3. Basic Finite Difference Concepts

We concentrate at the finite-difference approach. Other methods will be stretched later. Now, first the framework in which we proceed to solve the equations of Chapter 2.

First a set of critical values ψ, ζ, μ, γ everywhere at time $\mathrm{t}=0$. The computational cycle then starts with the use of a finite-difference equation for ζ to approximate $\frac{d \zeta}{d t}$. We then computer ζ at a new time level. Then we solve the Poisson equation for ψ which then gives us μ, γ and so on as depicted by this figure below.

3.1 Basic Finite - difference forms.

a. Taylor series expansions

- Rectangular Mesh

- Taylor series expansion is an interval about $x=a$.
(1) $f(x)=f(a)+f \prime(a)(x-a)+\frac{f \prime \prime(a)(x-a)^{2}}{2!}+\frac{f^{(n)}(a)(x-a)^{(n)}}{n!}$

Then the uncentered first derivative form of $\frac{\partial f}{\partial x}$ can then be expressed as a function of
$f_{i, j}, f_{i+1, j}, f_{i-1, j}$
Taylor series expansion \longrightarrow
or
(2) $f_{C H, j}=f_{i, j}+\left.\frac{\partial f}{\partial x}\right|_{i, j}\left(x_{i+1, j}-x_{i, j}\right)+\left.\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right|_{i, j}\left(x_{i+1, j}-x_{i, j}\right)^{2}+\ldots$

$$
\begin{aligned}
& f_{i+1, j}=f_{i, j}+\left.\frac{\partial f}{\partial x}\right|_{i, j} \Delta x+\left.\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right|_{i, j} \delta x^{2}+O\left(\Delta x^{3}\right) \\
& \left.\longrightarrow \frac{\partial f}{\partial x}\right|_{i, j}=\frac{f_{i+1, j}-f_{i, j}}{\Delta x}+\underline{O(\Delta x)} \leftarrow \text { Terms of order } \Delta x \text { or first- }
\end{aligned}
$$ order accuracy.

We can expand backwards which then gives

$$
\left(\frac{\partial f}{\partial x}\right)_{i, j}=\frac{f_{i, j}-f_{i-1, j}}{\Delta x}
$$

The centered difference approximation $\frac{\partial f}{\partial x}$ is obtained by subtracting the forward and backwards expansions.

$$
\text { (6) } f_{i+1, j}=f_{i, j}+\left.\frac{\partial f}{\partial x}\right|_{i, j} \Delta x+\left.\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right|_{i, j} \Delta x^{2}+\left.\frac{1}{6} \frac{\partial^{3} f}{\partial x^{3}}\right|_{i, j} \Delta x^{3}+\left.\frac{1}{24} \frac{\partial^{4} f}{\partial x^{4}}\right|_{i, j} \Delta x^{4}+
$$ $O\left(\Delta x^{5}\right)$

$$
\begin{aligned}
& \quad f_{i-1, j}=f_{i, j}-\left.\frac{\partial f}{\partial x}\right|_{i, j} \Delta x+\left.\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right|_{i, j} \Delta x^{2}-\left.\frac{1}{6} \frac{\partial^{3} f}{\partial x^{3}}\right|_{i, j} \Delta x^{3}+\left.\frac{1}{24} \frac{\partial^{4} f}{\partial x^{4}}\right|_{i, j} \Delta x^{4}+ \\
& O\left(\Delta x^{5}\right)
\end{aligned}
$$

$\longrightarrow f_{i+1, j}-f_{i-1, j}=\left.2 \frac{\partial f}{\partial x}\right|_{i, j} \Delta x+\left.\frac{1}{3} \frac{\partial^{3} f}{\partial x^{3}}\right|_{i, j} \Delta x^{3}+O\left(\Delta x^{5}\right)$
$\left.\stackrel{\stackrel{\text { or }}{\partial f}}{\partial x}\right|_{i, j,}=\frac{f_{i+1, j}-f_{i-1, j}}{2 \Delta x}-\left.\frac{1}{6} \frac{\partial^{3} f}{\partial x^{3}}\right|_{i, j} \Delta x^{2}+O\left(\Delta x^{4}\right)$
(7) $\left.\frac{\partial f}{\partial x}\right|_{i, j}=\frac{f_{i+1, j}-f_{i-1, j}}{2 \Delta x}+O\left(\Delta x^{2}\right) \longleftarrow$ Second-order accuracy

