3. Basic Finite Difference Concepts

We concentrate at the finite-difference approach. Other methods will be stretched later. Now, first the framework in which we proceed to solve the equations of Chapter 2.

First a set of critical values ψ, ζ, μ, γ everywhere at time t=0. The computational cycle then starts with the use of a finite-difference equation for ζ to approximate $\frac{d\zeta}{dt}$. We then computer ζ at a new time level. Then we solve the Poisson equation for ψ which then gives us μ, γ and so on as depicted by this figure below.

3.1 Basic Finite - difference forms.

- a. Taylor series expansions
- Rectangular Mesh

- Taylor series expansion is an interval about x = a. (1) $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \frac{f^{(n)}(a)(x-a)^{(n)}}{n!}$

Then the uncentered first derivative form of $\frac{\partial f}{\partial x}$ can then be expressed as a function of

 $f_{i,j}, f_{i+1,j}, f_{i-1,j}$

Taylor series expansion \longrightarrow

(2)
$$f_{CH,j} = f_{i,j} + \frac{\partial f}{\partial x}\Big|_{i,j} (x_{i+1,j} - x_{i,j}) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}\Big|_{i,j} (x_{i+1,j} - x_{i,j})^2 + \dots$$

or

$$f_{i+1,j} = f_{i,j} + \frac{\partial f}{\partial x} \bigg|_{i,j} \Delta x + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \bigg|_{i,j} \delta x^2 + O(\Delta x^3)$$
$$\longrightarrow \frac{\partial f}{\partial x} \bigg|_{i,j} = \frac{f_{i+1,j} - f_{i,j}}{\Delta x} + O(\Delta x) \leftarrow \text{Terms of order } \Delta x \text{ or first}$$
erder accuracy.

or

The centered difference approximation $\frac{\partial f}{\partial x}$ is obtained by sub-tracting the forward and backwards expansions.

$$(6) f_{i+1,j} = f_{i,j} + \frac{\partial f}{\partial x} \Big|_{i,j} \Delta x + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \Big|_{i,j} \Delta x^2 + \frac{1}{6} \frac{\partial^3 f}{\partial x^3} \Big|_{i,j} \Delta x^3 + \frac{1}{24} \frac{\partial^4 f}{\partial x^4} \Big|_{i,j} \Delta x^4 + O(\Delta x^5)$$

$$f_{i-1,j} = f_{i,j} - \frac{\partial f}{\partial x} \Big|_{i,j} \Delta x + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \Big|_{i,j} \Delta x^2 - \frac{1}{6} \frac{\partial^3 f}{\partial x^3} \Big|_{i,j} \Delta x^3 + \frac{1}{24} \frac{\partial^4 f}{\partial x^4} \Big|_{i,j} \Delta x^4 + O(\Delta x^5)$$

$$\longrightarrow f_{i+1,j} - f_{i-1,j} = 2 \frac{\partial f}{\partial x} \Big|_{i,j} \Delta x + \frac{1}{3} \frac{\partial^3 f}{\partial x^3} \Big|_{i,j} \Delta x^3 + O(\Delta x^5)$$

$$\frac{\partial f}{\partial x} \Big|_{i,j} = \frac{f_{i+1,j} - f_{i-1,j}}{2\Delta x} - \frac{1}{6} \frac{\partial^3 f}{\partial x^3} \Big|_{i,j} \Delta x^2 + O(\Delta x^4)$$

$$(7) \frac{\partial f}{\partial x} \Big|_{i,j} = \frac{f_{i+1,j} - f_{i-1,j}}{2\Delta x} + O(\Delta x^2) \longleftarrow \text{Second-order accuracy}$$

Analog expressions can be derived for **y** and **t**

(8)
$$\left. \frac{\partial f}{\partial y} \right|_{i,j} = \frac{f_{i,f+1} - f_{i,f-1}}{2\Delta y} + O(\Delta y^2)$$

(9) $\left. \frac{\partial f}{\partial t} \right|_{i,j}^n = \frac{f_{ij}^{n+1} * - f_{ij}^{n-1}}{2\Delta t} + O(\Delta t^2)$

We can also derive an expression for $\frac{\partial^2 f}{\partial x^2}$ $\frac{\partial^2 f}{\partial x^2}\Big|_{i,j} = \frac{f_{i+1,j} + f_{i-1,j} - 2f_{ij}}{\Delta x^2} + O(\Delta x^2)$ Second Order Accurate Polynomial fitting

Another method of obtaining finite-difference expressions is to fit an analytical function with free parameters to mesh-pour^{*} values and then to analytically differentiate the function.

