A SPARQL 
query for the above question might look like: 
 
SELECT	
  ?description 
WHERE 
{ 
	
   ?x	
  rdfs:label	
  “TS”	
  . 
	
   ?x	
  dcterms:description	
  ?description	
  . 
} 
 
It is important to note that this query looks the same regardless of the underlying serialization. 
The queries are pointed to a SPARQL endpoint, much like a typical database connection. 
Endpoints are expected to be able to lift the graph-like data out of its concrete serialization to 
allow for expressive querying.  
 
Most forms of SPARQL query contain a set of triple patterns called a basic graph pattern. 
Triple patterns are like RDF triples except that each of the subject, predicate and object may 
be a variable. A basic graph pattern matches a subgraph of the RDF data when RDF terms 
from that subgraph may be substituted for the variables and the result is RDF graph 
equivalent to the subgraph [7]. A query can also have restricting functions like FILTER, which 
further narrows the solution subgraph. FILTERs can match against string literals using regex, 
numbers, as well as arbitrary datatypes. The matching functions used for the FILTER 
constraint are also extensible. There are also keywords like UNION and MINUS to handle 
interactions between subqueries. 
 

 
Figure 3. A graph with geospatial predicates and resources.  
 
Let us take a look at a graph that also includes geographic information (Fig. 3). The 
advantage of a graphical query language and server is that we can more naturally apply 
graph algorithms when necessary. For example, questions like “Are there any data files that 
record sea temperature available for the Atlantic ocean?” easily map to a nearest neighbor 
calculation. An SQL version of such a query would include a large amount of joins and would 
quickly begin to degrade in performance [8] [9]. While there are geospatial extensions for 
SQL available with tools like PostgreSQL, they would take us away from the interoperability 
that the Semantic Web offers.  
 
The geospatial extension for SPARQL is called GeoSPARQL. It is an open standard design 
by the Open Geospatial Consortium that addresses geospatial concerns in a Semantic Web 
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context. It provides for a small topological ontology (a set of topological blueprints) for 
representing geographic data using Geography Markup Language (GML) and well-known text 
(WKT) literals [10]. We can see an example of well known text in the graph above in the node 
pointed to by the edge labeled “geo:asWKT”. It also supports Egenhofer topological 
relationship vocabularies and ontologies for additional reasoning about topological objects 
[11]. 
The standard also extends the query language by providing additional FILTER functions. This 
means that in addition to regular FILTER functions like regex for string matching, we now 
have functions like “within” or “intersects” to use when building geographical queries. 
 
In order to answer the question above, “Are there any data files that record sea temperature 
available for the Atlantic ocean?”, we might write a query like this: 
select	
  	
  ?x 
where 
{ 
	
   ?x	
  odo:hasParameter	
  ?y	
  .	
  	
  ?y	
  rdf:label	
  TS	
  .	
  	
  	
  ?x	
  dcterms:spatial	
  ?sp	
  .	
  	
   

?sp	
  geo:asWKT	
  ?g	
  . 
?z	
  rdf:label	
  “Atlantic	
  Ocean”	
  . 
?z	
  geo:asWKT	
  ?gz	
  . 
FILTER(geof:sfWithin(?g,	
  ?gz)) 

}	
  	
   
 
This query assumes that a resource ?z with edges “geo:asWKT”  “POLYGON([Atlantic Ocean 
boundaries])^^sf:WktLiteral” and “rdf:label” “Atlantic Ocean” is defined.  
 

 

SPARQL Endpoints 
 
To actually execute these queries, we need some sort of receiving agent. These are called 
SPARQL endpoints. SPARQL endpoints are essentially services that accept SPARQL 
queries and return results [12]. They are usually found as the outward facing entry point to an 
organization’s collection of RDF. They generally support multiple modes of access. They 
usually provide a web based interface for querying, an RDF/Semantic browser for human 
inspection or machine-driven scraping, as well as a programmatic interface resembling an 
actual database connection.  
 
These endpoints can sit on top of the various serializations of collections of RDF documents, 
but it is important to note that the queries are being executed against the graphs captured 
from the concrete RDF documents. The translation from a concrete representation to a graph 
is performed by RDF stores like Apache’s Fuseki [13]. To put it differently, the underlying  
RDF serialization is hidden from the endpoint component by the RDF store. Instead, the 
serialization can be thought of as a graph on a higher level. 
 
