2. The Basic equations and some properties of partial differential equations.

We will mostly concentrate on solving the two-dimentional in-
compressible flow problem in rectangular coordinates.

2.1 The Basic Equations

The fundamental equations for the 2-dimensional incompressible
flow are the Navier-stokes equations and the continuity equations.
In the absence of rotation, they are:
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u, v velocities

D pressure

p density

v viscosity

We can obtain numerical solutions for the set of equations, but for
simplicity, as a first step, we will use the vorticity- stream function

approach.

If we define the verticle component of the vorticity as ( = % — %Z’

by cross-differentation (1) and (2), we obtain the **** equation
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The **** equation then consists of
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an unsteady term 3;

an advective™ term o - (0()
ves™ ¥ term VV?2(

Since %Z + g—; = 0, we can define a streamfunction v such that
%:f = v and %w = —a The ver®** can then be expressed as
y
(6) V2 = ¢ Poisson Equation
The verticiby** equation is classified as parabolic, which means
that it is a critical value problem, where the solution is stepped
out of some **** condition. On the other hand, the streamfunction

equation (6) is elliptic or boundary-value problem which is usually
solved by intensive methods.




The vorticity™ equation can also be rewritten in what is called
”conservative” form. By using the **continuity equation (5) can be
rewritten as
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The advantage of such a formulation will be discussed later.

Let’s now perform a dimensional analysis of the vorticity™* equa-
tion which will then give us an idea of each terms importance.
(u,v) — u

(,y) — L

¢ —" /L

t —% /y advective** line scale

Then (7) can be rewritten as

(8) % = —V - (VICI) + 2V

with Re = %, Reynolds number.

High Reynolds number, Re > d — the *advective term is domi-
nant and 5 is the value which effectively characterizes the flow. But

for low Reynolds number Re < 1, a charcetive™* line* depend at
the difference™** is better
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which gives... (9) % = —ReV - (0IC1) + V¢

As Re — 0, the *advective term drops out. The use of the
appropriate time constant will minimize round off errors which is of
importance.

We still have a complex set of equations out of a lot can be learned
from one-dimensional equations.

The one dimensional advedrican™® - difference™* equation is
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(¢ is here the vorticity™*, but can also be any other advected or
diffused flow property. u is generally a constant.

Another treep***** equation is simply

(11) % + U%Z = a% BurgersEquation

with the equivalent conservation form
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2.2 Some Properties of Partial Differential Equations
Basics of PDEs

Partial differentials are used to model a wide variety of physical
phenomena. A number of properties can be used to distinguish the
different type of differential equations.

Example : auzy + bug, + cuy, + dug +eu, + f =0

Order : The order of a PDE is the order of the highest occurring
derivative. The order of the above example is 2. It is second order in
x and y. Most equations derived from physical principles are usually
1st order in time and first or second order in space.

Linear : The PDE is linear if none of its coefficients depend on
the unknown function, i.e. a,b,c independent of u in the above
example. Linear combinations of linear PDEs form another PDE.
w = aa—+ v is a solution of a PDE where both u and v are solutions.

The Laplace equation ag, + vy, = 0 is linear.

The Burger Equation a; + uu, = 0 is nonlinear.

(13) General Form: T'(uw/,u,z) = 0 with u(z)
The problem of finding the solution to u(x) from (13) is equivalent

to draw a stream line in the (x,u) plane through a field of velocity
vectors whose directions u’ are given by (13) u,z — w/




Each curve shown is obviously a solution of the differential equa-
tion. Is our solution unique? Not necessarily.

Ezample : v = xul + (uf)?
u = cx + 2 is a solution, but = - % also a solution, but which
cannot be obtained from a choice in the e****** ¢,

We then need to know when a unique solution does exist.

Theorem

Given the first order differential equation w/ = F(x.u)

If F satisfies:

1) F is real, finite, single-valued, and continuous for all x, u.

2) %ﬁ’“) is real, finite, single-value and continuous.

Then there is a unique v = g(x) which passes through any given

point of R. (True of linear diff. equ.)

Then to make the solution unique, we find how™* to prescribe*
a "boundary condition” or specify a point which solution curve is
supposed to pass through.

Linear DE
u™ + by (2)u" ™ 4 by o () ut 2+ by (T)u

= ()

b) Ordinary DE of a 1st order in two independence
(14) General Form F(uy,U,,u,z,y) This equation implies that

at each point in (z,y,u) space, the partial derivatives u,,u, are
related, but they are NOT indirectly™** fixed. The orientation of
the surface solution is NOT prescribed as a function of x,y,u. This
additional degree of freedom requires boundary conditions at more
than one point to ensure a unique solution. (assuming, of course, a
LINEAR DE). u has to be specified at a curve C.
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auy, + bu, + cvy + dv, =0

Au, + Buy + Cvy + Dvy, =0

The solution is uniquely determined y, u, and v are specified on
a curve C.
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