Commonly, polynomials are used.

$$\begin{array}{l} \underline{\text{Parabolic fit:}} \text{ Data}^* \text{ at}^* i, i+1, i-1 \text{ for } f\\ \hline \text{For convenience, } x = 0 \text{ is at the location } i\\ f(x) = a + bx + cx^2\\ & \left| \begin{array}{c} f_{i-1} = a - b\Delta x + c\Delta x^2\\ f_i = a\\ f_{i+1} = a + b\Delta x + c\Delta x^2\\ \end{array} \right|\\ \rightarrow c = \frac{f_{i+1} + f_{i-1} - 2f_i}{2\Delta x^2}\\ b = \frac{f_{i+1} - f_{i-1}}{2\Delta x}\\ (11) \rightarrow \frac{\partial f}{\partial x} \right| = b \text{ and } \frac{\partial^2 f}{\partial x^2} \right| = 2c \end{array}$$

which are obviously equivalent to the second order FD obtained in the previous section.

If we just use y = ax+b, then we obtained a first order *accuracy (forward and backward of the previous section). Higher polynomials give higher order. Beware of too high.

In general, a cubic spline^{*} (polynomial) is often used since they indicate the presence of an uflexion^{*} prout^{**}.

c)Integral Method

In the integral method, we satisfy the governing equation in an integral *use, rather than a differential use*. We write the model equation in conservation* form

(12)
$$\frac{\partial \zeta}{\partial t} = -\frac{\partial(\mu\zeta)}{\partial x} + \alpha \frac{\partial^2 \zeta}{\partial x^2}$$

Integration from t to $t + \Delta t$ and $x - \frac{\Delta x}{2}$ to $x + \frac{\Delta x}{2}$

$$(13)\int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}})(\int_{t}^{t+\Delta t}\frac{\partial\zeta}{\partial t}dt)dx = -\int_{t}^{t+\Delta t}(\int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}}\frac{\partial(\mu\zeta)}{\partial x}dx + k\int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}}\frac{\partial^{2}\zeta}{\partial x^{2}}dx)dt\int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}}(\zeta^{t+\Delta t}-\zeta^{t})dx = -\int_{t}^{t+\Delta t}(\zeta^{t+\Delta t}-\zeta^{t})dx = -\int_{t}^{t+\Delta t}(\zeta^{t})dx = -\int_{t}^{t+\Delta$$

****FORMULA NOT READABLE FROM THIS POINT ON**** <u>Theorem: Mean Value Theorem</u>

$$\left\| \int_{z_1}^{z_1 + \Delta z} f(z) dz \exists f(\vec{z} * \Delta z \exists \vec{z} \in z_1, z_1 + \Delta z) \right\|$$

Convergence is observed for $\Delta z \to 0$.

Using z at the lower integration limit (Euler's Integration) then (14) can be rewritten as

$$\int_{x}^{t+\Delta t} - \int_{x}^{\Delta t}]\Delta x = -[(\mu\zeta)^{t}x + \frac{\Delta x}{2} - (\mu\zeta)^{t}x - \frac{\Delta}{2}\Delta t + \alpha \left[\frac{\partial\zeta}{\partial x}\right]_{x+\frac{\Delta}{2}}^{t} - \frac{\partial\zeta}{\partial x}\Big|_{x-\frac{\Delta x}{2}}^{t} \Delta t$$
The first derivatives can be evaluated as

$$\zeta_{x+\Delta x}^t = \zeta_x^t + \int_x^{x+\Delta x} \frac{\partial \zeta}{\partial x} dx$$