Components like Fuseki take in RDF serializations and make them available for querying as a 
graph. However, since the concrete representations can be abstracted away into a graph 
when it is time to execute queries, we can introduce a more generalized type of RDF store 
called triple-stores. These triple-stores are basically graph databases for directed, edge-
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labeled graphs. Many graph database products are able to support this type of graph. Neo4j, 
for example, supports property graphs by default, but can easily support a directed edge-
labeled graph to support an endpoint [14]. 

 

 

RDF, Discovery and Interoperability 
 
RDF is also designed with automated discovery in mind. Hooks for discovery are tied to the 
“void” namespace. The void namespace is a standard set of RDF classes and properties that 
are used to express metadata about RDF datasets. The void standard reserves the URI 
pattern ‘.well-known/void’ to identify the resource containing metadata about the RDF 
documents available at that server. This means that any indexing service or web crawler that 
is interested in the semantic web has a direct hook to use for accessing your metadata.  
 
Interoperability between RDF datasets from different organizations implies a certain amount 
of component reuse. Reusing well-known predicates and resource classes makes for easier 
application development between partner organizations. These predicates and classes form a 
specific namespace. For example, when describing people you can find most of the terms 
you need by looking at the “friend-of-a-friend”(foaf) namespace. For describing datasets, we 
can look at the “DCAT” and “void” namespaces. If a namespace does not have the exact term 
required, a custom term can usually be built as a subclass of terms that are closely related. 
 
In short, the <URI><relationship><URI> structure of RDF documents allow for higher level 
representation as graphs. SPARQL and SPARQL endpoints allow for querying on this higher 
level representation. These graphs also leave room for generalized graph databases as 
endpoint serving tools. In addition, RDF uses a specific set of terms for discoverability. The 
use of standardized RDF terms allows different data to be more easily meshed. These 
constructs will be put together to form a SPARQL endpoint serving SAMOS’ file metadata and 
vocabularies. 
 
SAMOS Enhanced Metadata Interface (SEMI) is our effort to combine the Semantic Web 
Stack components mentioned above with metadata drawn from SAMOS data quality 
processing to provide enhanced search and standardized mappings for our vocabularies. The 
web stack components offer enough functionality to meet ODIP interoperability and discovery 
goals, while providing enough flexibility for our enhanced search and mapping goals. 
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Current SAMOS SQL Usage and Data Access 
 
SAMOS’ data processing starts with the receipt of emails at a dedicated email address. As 
the email is processed, it interacts with a MySQL database at certain key processing stages. 

1. The first stage of processing is Preliminary Processing. After the Preliminary 
processing has completed, the MySQL database will contain records describing the 
conversion of received emails from an ASCII file format to a network common data 
form (NetCDF). NetCDF is a self-describing, binary file standard for multidimensional 
scientific data.  Additionally, the MySQL database will contain an automated quality 
control summary which consists of the number of observations flagged for certain 
conditions alongside other statistics. There may be more that one preliminary NetCDF 
data file created in the case of data spread over multiple emails. 

2. The second stage of processing is Merge Processing. After merging, has completed, 
the MySQL database will contain records describing the coalescing of multiple stage 
one files into one NetCDF data file. It will also contain a quality control summary. 

3. The third stage of processing is Visual Quality Control (VQC). This also generates a 
NetCDF file. An analyst uses a graphical user interface tool to flag suspicious or 
missing data. After VQC has completed, the database contains records tracking the 
update of a stage two NetCDF file into a stage three file. Another set of quality control 
statistics is generated. 

4. After the second and third stage of processing, data files are passed to a supplemental 
script that adds a time averaged summary of the file to the database for use by various 
web services.    

We will use these database interactions as data sources for SEMI’s SPARQL endpoint. 
 

Currently, SAMOS provides access to its collected and quality controlled NetCDF data files in 
a couple different ways: 

● via A public facing FTP site 
● via web forms 
● via Thematic Real-time Environmental Distributed Data Services(THREDDS) server 

The primary method used is the set of web forms since it is most accessible, and since it 
offers some search capability. Users can search for data by ship, date, and quality level, or 
they can search for data by cruise, which is essentially a set of days for which ships are out at 
sea, as opposed to the default of daily files. The issue for science users, however, is that they 
would rather use more scientifically relevant metadata as key search terms. Having a listing 
of ships and dates is not always sufficient. They might ask questions like: 

● On which ships are datafiles containing observations of the SAMOS equivalent of 
NERC standardized sea water temperatures generated? 

