
1. Introduction
Computational Physics ⇐⇒ Formulation and Numerical Solution of Large

Mechanical Systems.
Mechanics is meant here as the science that quantitatively describes the

motion, or tendency to motion, of material objects or systems of objects.
Often, although the principles and even the basic equations of interesting

systems are well established, they are in effect unsolved and little understood.
In most problems, direct solution by analysis proves impossible.

”A physical theory is a system of mathematical propositions, deduced from a
small number of principals, which aim to present as simply, as exactly, and as
completely as possible, a set of experimental laws.” (Duhem, 1954)

What role does or can the computer have in the development of a physical
theory?

The computer can provide the means by which we relate mathematical
propositions to experimental laws. Each arithmetic operation performed by
the computer is in itself no different from a calculation with a set of tables or a
side rule. It is because of the number of these operations that the computational
medium of the computer offers a new approach.

Scope and limitations of mathematical analysis and computational physics
and their interactions with experiments.

Mathematical analysis ⇐⇒ Resolution by conventional algebraic methods, of
physical principles to describe experimentally observed phenomena.
• Has been very successful when the theory is linear, when symmetry can be

inverted and when using only a few variables. Effective in describing continuous
media.
• On the other hand, in computational physics, the mathematical properties

of linearity, symmetry, and a small number of variables are NOT demanded.
The essence of the systems which may be described is that they have to be
finite and discrete. Effective in describing many variable systems.

The three approaches are complementary, each of them can contribute to
our understanding of a phenomenon.

1) Mathematical Analysis
2) Computational Physics
3) Experiments
Computational physics - can provide information when experiments are not

possible. (Study of skies***, ocean, relativity.) However, analytical or numerical
models are only models and must be continually checked with the natural world
through experiments.

→Application to Fluid Dynamics

Discretization
The central process in CFD is the process of discretization, i.e. the process

of taking differential equations with an infinite number of degrees of freedom,
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and reducing it to a system of finite degrees of freedom. Hence, instead of
determining the solution everywhere and for all times, we will be satisfied with
its calculation at a finite number of locations and at specified time intervals. The
partial differential equations are then reduced to a system of algebraic equations
that can be solved on a computer.

Errors creep in during the discretization process. The nature and character-
istics of the errors must be controlled in order to ensure that 1) we are solving the
correct equations (consistency property), and 2) that the error can be decreased
as we increase the number of degrees of freedom (stability and convegence).
Once these two criteria are established, the power of computing machines can
be leveraged to solve the problem in a numerically reliable fashion.

Various discretization schemes have been developed to cope with a variety of
issues. The most notable for our purposes are: finite difference methods, finite
volume methods, finite element methods, and spectral methods.

Finite Difference Method
Finite difference replace the infinitesimal limiting process of derivative cal-

culation

f ′(x) = lim
∆x→0

f(x + ∆x)− f(x)
∆x

f ′(x) ≈ f(x + ∆x)− f(x)
∆x

+ O(∆x)

The term O(∆x) gives an indication of the magnitude of the error as a func-
tion of the mesh spacing. In this instance, the error is halfed if the grid spacing,
x is half, and we say that this is a first order method. Most FDM used in prac-
tice are at least second order accurate except in very special circumstances. We
will concentrate mostly on finite difference methods since they are still among
the most popular numerical methods for the solution of the PDE’s because of
their simplicity, efficiency, low computational cost, and ease of analysis. Their
major drawback is in their geometric inflexibility which complicates their ap-
plications to general complex domains. These can be alleviated by the use of
either mapping techniques and/or masking to fit the computational mesh to the
computational domain.

Finite Element Method
The finite element method was designed to deal with problem with com-

plicated computational regions. The PDE is first to recast into a variational
form which essentially forces the mean error to be small everywhere. The dis-
cretization step proceeds by dividing the computational domain into elements
of triangular or rectangular shape. The solution within each element is inter-
polated with a polynomial of usually low order. Again, the unknowns are the
solution and the collocation points. The CFD community adopted the FEM in
the 1980’s when reliable methods for dealing with advection dominated prob-
lems were devised.
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Spectral Methods
Both finite element and finite difference methods are low order methods,

usually of 2nd-4th order, and have local approximation property. By local we
mean that a particular collocation point is affected by a limited number of
points around it. In contrast, spectral method have global approximation prop-
erty. The interpolation functions, either polynomials or trigonomic functions
are global in nature. Their main benefits is in the rate of convergence which de-
pends on the smoothness of the solution (i.e. how many continuous derivatives
does it admit.) For infinitely smooth solution, the error decreases exponentially,
i.e. faster algebraic. Spectral methods are mostly used in the computations of
homogeneous turbulence, and require relativity simple geometries. Atmospheric
model have also adopted spectral methods because of their convergence prop-
erties and regular spherical shape of their computational domain.

Finite Volume Methods
Finite volume methods are primarily used in aerodynamics applications

where strong shocks and discontinuities in the solution occur. Finite volume
method solves an integral form of the governing equations so that local conti-
nuity property do not have to hold.

Computational Cost

The CPU time to solve the system of equations differ substantially from
method to method. Finite differences are usually the cheapest on a per grid
point basis followed by the finite element method and spectral method. However,
a per grid point basis comparison is a little like comparing apple and oranges.
Spectral methods deliver more accuracy on a per grid point basis than either
FEM or FDM. The comparison is more meaningful if the question is recast
as ”what is the computational cost to achieve a given error tolerance?”. The
problem becomes one of defining the error measure which is a complicated task
in general situations.
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