2. The Basic equations and some properties of partial differential equations.

We will mostly concentrate on solving the two-dimentional incompressible flow problem in rectangular coordinates.

2.1 The Basic Equations

The fundamental equations for the 2-dimensional incompressible flow are the Navier-stokes equations and the continuity equations. In the absence of rotation, they are:

1) $\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}={ }^{-} 1 / \rho \frac{\partial p}{\partial x}+\nu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)$
2) $\frac{\partial v}{\partial v}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}={ }^{-} 1 / \rho \frac{\partial p}{\partial y}+\nu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)$
3) $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
u , v velocities
p pressure
ρ density
ν viscosity
We can obtain numerical solutions for the set of equations, but for simplicity, as a first step, we will use the vorticity- stream function approach.

If we define the verticle component of the vorticity as $\zeta=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}$, by cross-differentation (1) and (2), we obtain the ${ }^{* * * *}$ equation
(4) $\frac{\partial \zeta}{\partial t}+u \frac{\partial \zeta}{\partial x}+v \frac{\partial \zeta}{\partial y}=\nu\left(\frac{\partial^{2} \zeta}{\partial x^{2}}+\frac{\partial^{2} \zeta}{\partial y^{2}}\right)$
or
(5) $\frac{\partial \zeta}{\partial t}+\vec{v}(\nabla \zeta)=D \nabla^{2} \zeta=\frac{D \zeta}{D t}$

The ${ }^{* * * *}$ equation then consists of
an unsteady term $\frac{\partial \zeta}{\partial t}$
an advective** term $\vec{v} \cdot(\vec{v} \zeta)$
ves**** term $\nabla \nabla^{2} \zeta$
Since $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, we can define a streamfunction ψ such that $\frac{\partial \psi}{\partial x}=v$ and $\frac{\partial \psi}{\partial y}=-a$ The ver**** can then be expressed as
(6) $\nabla^{2} \psi=\zeta$ Poisson Equation

The verticiby** equation is classified as parabolic, which means that it is a critical value problem, where the solution is stepped out of some ${ }^{* * * *}$ condition. On the other hand, the streamfunction equation (6) is elliptic or boundary-value problem which is usually solved by intensive methods.

The vorticity* equation can also be rewritten in what is called "conservative" form. By using the ${ }^{* *}$ continuity equation (5) can be rewritten as
(7) $\left.\frac{\partial \zeta}{\partial t}+\nabla \cdot\right) \overrightarrow{(v) \zeta)}=\nu \nabla^{2} \zeta$
$\overrightarrow{(v)} \nabla \zeta+\underline{\zeta(\nabla \vec{v})} \leftarrow=0$
The advantage of such a formulation will be discussed later.
Let's now perform a dimensional analysis of the vorticity** equation which will then give us an idea of each terms importance. $(u, v) \longrightarrow u$
$(x, y) \longrightarrow L$
$\zeta \longrightarrow U / L$
$t \longrightarrow{ }^{L} / U$ advective** line scale
Then (7) can be rewritten as
(8) $\frac{\partial \zeta^{\prime}}{\partial t \prime}=-\nabla \cdot(\vec{\nabla} \prime \zeta \prime)+\frac{1}{R e} \nabla^{2} \zeta$
with $R e=\frac{U L}{\nu}$, Reynolds number.
High Reynolds number, Re $\gg \mathrm{d} \longrightarrow$ the *advective term is dominant and $\frac{L}{U}$ is the value which effectively characterizes the flow. But for low Reynolds number $\mathrm{Re} \ll 1$, a charcetive*** line* depend at the difference*** is better

$$
t \longrightarrow \frac{\nu}{L^{2}}
$$

which gives... (9) $\frac{\partial \zeta \prime}{\partial t \prime}=-R e \nabla \cdot\left(\vec{v} \zeta^{\prime}\right)+\nabla^{2} \zeta$
As $\operatorname{Re} \longrightarrow 0$, the *advective term drops out. The use of the appropriate time constant will minimize round off errors which is of importance.

We still have a complex set of equations out of a lot can be learned from one-dimensional equations.