Analog expressions can be derived for y and t
(8) $\left.\frac{\partial f}{\partial y}\right|_{i, j}=\frac{f_{i, f+1}-f_{i, f-1}}{2 \Delta y}+O\left(\Delta y^{2}\right)$
(9) $\left.\frac{\partial f}{\partial t}\right|_{i, j} ^{n}=\frac{f_{i j}^{n+1} *-f_{i j}^{n-1}}{2 \Delta t}+O\left(\Delta t^{2}\right)$

We can also derive an expression for $\frac{\partial^{2} f}{\partial x^{2}}$
$\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{i, j}=\frac{f_{i+1, j}+f_{i-1, j}-2 f_{i j}}{\Delta x^{2}}+O\left(\Delta x^{2}\right)$
Second Order Accurate
Polynomial fitting
Another method of obtaining finite-difference expressions is to fit an analytical function with free parameters to mesh-pour* values and then to analytically differentiate the function.

Commonly, polynomials are used.
Parabolic fit: Data* at* $i, i+1, i-1$ for f For convenience, $x=0$ is at the location i
$f(x)=a+b x+c x^{2}$

$$
\left\{\begin{array}{l}
f_{i-1}=a-b \Delta x+c \Delta x^{2} \\
f_{i}=a \\
f_{i+1}=a+b \Delta x+c \Delta x^{2}
\end{array}\right.
$$

$\rightarrow c=\frac{f_{i+1}+f_{i-1}-2 f_{i}}{2 \Delta x^{2}}$
$b=\frac{f_{i+1}-f_{i-1}}{2 \Delta x}$
(11) $\left.\rightarrow \frac{\partial f}{\partial x} \right\rvert\,=b$ and $\left.\frac{\partial^{2} f}{\partial x^{2}} \right\rvert\,=2 c$
which are obviously equivalent to the second order FD obtained in the previous section.

If we just use $y=a x+b$, then we obtained a first order *accuracy (forward and backward of the previous section). Higher polynomials give higher order. Beware of too high.

In general, a cubic spline* (polynomial) is often used since they indicate the presence of an uflexion* prout**.
c) Integral Method

In the integral method, we satisfy the governing equation in an integral *use, rather than a differential use*. We write the model equation in conservation* form
(12) $\frac{\partial \zeta}{\partial t}=-\frac{\partial(\mu \zeta)}{\partial x}+\alpha \frac{\partial^{2} \zeta}{\partial x^{2}}$

Integration from t to $t+\Delta t$ and $x-\frac{\Delta x}{2}$ to $x+\frac{\Delta x}{2}$
$\left.\zeta^{t}\right) d x=-\int_{t}^{2}+\Delta t$
$\quad * * * *$ FORMULA NOT READABLE FROM THIS POINT ON
Theorem: Mean Value Theorem
$\| \int_{z 1}^{z 1+\Delta z} f(z) d z \exists f\left(\vec{z} * \Delta z \exists \vec{z} \in z_{1}, z_{1}+\Delta z\right.$
Convergence is observed for $\Delta z \rightarrow 0$.
Using z at the lower integration limit (Euler's Integration) then (14) can be rewritten as

$$
\begin{aligned}
& \left.\quad \int_{x}^{t+\Delta t}-\int_{x}^{\Delta t}\right] \Delta x=-\left[(\mu \zeta)^{t} x+\frac{\Delta x}{2}-(\mu \zeta)^{t} x-\frac{\Delta}{2} \Delta t+\alpha\left[\left.\frac{\partial \zeta}{\partial x}\right|_{x-\frac{\Delta x}{2}} ^{t}-\right.\right. \\
& \frac{\partial \zeta}{t}
\end{aligned}
$$