● Which data files for the 2009 - 2014 date range contain salinity in the Atlantic ocean? 
 
THREDDS servers do have some search capability, but we currently have some compatibility 
issues with our NetCDF files and THREDDS. THREDDS for data retrieval also falls short of 
the flexibility and interoperability that ODIP encourages. THREDDS support for new 
functionality like external vocabulary mapping is lacking due to a slower pace of development 
and maintenance. 
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Enhanced Data Access 
 

To enhance SAMOS’ search capability, we want SEMI to be able to query on observed 
parameter and geographical footprint in addition to ship, date, and quality level. 
We can answer the questions above  by asking SEMI the following SPARQL queries: 
 

● On which ships are datafiles containing observations of the SAMOS equivalent of 
NERC standardized sea water temperatures generated? 

 
select	
  DISTINCT	
  ?z 
where 
{ 
?x	
  odo:hasParameter	
  ?y	
  . 
?y	
  skos:related	
  <http://vocab.nerc.ac.uk/collection/P07/current/CFSN0036/>	
  . 
?x	
  samos:callsign	
  ?z	
  . 

 
} 

 
● Which data files for the 2009 - 2014 date range contain salinity (SSPS) in the Atlantic 

ocean?  
where 
{ 
?x	
  odo:hasParameter	
  ?y	
  . 
?y	
  rdf:label	
  SSPS	
  . 
?x	
  dcterms:spatial	
  ?sp	
  . 
?sp	
  geo:asWKT	
  ?g	
  . 
?z	
  rdf:label	
  “Atlantic	
  Ocean”	
  . 
?z	
  geo:asWKT	
  ?gz	
  . 
FILTER(geof:sfWithin(?g,	
  ?gz)) 
} 

How can we get to a point where we can answer such queries? 

 
 

Tools Research 
 
In SAMOS’ case, where processing is supported by an SQL database, to get to the point of 
answering these expressive queries, we first have to figure out the tools needed to make the 
step from SQL tables to an RDF-style graph. We then must do further digging to figure out 
what tools are available for storing and exposing this new graph through a SPARQL endpoint, 
all while keeping the requirements for things like geographic search in mind. 

 

D2RQ 
 
My  first attempt at going from SQL to RDF was with the tool called D2RQ. D2RQ is a 
software layer that sits on top of SQL tables, does basic transformations of table-like data into 
RDF triples via a mapping file, and serves that data over an endpoint. In other words, it offers 
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RDF-based access to the content of relational databases without having to replicate it into an 
RDF store.  
 
Mapping files use RDF statements as a declarative mapping language in order to describe 
the relationship between an SQL data model and a specific graph structure. Mapping files are 
serialized in Turtle (.ttl). The following example mapping file relates the table ‘Conferences’ in 
a database to the class ‘Conference’ in an RDF graph [15].  
 
#	
  D2RQ	
  Namespace	
  	
  	
  
@prefix	
  d2rq:	
  	
  	
  	
  	
  	
  	
  	
  <http://www.wiwiss.fu-­‐berlin.de/suhl/bizer/D2RQ/0.1#>	
  .	
  
#	
  Namespace	
  of	
  the	
  ontology	
  
@prefix	
  :	
  <http://annotation.semanticweb.org/iswc/iswc.daml#>	
  .	
  
	
  
#	
  Namespace	
  of	
  the	
  mapping	
  file;	
  does	
  not	
  appear	
  in	
  mapped	
  data	
  
@prefix	
  map:	
  <file:///Users/d2r/example.ttl#>	
  .	
  
	
  
#	
  Other	
  namespaces	
  
@prefix	
  rdfs:	
  <http://www.w3.org/2000/01/rdf-­‐schema#>	
  .	
  
@prefix	
  xsd:	
  <http://www.w3.org/2001/XMLSchema#>	
  .	
  	