The one dimensional advedrican* - difference** equation is
(10) $\frac{\partial \zeta}{\partial t}+\frac{\partial(u \zeta)}{\partial x}=\alpha \frac{\partial \zeta^{2}}{\partial x^{2}}$
ζ is here the vorticity**, but can also be any other advected or diffused flow property. u is generally a constant.

Another treep ${ }^{* * * * *}$ equation is simply
(11) $\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\alpha \frac{\partial^{2} u}{\partial x^{2}}$ BurgersEquation
with the equivalent conservation form
(12) $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{2}}{2}\right)=\alpha \frac{\partial^{2} u}{\partial x^{2}}$

2.2 Some Properties of Partial Differential Equations

Basics of PDEs

Partial differentials are used to model a wide variety of physical phenomena. A number of properties can be used to distinguish the different type of differential equations.

$$
\underline{\text { Example }: ~} a u_{x x}+b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f=0
$$

Order : The order of a PDE is the order of the highest occurring derivative. The order of the above example is 2 . It is second order in x and y . Most equations derived from physical principles are usually 1st order in time and first or second order in space.

Linear: The PDE is linear if none of its coefficients depend on the unknown function, i.e. a,b,c independent of u in the above example. Linear combinations of linear PDEs form another PDE. $w=\alpha a+\beta v$ is a solution of a PDE where both u and v are solutions.

The Laplace equation $a_{x x}+v_{y y}=0$ is linear.
The Burger Equation $a_{t}+u u_{x}=0$ is nonlinear.
(13) General Form: $T(u \boldsymbol{\prime}, u, x)=0$ with $u(x)$

The problem of finding the solution to $\mathrm{u}(\mathrm{x})$ from (13) is equivalent to draw a stream line in the (x, u) plane through a field of velocity vectors whose directions u^{\prime} are given by (13) $u, x \longrightarrow u \prime$

Each curve shown is obviously a solution of the differential equation. Is our solution unique? Not necessarily.

Example: $u=x u \prime+(u \prime)^{2}$
$u=c x+c^{2}$ is a solution, but $=-\frac{x^{2}}{4}$ also a solution, but which cannot be obtained from a choice in the $\mathrm{e}^{* * * * * *}$ c.

We then need to know when a unique solution does exist.

Theorem

Given the first order differential equation $u \prime=F(x . u)$
If F satisfies:

1) F is real, finite, single-valued, and continuous for all x, u.
2) $\frac{\partial F(x, u)}{\partial u}$ is real, finite, single-value and continuous.

Then there is a unique $u=g(x)$ which passes through any given point of R. (True of linear diff. equ.)

Then to make the solution unique, we find how* to prescribe* a "boundary condition" or specify a point which solution curve is supposed to pass through.

Linear DE
$u^{n}+b_{n-1}(x) u^{n-1}+b_{u-2}(x) u^{x-2} \ldots+b_{0}(x) u$
$=r(x)$
b) Ordinary DE of a 1 st order in two independence
(14) General Form $F\left(u_{x}, U_{y}, u, x, y\right)$ This equation implies that at each point in (x, y, u) space, the partial derivatives u_{x}, u_{y} are related, but they are NOT indirectly*** fixed. The orientation of the surface solution is NOT prescribed as a function of $\mathrm{x}, \mathrm{y}, \mathrm{u}$. This additional degree of freedom requires boundary conditions at more than one point to ensure a unique solution. (assuming, of course, a LINEAR DE). u has to be specified at a curve C.
$\underline{S * * *}$
$a u_{x}+b u_{y}+c v_{x}+d v_{y}=0$
$A u_{x}+B u_{y}+C v_{x}+D v_{y}=0$
The solution is uniquely determined y, u, and v are specified on a curve C.

References:

Reiss, Calegari and Ahlussalia
Ordinary Differential Equations with applications 1976, Holt, Rinehard and Wistron Eds

Spiegel
Applied Differential Equations 1967, Pertince-Hall Eds
Duff and Naylor
Differential Equations of Applied Mathematics 1966, John Wiley and Sais Eds