or

$$\begin{aligned} \frac{\partial z}{\partial x} \Big|_{x+\frac{\Delta x}{2}}^{t} &= \frac{z_{x+\Delta x}^{t} - z_{x}^{t}}{\Delta x} \\ (\mu\zeta)_{x+\frac{\Delta x}{2}}^{t} &= \frac{1}{2} [(\mu\zeta)_{x}^{t} + (\mu\zeta)_{x+\Delta x}^{t}] \rightarrow \\ (16) \frac{\zeta_{x}^{t+\Delta t} - \zeta_{x}^{t}}{\Delta t} &= -\frac{(\mu\zeta)_{x+\Delta x}^{t} - (\mu\zeta)_{x-\Delta x}^{t}}{2\Delta x} + \alpha \frac{\zeta_{x+\Delta x}^{t} + \zeta_{x-\Delta x} - 2\zeta_{x}^{t}}{\Delta x^{2}} \\ \text{Integration from } t - \Delta t \text{ to } t + \Delta t \text{ will give *catered in time} \end{aligned}$$

Advantage of this method is often appreciated in non-rectangular coordinate systems and because of the conservative property.

3.2 Trumcabion^{*} errors, consistency, stability, and convergence Suppose $\mu(x,t)$ is the exact solution to the initial value problem (17) $\frac{\partial \mu}{\partial t} = alpha(x,t)$

and $U(n\Delta t, j\Delta x)$ is $= U_j^n$ is the solution to the FD approximation of (17). This approach must be *underlineconsistent*, *underlinestable*, and must *underlineconverge* to be useful in physical problems.

Consistency: A FD approximation is <u>consistent</u> with a differential equation is the FD equation converges to the convect^{*} differential equation as the space and time grid spacing^{*} $\rightarrow 0$.

Stability: If U_j^n is the numerical solution and μ_j the exact solution at $t = n\Delta t$ and $x = j\Delta x$, then the FD approximation is stable of $Z_j^n = U_j^n - \mu_j^n$ remains founded as *n* trends to infinity for fixed Δt .

Convergence: If the difference between the theoretical solutions of FD and differential equations at a fixed point (x, t) trends to zero as $t \to 0$ and $\Delta x \to 0$ and $n, j \to \infty$ then the finite difference approximation converges to the continuous equation.

<u>Trumbration* error</u>: The local difference between the FD approximation and the Taylor series representation of the continuous problem as a fixed point is the *tr—- error.

<u>Theorem</u>: (Lax and Richtmyer)

Given a properly parcel linear initial value problem and a finite difference approximation to it that solidifies^{*} the consistency condition, stability (as Δx and $\Delta t \rightarrow o$) is the necessary and sufficient condition for convergence.

Example:

Let's consider the one-dimensional advection* equation with constant speed \boldsymbol{c}

 $\frac{\partial \mu}{\partial t} + c \frac{\partial \mu}{\partial x} = 0.$ The Taylor series for second order derivatives are

$$\mu_j^{n+1} - \mu_j^{n-1} = 2\Delta t \left(\frac{\partial\mu}{\partial t}\right) \Big|_j^n + \frac{\Delta t^3}{3} \left(\frac{\partial^3\mu}{\partial t^3}\right) \Big|_j^n + \dots$$
$$\mu_{f+}^n - \mu_{f-1}^n = 2\Delta x \left(\frac{\partial\mu}{\partial x}\right)_f^n + \frac{\Delta x^3}{3} \left(\frac{\partial^3\mu}{\partial x^3}\right) \Big|_f^n + \dots$$

Combining we obtain

insert formula here

This FD approximation is consistent if the truscabian^{*} error nehis^{**} is $0(\Delta t^2 + \Delta x^2)$ goes to zero as $\Delta t, \Delta x \to 0$.

From (19)
$$|E_j^n| \le \frac{\Delta t^2}{126} M_1 + |c| \frac{\Delta x^2}{12} M_2$$

where M_1 and M_2 are the bounds for $|\frac{\partial^3 \mu}{\partial t^3}|$ and $|\frac{\partial^3 \mu}{\partial x^3}|$ respectively. Note that these bounds hold for the true solution, i.e they are independent of the numerical treatment^{*} of the equation. Therefore $E_f^n \to 0$ as $\Delta x, \Delta t \to 0$.

If we consider only finite-difference forward in Vines^{*}, then

 $|E_f^n| \leq \frac{\Delta t}{2} M_3 + |c| \frac{\Delta x^2}{12} M_4$ whose M_3 and M_4) are the bounds^{*} for $|\frac{\partial^2 \mu}{\partial t^2}|$ and $|\frac{\partial^3 \mu}{\partial x^3}|$ respectively.