  
	
  
map:Database1	
  a	
  d2rq:Database;	
  
	
  	
  	
  	
  d2rq:jdbcDSN	
  "jdbc:mysql://localhost/iswc";	
  
	
  	
  	
  	
  d2rq:jdbcDriver	
  "com.mysql.jdbc.Driver";	
  
	
  	
  	
  	
  d2rq:username	
  "user";	
  
	
  	
  	
  	
  d2rq:password	
  "password";	
  
	
  	
  	
  	
  .	
  
#	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
#	
  CREATE	
  TABLE	
  Conferences	
  (ConfID	
  int,	
  Name	
  text,	
  Location	
  text);	
  
#	
  maps	
  to:	
  
map:Conference	
  a	
  d2rq:ClassMap;	
  
	
  	
  	
  	
  d2rq:dataStorage	
  map:Database1;	
  
	
  	
  	
  	
  d2rq:class	
  :Conference;	
  
	
  	
  	
  	
  d2rq:uriPattern	
  "http://conferences.org/comp/confno@@Conferences.ConfID@@";	
  
	
  	
  	
  	
  .	
  
map:eventTitle	
  a	
  d2rq:PropertyBridge;	
  
	
  	
  	
  	
  d2rq:belongsToClassMap	
  map:Conference;	
  
	
  	
  	
  	
  d2rq:property	
  :eventTitle;	
  
	
  	
  	
  	
  d2rq:column	
  "Conferences.Name";	
  
	
  	
  	
  	
  d2rq:datatype	
  xsd:string;	
  
	
  	
  	
  	
  .	
  
map:location	
  a	
  d2rq:PropertyBridge;	
  
	
  	
  	
  	
  d2rq:belongsToClassMap	
  map:Conference;	
  
	
  	
  	
  	
  d2rq:property	
  :location;	
  
	
  	
  	
  	
  d2rq:column	
  "Conferences.Location";	
  	
  
	
  	
  	
  	
  d2rq:datatype	
  xsd:string;	
  
	
  	
  	
  	
  .	
  
 
 In this example you can get a sense of how relational database columns naturally unfold into 
a possible graph. A row’s primary key or identifier is turned into the URI of a resource using a 
template.  The other column labels of that row are treated as descriptors or “properties” of the 
row identifier. Mapping statements are generalized to the entire table so the primary key-to-
URI translation effectively represents the creation of a class of RDF resources, while 
individual primary keys are translated into individual RDF resources. 
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This idea of unfolding a table into RDF statements is useful, but usually represents the 
simplest case. As a relational database’s schema is normalized, it hides a bit of semantic 
information. This is easily recoverable by SQL joins, but it means that tables are generally not 
in a form where they can easily be unfolded into a set of RDF statements. Taking this into 
account, mapping files also have constructs for more dynamic generation. The 
“d2rq:PropertyBridge” construct also has functionality for joins, where conditions, and full SQL 
expressions.  
 
Here is an example of a property bridge using data from another table [15]: 
map:authorName	
  a	
  d2rq:PropertyBridge;	
  
	
  	
  	
  	
  d2rq:belongsToClassMap	
  map:Papers;	
  
	
  	
  	
  	
  d2rq:property	
  :authorName;	
  
	
  	
  	
  	
  d2rq:column	
  "Persons.Name";	
  
	
  	
  	
  	
  d2rq:join	
  "Papers.PaperID	
  <=	
  Rel_Person_Paper.PaperID";	
  
	
  	
  	
  	
  d2rq:join	
  "Rel_Person_Paper.PersonID	
  =>	
  Persons.PerID";	
  
	
  	
  	
  	
  d2rq:datatype	
  xsd:string;	
  
	
  	
  	
  	
  d2rq:propertyDefinitionLabel	
  "name"@en;	
  
	
  	
  	
  	
  d2rq:propertyDefinitionComment	
  "Name	
  of	
  an	
  author."@en;	
  
	
  	
  	
  	
  . 
 
Here is an example of a property bridge performing some text modification: 
map:PersonsClassEmail	
  a	
  d2rq:PropertyBridge;	
  
	
  	
  	
  	
  d2rq:belongsToClassMap	
  map:PersonsClassMap;	
  
	
  	
  	
  	
  d2rq:property	
  :email;	
  
	
  	
  	
  	
  d2rq:uriPattern	
  "mailto:@@Persons.Email@@";	
  
	
  	
  	
  	
  . 
 
