
2. The Basic equations and some properties of partial differential equations.

We will mostly concentrate on solving the two-dimentional in-
compressible flow problem in rectangular coordinates.

2.1 The Basic Equations

The fundamental equations for the 2-dimensional incompressible
flow are the Navier-stokes equations and the continuity equations.
In the absence of rotation, they are:

1) ∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

=− 1/ρ
∂p
∂x

+ ν(∂
2u
∂x2 + ∂2u

∂y2
)

2) ∂v
∂v

+ u ∂v
∂x

+ v ∂v
∂y

=− 1/ρ
∂p
∂y

+ ν( ∂
2v
∂x2 + ∂2v

∂y2
)

3) ∂u
∂x

+ ∂v
∂y

= 0

u, v velocities
p pressure
ρ density
ν viscosity
We can obtain numerical solutions for the set of equations, but for

simplicity, as a first step, we will use the vorticity- stream function
approach.

If we define the verticle component of the vorticity as ζ = ∂v
∂x
− ∂u

∂y
,

by cross-differentation (1) and (2), we obtain the **** equation

(4) ∂ζ
∂t

+ u ∂ζ
∂x

+ v ∂ζ
∂y

= ν( ∂
2ζ
∂x2 + ∂2ζ

∂y2
)

or

(5) ∂ζ
∂t

+ ~v(∇ζ) = D∇2ζ = Dζ
Dt

The **** equation then consists of
an unsteady term ∂ζ

∂t
an advective** term ~v · (~vζ)
ves**** term ∇∇2ζ

Since ∂u
∂x

+ ∂v
∂y

= 0, we can define a streamfunction ψ such that
∂ψ
∂x

= v and ∂ψ
∂y

= −a The ver**** can then be expressed as

(6) ∇2ψ = ζ Poisson Equation

The verticiby** equation is classified as parabolic, which means
that it is a critical value problem, where the solution is stepped
out of some **** condition. On the other hand, the streamfunction
equation (6) is elliptic or boundary-value problem which is usually
solved by intensive methods.
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The vorticity* equation can also be rewritten in what is called
”conservative” form. By using the **continuity equation (5) can be
rewritten as

(7) ∂ζ
∂t

+∇·)~(v)ζ) = ν∇2ζ
~(v)∇ζ + ζ(∇~v)←= 0
The advantage of such a formulation will be discussed later.

Let’s now perform a dimensional analysis of the vorticity** equa-
tion which will then give us an idea of each terms importance.
(u, v) −→ u

(x, y) −→ L
ζ −→U /L
t −→L /U advective** line scale

Then (7) can be rewritten as

(8) ∂ζ′
∂t′ = −∇ · (~∇′ζ′) + 1

Re
∇2ζ

with Re = UL
ν

, Reynolds number.

High Reynolds number, Re� d −→ the *advective term is domi-
nant and L

U
is the value which effectively characterizes the flow. But

for low Reynolds number Re � 1, a charcetive*** line* depend at
the difference*** is better

t −→ ν
L2

which gives... (9) ∂ζ′
∂t′ = −Re∇ · (~v′ζ′) +∇2ζ

As Re −→ 0, the *advective term drops out. The use of the
appropriate time constant will minimize round off errors which is of
importance.

We still have a complex set of equations out of a lot can be learned
from one-dimensional equations.

The one dimensional advedrican* - difference** equation is

(10) ∂ζ
∂t

+ ∂(uζ)
∂x

= α ∂ζ2

∂x2

ζ is here the vorticity**, but can also be any other advected or
diffused flow property. u is generally a constant.

Another treep***** equation is simply

(11) ∂u
∂t

+ u∂u
∂x

= α∂
2u
∂x2 BurgersEquation

with the equivalent conservation form
(12) ∂u

∂t
+ ∂

∂x
(u

2

2
) = α∂

2u
∂x2

2



2.2 Some Properties of Partial Differential Equations

Basics of PDEs

Partial differentials are used to model a wide variety of physical
phenomena. A number of properties can be used to distinguish the
different type of differential equations.

Example : auxx + buxy + cuyy + dux + euy + f = 0

Order : The order of a PDE is the order of the highest occurring
derivative. The order of the above example is 2. It is second order in
x and y. Most equations derived from physical principles are usually
1st order in time and first or second order in space.

Linear : The PDE is linear if none of its coefficients depend on
the unknown function, i.e. a,b,c independent of u in the above
example. Linear combinations of linear PDEs form another PDE.
w = αa+βv is a solution of a PDE where both u and v are solutions.

The Laplace equation axx + vyy = 0 is linear.
The Burger Equation at + uux = 0 is nonlinear.

(13) General Form: T (u′, u, x) = 0 with u(x)

The problem of finding the solution to u(x) from (13) is equivalent
to draw a stream line in the (x,u) plane through a field of velocity
vectors whose directions u’ are given by (13) u, x −→ u′
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Each curve shown is obviously a solution of the differential equa-
tion. Is our solution unique? Not necessarily.

Example : u = xu′+ (u′)2

u = cx + c2 is a solution, but = - x2

4
also a solution, but which

cannot be obtained from a choice in the e****** c.

We then need to know when a unique solution does exist.

Theorem
Given the first order differential equation u′ = F (x.u)
If F satisfies:
1) F is real, finite, single-valued, and continuous for all x, u.

2) ∂F (x,u)
∂u

is real, finite, single-value and continuous.
Then there is a unique u = g(x) which passes through any given

point of R. (True of linear diff. equ.)

Then to make the solution unique, we find how* to prescribe*
a ”boundary condition” or specify a point which solution curve is
supposed to pass through.

Linear DE
un + bn−1(x)un−1 + bu−2(x)ux−2...+ b0(x)u
= r(x)

b) Ordinary DE of a 1st order in two independence

(14) General Form F (ux, Uy, u, x, y) This equation implies that

at each point in (x, y, u) space, the partial derivatives ux, uy are
related, but they are NOT indirectly*** fixed. The orientation of
the surface solution is NOT prescribed as a function of x,y,u. This
additional degree of freedom requires boundary conditions at more
than one point to ensure a unique solution. (assuming, of course, a
LINEAR DE). u has to be specified at a curve C.
S ∗ ∗∗
aux + buy + cvx + dvy = 0
Aux +Buy + Cvx +Dvy = 0
The solution is uniquely determined y, u, and v are specified on

a curve C.

References :
Reiss, Calegari and Ahlussalia
Ordinary Differential Equations with applications 1976, Holt,

Rinehard and Wistron Eds

4



Spiegel
Applied Differential Equations 1967, Pertince-Hall Eds

Duff and Naylor
Differential Equations of Applied Mathematics 1966, John Wiley

and Sais Eds

5