The first derivatives can be evaluated as
$\zeta_{x+\Delta x}^{t}=\zeta_{x}^{t}+\int_{x}^{x+\Delta x} \frac{\partial \zeta}{\partial x} d x$

$$
\begin{aligned}
& \left.\frac{\partial z}{\partial x}\right|_{x+\frac{\Delta x}{2}} ^{t}=\frac{z_{x+\Delta x}^{t}-z_{x}^{t}}{\Delta x} \\
& (\mu \zeta)_{x+\frac{\Delta x}{t}}^{t}=\frac{1}{2}\left[(\mu \zeta)_{x}^{t}+(\mu \zeta)_{x+\Delta x}^{t}\right] \rightarrow \\
& (16) \frac{\zeta_{x}^{t+\Delta t}-\zeta_{x}^{t}}{\Delta t}=-\frac{(\mu \zeta)_{x+\Delta x}^{t}-(\mu \zeta)_{x-\Delta x}^{t}}{2 \Delta x}+\alpha \frac{\zeta_{x+\Delta x}^{t}+\zeta_{x-\Delta x}-2 \zeta_{x}^{t}}{\Delta x^{2}}
\end{aligned}
$$

Integration from $t-\Delta t$ to $t+\Delta t$ will give *catered in time
Advantage of this method is often appreciated in non-rectangular coordinate systems and because of the conservative property.
3.2 Trumcabion* errors, consistency, stability, and convergence

Suppose $\mu(x, t)$ is the exact solution to the initial value problem
(17) $\frac{\partial \mu}{\partial t}=\operatorname{alpha}(x, t)$
and $U(n \Delta t, j \Delta x)$ is $=U_{j}^{n}$ is the solution to the FD approximation of (17). This approach must be underlineconsistent, underlinestable, and must underlineconverge to be useful in physical problems.

Consistency: A FD approximation is consistent with a differential equation is the FD equation converges to the convect* differential equation as the space and time grid spacing* $\rightarrow 0$.

Stability: If U_{j}^{n} is the numerical solution and μ_{j} the exact solution at $t=n \Delta t$ and $x=j \Delta x$, then the FD approximation is stable of $Z_{j}^{n}=U_{j}^{n}-\mu_{j}^{n}$ remains founded as n trends to infinity for fixed Δt.

Convergence: If the difference between the theoretical solutions of FD and differential equations at a fixed point (x, t) trends to zero as $t \rightarrow 0$ and $\Delta x \rightarrow 0$ and $n, j \rightarrow \infty$ then the finite difference approximation converges to the continuous equation.

Trumbration* error: The local difference between the FD approximation and the Taylor series representation of the continuous problem as a fixed point is the *tr- error.

Theorem: (Lax and Richtmyer)
Given a properly parcel linear initial value problem and a finite difference approximation to it that solidifies* the consistency condition, stability (as Δx and $\Delta t \rightarrow o$) is the necessary and sufficient condition for convergence.

Example:
Let's consider the one-dimensional advection* equation with constant speed c

$$
\frac{\partial \mu}{\partial t}+c \frac{\partial \mu}{\partial x}=0
$$

The Taylor series for second order derivatives are
$\mu_{j}^{n+1}-\mu_{j}^{n-1}=\left.2 \Delta t\left(\frac{\partial \mu}{\partial t}\right)\right|_{j} ^{n}+\left.\frac{\Delta t^{3}}{3}\left(\frac{\partial^{3} \mu}{\partial t^{3}}\right)\right|_{j} ^{n}+\ldots$
$\mu_{f+}^{n}-\mu_{f-1}^{n}=2 \Delta x\left(\frac{\partial \mu}{\partial x}\right)_{f}^{n}+\left.\frac{\Delta x^{3}}{3}\left(\frac{\partial^{3} \mu}{\partial x^{3}}\right)\right|_{f} ^{n}+\ldots$
Combining we obtain
***insert formula here ${ }^{* * *}$
This FD approximation is consistent if the truscabian* error nehis** is $0\left(\Delta t^{2}+\Delta x^{2}\right)$ goes to zero as $\Delta t, \Delta x \rightarrow 0$.

From (19)
$\left|E_{j}^{n}\right| \leq \frac{\Delta t^{2}}{126} M_{1}+|c| \frac{\Delta x^{2}}{12} M_{2}$
where M_{1} and M_{2} are the bounds for $\left|\frac{\partial^{3} \mu}{\partial t^{3}}\right|$ and $\left|\frac{\partial^{3} \mu}{\partial x^{3}}\right|$ respectively. Note that these bounds hold for the true solution, i.e they are independent of the numerical treatment* of the equation. Therefore $E_{f}^{n} \rightarrow 0$ as $\Delta x, \Delta t \rightarrow 0$.