We are now interested in the accumulated error of FD solution. If we consider the latter (FD found in *line)

$$\begin{array}{l} (20) \ U_{f}^{n+1} = U_{f}^{n} - \frac{\lambda}{2}(U_{f+1}^{n} - U_{f-1}^{n}) \\ (21) \ \mu_{f}^{n+1} = \mu_{f}^{n} - \frac{\lambda}{2}(\mu_{f+1}^{n} - \mu_{f-1}^{n}) + \Delta t \xi_{f}^{n} \\ \text{with } \lambda = \frac{c\Delta t}{\Delta x} \\ \text{The accumulated error is } e_{f+1}^{n} - e_{f-1}^{n}) + \Delta t \varepsilon_{j}^{n} \\ \text{By substitution of (21) to (20),} \\ (22) \ e_{f}^{n+1} = e_{f}^{n} - \frac{\lambda}{2}(e_{f+1}^{n} - e_{f-1}^{n}) + \Delta t \varepsilon_{j}^{n} \\ \text{By defining } E^{n} = max_{f} \mid e_{f}^{n} \mid \text{and } \varepsilon = max_{f,u} \mid \xi_{f}^{n} \mid \text{then } \\ E^{n+1} \leq (1+\mid\lambda\mid)E^{n} + \Delta t\varepsilon \end{array}$$

Successive use of this recursion* formula does NOT lead to a finite bound for E

$$\begin{split} E^{n+1} &\leq (1+\mid\lambda\mid)[(1+\mid\lambda\mid)E^{n-1} + \Delta t\varepsilon] + \Delta t\varepsilon \\ &\leq \dots \\ &\leq [1+(1+\mid\lambda\mid) + (1+\mid\lambda\mid)^i + \dots + (1+(\lambda 1)^{*u}]\Delta t\varepsilon \\ &\text{if } E^0 = 0 \\ &\leq \frac{1+\mid\lambda\mid)^n - 1}{\mid\lambda\mid} \Delta t\varepsilon \\ &\leq \frac{\varepsilon \Delta x}{\midc\mid} [(1+\frac{\midc\mid t}{n\Delta x})^n - 1] \frac{z\Delta x}{\midc\mid} \text{ (with } \Delta t = \frac{t}{n} \\ &\leq \frac{\varepsilon \Delta x}{\midc\mid} (e\frac{\midc\mid t}{\Delta x} - 1) \\ &\text{which does to come to get a weight of } x = 0 \text{ and } x = 0$$

which does to ∞ as $\Delta x \to 0$ and $n \to \infty$

Failure to find an upper limit for the error does not imply that this error will grow indefinitely. This can be done only by a practical test.

For this case, it turns out that an upper limit can be found if we replace U_f^n of (20) by $\frac{1}{2}(U_{f-1}^n + U_{f+1}^n)$ Then, instead of (22), we have

Then, instead of (22), we have $e_f^{n+1} = (\frac{1}{2} + \frac{\lambda}{2}e_{f-1}^n + (\frac{1}{2} - \frac{\lambda}{2})e_{f+1}^n + \Delta t\varepsilon_f^n$ or $E^n + 1 \le (|\frac{1}{2} + \frac{\lambda}{2}| + |\frac{1}{2} - \frac{\lambda}{2}|)E^n + \Delta t\varepsilon$ As long as $|\lambda| \le 1$ (CFL critoud*) $E^{n+1} \le E^n + \Delta t\varepsilon$ $\le n\Delta t\varepsilon = t\varepsilon$

The accumulated error at a fixed time is then proportional to the trucation error *varepsilon*.

From Taylor series expansions

$$\frac{i}{2}(\mu_{f-1}^{n} + \mu_{f+1}^{n}) = u_{f}^{n} + \frac{\Delta x^{2}}{4}(\left(\frac{\partial^{2}\mu}{\partial x^{2}}\right)\Big|_{f}^{n} + \left(\frac{\partial^{2}\mu}{\partial x^{2}}\right)\Big|_{j}^{n})$$

The overall trucation* error can be bounded by
 $|\varepsilon_{f}^{n}| \leq \Delta t \frac{M_{1}}{2} + \Delta x \frac{|c|M_{2}}{2\lambda} + \Delta x^{2} \frac{|c|M_{3}}{C}$

Where M_1, M_2 , and M_3 are upper bounds for $\frac{\partial^2 \mu}{\partial t^2} \frac{\partial^2 \mu}{\partial x^2}, \frac{\partial^3 \mu}{\partial x^3}$ respectively.