While these constructs extend the functionality of the mapping file, not all the information 
necessary to perform some of the searches that we would like is stored directly in the 
database. The SAMOS relational database is primarily geared towards processing. Getting 
information like the names of the produced files require combining processing data with 
templates based on particular directory structures. Alongside poor query performance by the 
D2RQ SPARQL endpoint and a lack of GeoSPARQL support, we gradually realized that the 
mapping file approach wasn’t going to be the best fit for SAMOS. 

 

Parliament  
 

The next tool I came across was the Parliament triple-store.  Instead of a mapping file 
approach, I started looking at graph databases with the idea of storing RDF directly. I 
searched with the primary criteria of GeoSPARQL support, since geographic search is such 
an important part of our short-term objective. The primary motivation behind the creation of 
Parliament was the need for a storage mechanism optimized specifically to the needs of the 
Semantic Web [16]. They cite a dissatisfaction with the storage of a directed graph in a 
relational database because “...the straightforward way to store the graph with the required 
level of generality is to use a single table to store all the triples, and this schema tends to 
defeat relational query optimizers” [16]. 
 



 14 

Parliament supports the majority of the Semantic Web stack, with support for advanced OWL 
features like inferencing (unused in this project) and GeoSPARQL. It is open-source. It has 
geospatial and temporal indices and uses a SPARQL endpoint as its primary interface. We’ll 
have no built in mechanism for translation from SQL to RDF like a mapping file, instead, we’ll 
construct and write RDF directly to the Parliament graph database. In order to write RDF to 
Parliament, we’ll use the Apache Jena API for Java.  
 
 

Persistent URLs Using Pubby 
 
Many of RDF’s discovery related benefits assume that the resources served by an 
organization have resolvable URIs. While discoverability is more of a long-term objective, 
providing resolvable URIs to aid that process is fairly straightforward. This is done with an 
optional Linked Data layer on top of the SPARQL endpoint using the Pubby Linked Data 
Frontend. Having a Linked Data layer means that Semantic Web applications focused on the 
non-SPARQL components of the Semantic Web Stack can still take advantage of SAMOS 
data [17]. When SAMOS’ use of linked data is more established, automated discovery will be 
a lot easier to set up with this additional layer.  
 
 

Schema Design 
 
Though graph databases fall under the NoSQL and are quite flexible in terms of graph 
design, there is still an underlying structural approach for RDF. We organize terms by 
grouping them under descriptive URI’s. These groupings are called namespaces and operate 
in much the same way that XML namespaces do: 
 
@prefix	
  samos:	
  <http://abyssal.coaps.fsu.edu/dataVocab/>	
  . 
@prefix	
  rdfs:	
  	
  <http://www.w3.org/2000/01/rdf-­‐schema#>	
  . 
@prefix	
  dctype:	
  <http://purl.org/dc/dcmitype/>	
  . 
@prefix	
  dcterms:	
  <http://purl.org/dc/terms/>	
  . 
@prefix	
  rdf:	
  	
  	
  <http://www.w3.org/1999/02/22-­‐rdf-­‐syntax-­‐ns#>	
  . 
 
We can also define classes that resources can take on as ‘types’: 
 
samos:Quality 
	
  	
  	
   rdf:type	
  	
   rdfs:Class	
  ; 
	
  	
  	
   rdfs:label	
  	
   "quality"	
  ; 
	
  	
  	
   dcterms:description	
  "A	
  tag	
  describing	
  level	
  of	
  quality	
  control	
  a	
  SAMOS	
  NetCDF	
  file	
  
has	
  gone	
  through"	
  ; 
	
  	
  	
   void:inDataset	
  <http://abyssal.coaps.fsu.edu/SAMOS>	
  . 
 
 
 We also can be specific about the subjects and objects allowed for a property by specifying 
domain and range classes in the RDF statements that define that property: 
 
samos:quality	
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rdf:type	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   rdfs:Property	
  ; 
	
  	
  	
  	
  	
   rdfs:domain	
  	
  	
  	
  	
  	
  	
   	
   dctype:Distribution	
  ; 
	
  	
  	
  	
  	
   rdfs:range	
  	
  	
  	
  	
  	
  	
  	
   	
   samos:Quality	
  ; 
	
  	
  	
  	
  	
   dcterms:description	
  	
  	
   "The	
  quality	
  control	
  level	
  of	
  a	
  file"	
  . 
 