If we consider only finite-difference forward in Vines*, then
$\left|E_{f}^{n}\right| \leq \frac{\Delta t}{2} M_{3}+|c| \frac{\Delta x^{2}}{12} M_{4}$ whose M_{3} and $\left.M_{4}\right)$ are the bounds* for $\left|\frac{\partial^{2} \mu}{\partial t^{2}}\right|$ and $\left|\frac{\partial^{3} \mu}{\partial x^{3}}\right|$ respectively.

We are now interested in the accumulated error of FD solution. If we consider the latter (FD found in *line)
(20) $U_{f}^{n+1}=U_{f}^{n}-\frac{\lambda}{2}\left(U_{f+1}^{n}-U_{f-1}^{n}\right)$
(21) $\mu_{f}^{n+1}=\mu_{f}^{n}-\frac{\lambda}{2}\left(\mu_{f+1}^{n}-\mu_{f-1}^{n}\right)+\Delta t \xi_{f}^{n}$
with $\lambda=\frac{c \Delta t}{\Delta x}$
The accumulated error is $\left.e_{f+1}^{n}-e_{f-1}^{n}\right)+\Delta t \varepsilon_{j}^{n}$
By substitution of (21) to (20),
(22) $e_{f}^{n+1}=e_{f}^{n}-\frac{\lambda}{2}\left(e_{f+1}^{n}-e_{f-1}^{n}\right)+\Delta t \varepsilon_{j}^{n}$

By defining $E^{n}=\max _{f}\left|e_{f}^{n}\right|$ and $\varepsilon=\max _{f, u}\left|\xi_{f}^{n}\right|$ then
$E^{n+1} \leq(1+|\lambda|) E^{n}+\Delta t \varepsilon$

Successive use of this recursion* formula does NOT lead to a finite bound for E

$$
\begin{aligned}
& E^{n+1} \leq(1+|\lambda|)\left[(1+|\lambda|) E^{n-1}+\Delta t \varepsilon\right]+\Delta t \varepsilon \\
& \leq \ldots . \\
& \leq\left[1+(1+|\lambda|)+(1+|\lambda|)^{i}+\ldots+\left(1+(\lambda 1)^{* u}\right] \Delta t \varepsilon\right. \\
& \text { if } E^{0}=0 \\
& \leq \frac{1+|\lambda|)^{n}-1}{|\lambda|} \Delta t \varepsilon \\
& \leq \frac{\varepsilon \Delta x}{|c|}\left[\left(1+\frac{|c| t}{n \Delta x}\right)^{n}-1\right] \frac{z \Delta x}{|c|}\left(\text { with } \Delta t=\frac{t}{n}\right. \\
& \leq \frac{\varepsilon \Delta x}{|c|}\left(e \frac{|c| t}{\Delta x}-1\right)
\end{aligned}
$$

which does to ∞ as $\Delta x \rightarrow 0$ and $n \rightarrow \infty$
Failure to find an upper limit for the error does not imply that this error will grow indefinitely. This can be done only by a practical test.

For this case, it turns out that an upper limit can be found if we replace U_{f}^{n} of (20) by $\frac{1}{2}\left(U_{f-1}^{n}+U_{f+1}^{n}\right)$

Then, instead of (22), we have
$e_{f}^{n+1}=\left(\frac{1}{2}+\frac{\lambda}{2} e_{f-1}^{n}+\left(\frac{1}{2}-\frac{\lambda}{2}\right) e_{f+1}^{n}+\Delta t \varepsilon_{f}^{n}\right.$
$E^{n}+1 \leq\left(\left|\frac{1}{2}+\frac{\lambda}{2}\right|+\left|\frac{1}{2}-\frac{\lambda}{2}\right|\right) E^{n}+\Delta t \varepsilon$
As long as $|\lambda| \leq 1$ (CFL critoud*)
$E^{n+1} \leq E^{n}+\Delta t \varepsilon$
$\leq n \Delta t \varepsilon=t \varepsilon$
The accumulated error at a fixed time is then proportional to the trucation error varepsilon.