Thus^{*} the soleve is $\underline{**}$ first $\lambda \neq 0$ and E, the accumulated error varesters^{*} as the mesh width goes to zero.

$$\lim U_f^n = \mu(x, t)$$
$$\Delta x \to 0$$
$$\Delta t \to 0$$
$$\lambda < 0$$

This FD scheme^{*} is then convergent

3.3 Norms and numerical stability analysis

a. Vector and matrix norms and stability definition

Stability is associated with the property of a numerical solution which remain finite at all points in the (x, t) domain. (Unstable \leftrightarrow blow ups of the solution.)

A <u>vector</u> norm is defined as a measure of a vector in real-number space. The norm must satisfy

$$\begin{aligned} || \vec{x} || &\geq 0, \vec{x} || = 0, \leftrightarrow \vec{x} = \vec{0} \\ || \vec{x} \vec{x} || &= |\alpha| || \vec{x} || \text{ for any scalar } x \\ || \vec{x} + \vec{y} || &\leq || \vec{x} || + || \vec{y} || \text{ for any } \vec{x}, \vec{y} \end{aligned}$$

A frequently used form is the Lp norm.

$$|| \vec{x} || = (\sum_{f=1}^{n} |x_{j}|^{p})^{\frac{1}{p}}$$

when $\vec{x} = (xj)$ is an n-dimensional vector. Most used* are: (a) Euchidian norm, p = 2

$$L_{\infty}$$
(b) "mascinus" norm, p = $\infty \mid \mid x \mid \mid_{\infty} = max_f \mid xj \mid$
(c) L_1) norm, p=1 $\mid \mid x \mid \mid_1 = \Sigma_f \mid xj \mid$

If we define \vec{U}^n by $\vec{U}^n = (U_f^n)$, then a numerical scheme is <u>stable</u> if there exists a number M such that $|| \vec{U}^n || \leq M || \vec{U}^0 ||$ (M can be a function of time t since solutions grow in time)

By analogy with the definition of vector norms^{*}, we define the matrix norm as a measure in real-number space. The following conditions must be satisfied:

 $|| A > 0, || A || = 0, \leftrightarrow A = (0)$

 $|| \alpha A || = | \alpha ||| A ||$ for any scalar α

$$|| A + B || \le || A || + || B ||$$

$$|| A - B || \le || A |||| B ||$$
 for any A, B.

The most cower^{*} norms are as before the $L_1, L_2, and L_{\infty}$ norms.

 $|| A ||_1 = Max_f \Sigma_i | aij |$ (Sum of all colors^{*})

 $||A||_{\infty} = Max_i\Sigma_f |aij|$ (Sum of all norms*)

 $||A||_2 = \sqrt{a(AtA)}$ where A is the absolute tangent eigurate* of the matrix AtA.

b) The Lax-Richtmyer Theorem

<u>Theorem:</u> Numerical* stability and consistency of a finite difference scheme imply convergence.

This theorem is important because it enables us to prove convergence of a numerical solution without explicit knowledge of the exact solution. The FD equation can be rewritten as

 $\vec{U}^{n+1} = L\vec{U}^n + \vec{R}^n$

where L is a linear operator (expressed in a matrix form) and \vec{R}^n is the in-homogenous part of the equation such as for a for a for a for a statement of the equation such as for a statement of the equ

Another definition of the stability, slightly more restrictive, let f = r for most purposes, *especially in the following*. A finite FD scheme of the type of (26) is stable for any time t and any S > 0, there exists rwo* values ρ , n such that

|| $(L)^n$ || $\leq M$ for all $\Delta x < \delta, \Delta t < y \Delta x$ and n provided that $n\Delta t \leq t$.