Here are some resources using the definitions given above:  
 
<http://abyssal.coaps.fsu.edu/dataVocab/Intermediate>	
   
	
  	
  	
   rdf:type	
  	
   	
   samos:Quality	
  ; 
	
  	
  	
   rdfs:label	
  	
   	
   "intermediate"	
  ; 
	
  	
  	
   dc:type	
  	
   	
   "controlled_vocabulary_term"	
  ; 
	
  	
  	
   dcterms:description	
  "Describes	
  a	
  second	
  stage	
  SAMOS	
  NetCDF	
  that	
  has	
  undergone	
   

additional	
  automated	
  quality	
  control	
  and	
  file	
  merging"	
  ; 
	
  	
  	
   void:inDataset	
  	
   <http://abyssal.coaps.fsu.edu/SAMOS>	
  . 
 
<http://abyssal.coaps.fsu.edu/intermediate/14355>	
  samos:quality	
  samos:Intermediate	
  . 
 
However we could also simply use ad-hoc properties at will. There is no requirement for the 
property or class definitions above. We could simply link a data-file and a quality string and 
hope the user can figure out the SAMOS specific meanings: 
 
<http://abyssal.coaps.fsu.edu/intermediate/14355>	
  quality	
  “Intermediate”	
  . 
 
Certainly there is less effort involved in the ad-hoc approach, but we lose out on the 
descriptive features that promote reuse and a smoother learning curve for a given graph 
structure. This section will focus on the SEMI data model and the structural choices made. 
 
 

 
Figure 4. SEMI’s complete data model 
 
I contributed alongside representatives from 5 other ocean sciences organizations at a 
Semantic Web workshop to the development of a Linked Ocean Data generic graph pattern 
[18]. The SEMI data model is SAMOS’ adaptation of the results of that workshop.  
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The graph, seen in Fig. 4, is aimed at describing three primary resources: Datafiles, 
controlled vocabulary resources, and activity resources.  
 
Data file resources are top level nodes with a few children each that describe the SAMOS 
data files that we produce in a useful way. Each data file node has edges that point to a 
human readable label (a filename), a simple coverage date, a searchable geographic 
coverage, and a quality ranking. Data file nodes also have edges pointing to two other 
important types of nodes: Parameters and CollectionRecords.  
 
Parameter nodes describe physical measurements. These nodes have edges that point to the 
SAMOS name for a particular physical measurement, as well as a full description of that 
measurement. These nodes also have edges pointing to related NERC vocabulary terms.  
The mappings of parameters to NERC vocabulary terms was done by my colleague Jocelyn 
Elya.  
 
Collection Records represent a day-long period of data collection. While a date of collection 
and a ship identifier can be directly accessed from the data file node itself, a Collection 
Record is a more complete and interoperable way of representing related ship and date 
information. The domain of an odo:ofPlatform property is an odo:Cruise, but the usage of 
"cruise" as a descriptor is not very accurate for SAMOS' daily data collection. In an attempt to 
resolve this inaccuracy, Collection Records are also subclasses of odo:Cruise. Collection 
Record nodes have edges that point to the collection date as well as a prov style collection 
date range. They also have edges pointing to full vessel resources as opposed to just 
callsigns. These vessel resources in turn have C17 identifiers in addition to callsign 
identifiers. Since C17 ID are International Council for the Exploration of the Sea (ICES) based 
identifiers, they are more reliable than callsigns.  
 
 

Namespace List 
 
It is important to note that almost all of the namespaces used are existing namespaces 
coming from well-known brands.  
 

● dc - Published by the Dublin Core Metadata Initiative (DCMI). This is a broad 
namespace that contains properties and classes that can describe metadata from a 
variety of sources. This is an older schema that does not specify the ranges of the 
various properties. 

● dcterms - Published by the Dublin Core Metadata Initiative (DCMI). This is an updated 
version of the dc namespace that specifies the ranges of various properties. It also 
adds a large number of properties and classes. 

● dctype - Published directly under the dcterms namespace. This namespace defines a 
broad set of data types for clarity and re-usability. 