From Taylor series expansions
$\frac{i}{2}\left(\mu_{f-1}^{n}+\mu_{f+1}^{n}\right)=u_{f}^{n}+\frac{\Delta x^{2}}{4}\left(\left.\left(\frac{\partial^{2} \mu}{\partial x^{2}}\right)\right|_{f} ^{n}+\left.\left(\frac{\partial^{2} \mu}{\partial x^{2}}\right)\right|_{j} ^{n}\right)$
The overall trucation* error can be bounded by
$\left|\varepsilon_{f}^{n}\right| \leq \Delta t \frac{M_{1}}{2}+\Delta x \frac{|c| M_{2}}{2 \lambda}+\Delta x^{2} \frac{|c| M_{3}}{C}$
Where M_{1}, M_{2}, and M_{3} are upper bounds for $\frac{\partial^{2} \mu}{\partial t^{2}} \frac{\partial^{2} \mu}{\partial x^{2}}, \frac{\partial^{3} \mu}{\partial x^{3}}$ respectively.

Thus* the soleve is ${ }^{* *}$ first $\lambda \neq 0$ and E, the accumulated error varesters* as the mesh width goes to zero.

$$
\left\{\begin{array}{l}
\lim U_{f}^{n}=\mu(x, t) \\
\Delta x \rightarrow 0 \\
\Delta t \rightarrow 0 \\
\lambda<0
\end{array}\right.
$$

This FD scheme* is then convergent

3.3 Norms and numerical stability analysis

a. Vector and matrix norms and stability definition

Stability is associated with the property of a numerical solution which remain finite at all points in the (x, t) domain. (Unstable \leftrightarrow blow ups of the solution.)

A vector norm is defined as a measure of a vector in real-number space. The norm must satisfy

$$
\begin{aligned}
& \|\vec{x}\| \geq 0, \vec{x} \|=0, \leftrightarrow \vec{x}=\overrightarrow{0} \\
& \|x \vec{x}\|=\mid \alpha\|\vec{x}\| \text { for any scalar } x \\
& \|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\| \text { for any } \vec{x}, \vec{y}
\end{aligned}
$$

A frequently used form is the $L p$ norm.

$$
\|\vec{x}\|=\left(\sum_{f=1}^{n}|x j|^{p}\right)^{\frac{1}{p}}
$$

when $\vec{x}=(x j)$ is an n-dimensional vector. Most used* are:
(a) Euchidian norm, $p=2$
$L_{\infty}(\mathrm{b})$ "mascinus" norm, $\mathrm{p}=\infty\|x\|_{\infty}=\max _{f}|x j|$
(c) L_{1}) norm, $\mathrm{p}=1\|x\|_{1}=\Sigma_{f}|x j|$

If we define \vec{U}^{n} by $\overrightarrow{U^{n}}=\left(U_{f}^{n}\right)$, then a numerical scheme is stable if there exists a number M such that $\left\|\vec{U}^{n}\right\| \leq M\left\|\vec{U}^{0}\right\|$ (M can be a function of time t since solutions grow in time)

By analogy with the definition of vector norms*, we define the matrix norm as a measure in real-number space. The following conditions must be satisfied:

$$
\|A>0,\| A \|=0, \leftrightarrow A=(0)
$$

$$
\begin{aligned}
& \|\alpha A\|=|\alpha\|\mid=A\| \text { for any scalar } \alpha \\
& \|A+B\| \leq\|A\|+\|B\| \\
& \|A-B\| \leq\|A\|\|B\| \text { for any A, B. }
\end{aligned}
$$

The most cower* norms are as before the L_{1}, L_{2}, and L_{∞} norms.
$\|A\|_{1}=\operatorname{Max}_{f} \Sigma_{i}|a i j|$ (Sum of all colors*)
$\|A\|_{\infty}=M a x i^{\Sigma_{f}} \mid$ aij \mid (Sum of all norms*)
\| $A \|_{2}=\sqrt{a(A t A)}$ where A is the absolute tangent eigurate* of the matrix AtA.
b) The Lax-Richtmyer Theorem

Theorem: Numerical* stability and consistency of a finite difference scheme imply convergence.