Since $\parallel \vec{U}^n \parallel \leq \parallel (L)^n \parallel \parallel \vec{U}^0 + \parallel (L)^{n-1} \parallel \parallel \vec{R}^0 \parallel + ... \parallel (L)^0 \parallel \parallel \vec{R}^{n-1} \parallel$

and since we can reasonably assume the total ferciy * $\Sigma_k \parallel R^k \parallel$ to be finite, this definition does imply *the are given before.

Proof of the LR Theorem

$$\begin{split} \vec{U}^{n+1} &= L\vec{U}^n + \vec{R}^n \\ \vec{\mu}^{n+1} &= L\vec{\mu}^n + \vec{R}^n + \Delta t\vec{\varepsilon}^n \\ \text{The accumulated error vector } \vec{e}^{n+1} \text{ is then} \\ \vec{e}^{n+1} &= Lvece^n + \Delta t\vec{\varepsilon}^n \\ &= L(Le^{n-1} + \Delta t\vec{\varepsilon}^{n-1}) + \Delta t\vec{\varepsilon}^n \\ &= ((L)^n\vec{\varepsilon}^0 + (L)^{n-1}\vec{\varepsilon}^1 + \dots (\Delta^0\vec{\varepsilon}^n)\Delta t \\ \rightarrow \parallel \vec{e}^n \parallel \leq \Delta t(\parallel (L)^{n-1} \parallel \parallel \vec{\varepsilon}^0 \parallel + \dots + \parallel (L)^0 \parallel \parallel \varepsilon^{n-1} \parallel) \end{split}$$

since the scheme^{*} is <u>constant</u>^{*}, for every $\varepsilon > 0$, there exists two numbers δ, η such that $\| \tilde{\varepsilon}^k \| < \varepsilon$ for all $\Delta x < \delta, \Delta t < \eta \Delta x$

Since the scheme is furthermore <u>stable</u>, we have $||(L)^k|| \le M$ for all $k, k\Delta t \le t$, then

 $(27) \parallel \vec{e}^n \parallel \leq n \Delta t \varepsilon M = t \varepsilon M$

Since ε is arbitrarily small, the theorem is proven.

The 2R theorem also holds in the opposite direction...convergence and consistency \rightarrow stability.

C) Stability Analysis

The previous theorem allows us to concentrate on the stability of the numerical scheme *otter* then it's convergence, one you admit consistency. **

In section 3.2, we were not able to prove convergence of the scheme ***

$$U_n^{f+1} = U_f^n - \frac{\lambda}{2} (U_{f+1}^n - U_{f-1}^n)$$

1) Using matrix norms

The linear operator applicable in this case is

Since $||L^n|| \le ||L||^n$ stability is assured if $||L|| \le 1$. Actually, $\parallel L \parallel \leq 1 + 0(\Delta t)$ is sufficient since

 $\lim_{n\to\infty} \parallel L \parallel^n \leq \lim(1+\frac{0(f)}{n})^n = e^{0(t)})$ which is compatible with the previous definition. this criteria is named after Von Neumann.

We find that $||L_1|| = ||L_{\infty}|| = 1 + |\lambda|$.

Since $\lambda = \frac{c\Delta t}{\Delta x}$, the assumption $|\lambda| = 0(\Delta t)$ would imply $\Delta x = constant$. This is incompatible^{**} with the limit process $\Delta x, \Delta t \rightarrow t$ Hence matter^{**} $L_1 or L_\infty$ can be used. The L_2 norm sequares^{*} knowledge of the eiguvaules^{*} of LTL.

The linear operator for the diffinive^{*} scheme (24) is

 U_j^n is replaced by $\frac{1}{2}(U_{f-1}^n + U_{f+1}^n)$ We find that

 $\parallel L_3 \parallel = \parallel L \parallel_{\infty} = 1y \mid \lambda \mid \leq 1, \mid \lambda \mid y \mid \lambda \mid > 1^{*****}$

Hence, in this case, stability is assured as long as $|\lambda| \leq 1$ (Same as convergence)

Let's now consider the following parabolic differential equation.