● dcat - Published by the World Wide Web Consortium (W3C). This is a namespace 
designed to facilitate interoperability between data catalogs published on the Web. Its 
properties and classes are closely tied to the DCMI namespaces. 
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● geo - Published by the Open Geospatial Consortium (OGC). This namespace 
implements the GeoSPARQL standard, which supports representing and querying 
geospatial data on the Semantic Web. 

● odo - This namespace describes ocean data concepts. For this project, it is being used 
to relate a datafile to its observed parameters, as well as to the platform from which the 
data is collected. 

● prov - Published by the W3C. This is a broad namespace that provides classes and 
properties that can describe the origin of data or documents in great detail. 

● rdf, rdfs - Published by the W3C. These are broad namespaces that describe RDF 
itself. For this project, they are the definitive vocabularies for describing classes and 
properties. 

● samos - Published by SAMOS. This is a local namespace used to identify concepts 
unique to SAMOS. It also serves as a placeholder for concepts that may be replaced 
by equivalents found in broader, more well-known namespaces. 

● sf - Published by the OGC. This namespace is paired with the geo namespace. It 
describes simple geospatial features that can be operated on by GeoSPARQL. 

● skos - Published by the W3C. SKOS stands for Simple Knowledge Organization 
System. This namespace aims to promote knowledge organization schemes such as 
classifications and thesauri. For this project, it is mainly used to describe the 
relationship between local SAMOS vocabulary terms and external NERC vocabulary 
terms. 

● xsd - Published by the W3C. This is a broad namespace describes the XML schema. 
For this project, it is used because it describes important, basic data types such as 
dates and times. 

 
I also added a metadata document based on VoID conventions. This metadata document is 
just a collection of regular RDF statements that use the VoID namespace to express 
important information. The following schematic describes the document’s layout. 

 



 18 

 
Figure 5. SEMI’s VoID metadata layout.  
 
As the schema describes, VoID documents capture basic identifying information as well as 
information that can help users acquire a basic understanding of the service without outside 
help (Fig. 5). The void:sparqlEndpoint property points to SEMI’s SPARQL endpoint, while 
multiple void:exampleResource properties point to instances of the core resources of the 
graph: datafiles, vocabulary terms, and geographic objects. The VoID document currently 
serves as the base address for the server, but should also be aliased to conform to the well-
known convention introduced above. 

 

 

SQL to RDF Translation 
 

Given that we have storage for our RDF resources, a SPARQL endpoint ready for  
exposure, as well as a fleshed out data model, we’ll need a translation program that takes  
data scattered across our SQL schema and turns it into an RDF graph ready for writing to  
the Parliament graph database. The Java program is laid out in 4 major components: a  
main driver, a light SQL database wrapper, a vocabulary import, and a data import. The  
SQL to RDF translations are made in the import components 
 
The vocabulary import component takes care of the VoID metadata RDF statements,  
identifying statements about our ships, and targeted vocabulary terms and their mappings.  
The database wrapper is a simple class that takes in database connection credentials  
from a configuration file. It provides basic querying methods, but has room for useful,  
reusable  SAMOS queries that may come up in the future. The data import component  
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takes care of describing data files and creating any custom properties that we might need.  
The driver component provides the following command line interface for the program: 

 
 
usage:	
  java	
  MainDriver	
  [-­‐d	
  <arg>]	
  [-­‐p]	
  [-­‐t]	
  -­‐v	
  <arg>	
  [-­‐w] 
import_sql	
  Help 
	
   -­‐d,-­‐-­‐date_range	
  <arg>	
   One	
  or	
  two	
  dates	
  for	
  which	
  to	
  perform	
  an	
  import. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   Date	
  format:	
  yyyyMMdd 
	
   -­‐p,-­‐-­‐create_custom	
  	
  	
  	
   Creates/Refreshes	
  custom	
  properties 
	
   -­‐t,-­‐-­‐debug	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   Constructs	
  RDF	
  graph,	
  but	
  does	
  not	
  commit	
  it	
  to	
  the 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   triple-­‐store.	
  Writes	
  the	
  resulting	
  graph	
  to	
  std_out 
	
   -­‐v,-­‐-­‐vessel	
  <arg>	
  	
  	
  	
  	
   The	
  vessel	
  call	
  sign	
  for	
  which	
  to	
  perform	
  an	
  import 
	
   -­‐w,-­‐-­‐import_vocab	
  	
  	
  	
  	
   Import	
  vocabulary	
  terms	
  and	
  mappings. 
 