$$\frac{\partial F}{\partial t} = K \frac{\partial^2 F}{\partial x^2}$$

$$\frac{F_f^{n+1} - F_j^n}{\Delta t} = K \frac{F_{f+1}^n - 2F_j^n + F_{f-1}^n}{\Delta x^2}$$

$$F_f^{n+1} = \lambda F_{f-1}^n + (1 - 2\lambda)F_j^n + \lambda F_{f+1}^n, \text{ with } \lambda = \frac{K\Delta t}{\Delta x^2}$$
If the boundary values $F_o^n = F_j^n = 0$, then
$$\frac{\left(+ \frac{\pi}{1} + \frac{\pi}{5} + \frac{\pi}{$$

(2) $F_n = LF_{n-1} = L^n F_o$, where L is an amplification matrix. The eigenvelues μ of L are the roots of

 $|L - \mu I| = -0$, where I is determined* of order J-1.

 \Rightarrow J-1 eiguenles^{**}. Associated with each eigenvales is an eiguvector v which satisfies $Lv_i = \mu_c v_i, c = 1, 2, ----$

Eigautras* \Leftrightarrow base \Rightarrow $F_o = \Sigma_i C_i V_i$

 $F_n = \sum_i C_i L^n v_i = \sum_i C_i L^{n-1} L v_i \leftarrow \mu_i V - i$ $= \dots = \sum_i C_i \mu_i^n v_i$

Stable if $|\mu_i| \leq 1$ for all *i*.

Can be allowed for some growth novely

 $\mid \mu_i \mid \le 1 + o(\Delta t)$

(spectral radius)

Remember that our^{*} scheme was not perfectly cascoteint^{*} and $|\lambda|$ is bound away from 0. Both $|\lambda| < 1$ and $|\lambda| \ge \lambda_o > 0$ * must be simplified for convergence.

Using Fourier* Methods (or Van Newan* analysis)

The previous method is attractive, but often difficult to put into practice in more complicated situations. A less generd^{*}, but simpler method is based on a Fourier^{*} decomposition of solution U_f^n

$$U_f^n = \sum_{k=-J}^J A^n L e^{ikxj}$$

The exact solution is

$$(29)\mu(x,t,) = \sum_{k=-n}^{\infty} Bk(t)e^{ikx}$$

We can determine the amplibidies^{*} $B_k(t)$ term by each $B_k(t)$ has then to satisfy

(30)
$$\frac{\partial B_k}{\partial t} = -ikcB_k$$

or

(31) $B_k = a_k e^{-ikct}$ where $a_k = B_k(0)$ represents the initial conditions.

Let's now insert (28) in (22)

$$\begin{split} U_{f}^{n+1} &= \Sigma A_{k}^{n} e^{ikxj} - \frac{\lambda}{2} [\Sigma A_{k}^{n} (e^{ikxjh} - e^{ikxjh****})] \\ (32) &= \Sigma A_{k}^{n} (1 - i\lambda \sin(k\Delta x)) \\ &= \Sigma A k^{n+1} e^{ikxj} \\ \text{or } A_{k}^{n+1} &= A_{k}^{n} (1 - i\lambda \sin(k\Delta X)) \\ \text{The ratio } \frac{A_{k}^{n+1}}{A_{k}^{n}} \text{ is called the amplification* factor G.} \\ (33) & G &= 1 - i\lambda \sin(k\Delta x) ; A_{k}^{n+1} = GA_{k}^{n} \\ \text{If solutions are to remain bound, then we have } | G | \leq 1 \text{ (Van Newman*)} \\ &| G |^{2} = (1 - i\lambda \sin(k\Delta x))(1 + i\lambda \sin(k\Delta x)) \\ &= 1 + \lambda^{2} \sin^{2}(k\Delta x) \\ \text{which shows that } (22) \text{ is usable for all } \Delta t \\ \frac{Exercise:}{2} \text{ Solve for deff** equation} \\ &- \text{ for both together.} \\ \frac{\text{Von Neuman* condition}}{A_{k}^{n+1} = GA_{k}^{n}} \\ &= G^{n}A_{k}^{o} \text{ The scheme is stable } y. \end{split}$$

 $|\mu_i| \leq 1 + O(\Delta t)$ for all i

where μ_i are the eigewalier*** of the amplification matrix G since we have

 $\begin{array}{l} (S_r^{(g)})^n \leq \parallel G^n \parallel \leq \parallel G \parallel^n \\ \text{(Richmyer*, See for details)} \end{array}$