This allows for incremental updates to the overall graph. The transformation program can  
therefore be setup as a nightly cronjob with the appropriate date range arguments in order  
to keep SEMI up-to-date. 
 
Both import components string together API calls of the following form: 
 

subject.addProperty(graph.createProperty(graph.expandPrefix("ns:predicate")),	
  
processedValue); 

 
Processed values represent a variety of data ranging from geographic serializations to  
parameter names. Namespaces (ns) and predicates are primarily pre-existing with a few  
custom created values. These calls result in RDF statements that conform to the data  
model above. 
 
The addition of future SQL to RDF translations is fairly straightforward. Implement the  
translation in a new class and then add an option to the main driver along with any  
expected command line arguments. 
 

Usage 
 

There are currently two implementations of the transformation program available. They  
only differ in how they communicate with the underlying Parliament graph database. The  
first implementation builds the SQL to RDF translation completely in memory and then  
performs a bulk insert to a running Parliament instance’s SPARQL endpoint. When  
performing large imports spanning multiple years and ships, this method does not have  
good time performance. It does, however have the capability to add statements to the  
graph while the server is running. This mode is probably more suited for nightly updates to  
the database. 
 
The alternate implementation creates a graph that is actually backed by a Parliament 
instance. This means that the graph is modified directly as the SQL statements are 
translated. This method performs very large imports fairly quickly, but the server has to be 
turned off in order to have the updates be recorded. The two versions are filed under two 
separate git branches and are both operational.  
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Security 
 

With a publicly available service like a SPARQL endpoint, it is important that some security 
concerns are addressed. A key security requirement of a SPARQL endpoint is the 
enforcement of limits to external querying. We ultimately want the endpoint to be available for 
public read-only access while password protecting update access. Another security 
requirement is user management. We would want to be able to internally manage graph 
modification based on user specific permissions. 

 

Supported Functionality 
 
Currently, it does not seem as if Parliament has security as a core concern. Remote clients 
can programmatically perform SPARQL Updates, which include both inserting and deleting 
triples from graphs [19]. There is also no native functionality available to grant and restrict 
endpoint usage and updates by user for Parliament. 
 

Mitigation 
 
At a minimum, if adequate security solutions can’t be found, the endpoint URL can be 
password protected by our web container in order to limit access to internal use [20]. Since 
the APIs that make SPARQL connections do support credentials, secondary services built on 
the endpoint such as human friendly query builders can still be built by treating the underlying 
endpoint as a private connection and ensuring credentials are not exposed to the public. 
Having an endpoint that is only used in private is obviously suboptimal, so further research 
into SPARQL security is necessary if a secure endpoint is desired. The endpoint is 
completely separated from the processing database, so any security concerns mentioned 
here cannot propagate backwards to the processing setup. In the event that a more secure, 
GeoSPARQL compatible triple-store is found, migrating the SEMI data model would only 
require changing the connection parameters of the transforming program that identify the 
underlying RDF storage. 
 
 

Future Work 
 

● Merge the two import implementations into one command line program. 
● Enhance query-building by adding resources that describe geographic features like oceans. 

Describing common geographic features will enable easier reference to well known terms like 
“Atlantic Ocean.” 

● Research possible security solutions for Parliament, as well as alternatives to Parliament that 
either support GeoSPARQL or at least store their data using the same serialization as the 
current data model, WKT.  

● Find a programmatic source for C17 identifiers. They are currently grabbed from a static file.  
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Appendix 
● Architecture Summary 

○ Graphs and component explanations. Recap how it all fits together 

Environment Dependencies 
● CLASSPATH 
● JAVA_HOME 
● LD_LIBRARY_PATH - should point to the bin directory in any Parliament distribution 
● PARLIAMENT_CONFIG_PATH - should point to the Parliament configuration file being 

used 

Library Dependencies 
The following libraries must be included in the classpath environment variable on a linux 
environment: 
 

● apache-jena-2.11.1/lib 
● parliament 2.7.4 /lib 
● mysql-connector-java-5.1.29 
● (apache) commons-cli-1.2 
● (apache) commons-lang3-3.3.2 
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