This theorem is important because it enables us to prove convergence of a numerical solution without explicit knowledge of the exact solution. The FD equation can be rewritten as
$\vec{U}^{n+1}=L \vec{U}^{n}+\vec{R}^{n}$
where L is a linear operator (expressed in a matrix form) and \vec{R}^{n} is the in-homogenous part of the equation such as foraing*

Another definition of the stability, slightly more restrictive, let $f=r$ for most purposes, *especially in the following*. A finite FD scheme of the type of (26) is stable for any time t and any $S>0$, there exists rwo* values ρ, n such that
$\left\|(L)^{n}\right\| \leq M$ for all $\Delta x<\delta, \Delta t<y \Delta x$ and n provided that $n \Delta t \leq t$.

Since $\left\|\vec{U}^{n}\right\| \leq\left\|(L)^{n}\right\|\left\|\vec{U}^{0}+\right\|(L)^{n-1}\| \| \vec{R}^{0}\|+\ldots\|(L)^{0}\| \|$ $\vec{R}^{n-1} \|$
and since we can reasonably assume the total ferciy ${ }^{*} \Sigma_{k}\left\|R^{k}\right\|$ to be finite, this definition does imply *the are given before.

Proof of the LR Theorem
$\vec{U}^{n+1}=L \vec{U}^{n}+\vec{R}^{n}$
$\vec{\mu}^{n+1}=L \vec{\mu}^{n}+\vec{R}^{n}+\Delta t \vec{\varepsilon}^{n}$
The accumulated error vector \vec{e}^{n+1} is then
$\vec{e}^{n+1}=$ Lvece $^{n}+\Delta t \bar{\varepsilon}^{n}$
$=L\left(L e^{n-1}+\Delta t \varepsilon^{n-1}\right)+\Delta t \bar{\varepsilon}^{n}$
$=\left((L)^{n} \vec{\varepsilon}^{0}+(L)^{n-1} \vec{\varepsilon}^{1}+\ldots .\left(\Delta^{0} \vec{\varepsilon}^{n}\right) \Delta t\right.$
$\rightarrow\left\|\vec{e}^{n}\right\| \leq \Delta t\left(\left\|(L)^{n-1}\right\|\left\|\vec{\varepsilon}^{0}\right\|+\ldots+\left\|(L)^{0}\right\|\left\|\varepsilon^{n-1}\right\|\right)$
since the scheme* is constant ${ }^{*}$, for every $\varepsilon>0$, there exists two numbers δ, η such that $\left\|\varepsilon^{k}\right\|<\varepsilon$ for all $\Delta x<\delta, \Delta t<\eta \Delta x$

Since the scheme is furthermore stable, we have $\left\|(L)^{k}\right\| \leq M$ for all $k, k \Delta t \leq t$, then
(27) $\left\|\vec{e}^{n}\right\| \leq n \Delta t \varepsilon M=t \varepsilon M$

Since ε is arbitrarily small, the theorem is proven.
The 2 R theorem also holds in the opposite direction...convergence and consistency \rightarrow stability.
C) Stability Analysis

The previous theorem allows us to concentrate on the stability of the numerical scheme *otter* then it's convergence, one you admit consistency. ${ }^{* *}$

In section 3.2, we were not able to prove convergence of the scheme ***

$$
U_{n}^{f+1}=U_{f}^{n}-\frac{\lambda}{2}\left(U_{f+1}^{n}-U_{f-1}^{n}\right)
$$

1) Using matrix norms

The linear operator applicable in this case is

Since $\left\|L^{n}\right\| \leq\|L\|^{n}$ stability is assured if $\|L\| \leq 1$. Actually, $\|L\| \leq 1+0(\Delta t)$ is sufficient since
$\left.\lim _{n \rightarrow \infty}\|L\|^{n} \leq \lim \left(1+\frac{0(f)}{n}\right)^{n}=e^{0(t)}\right)$
which is compatible with the previous definition. this criteria is named after Von Neumann.

We find that $\left\|L_{1}\right\|=\left\|L_{\infty}\right\|=1+|\lambda|$.
Since $\lambda=\frac{c \Delta t}{\Delta x}$, the assumption $|\lambda|=0(\Delta t)$ would imply $\Delta x=$ constant. This is incompatible** with the limit process $\Delta x, \Delta t \rightarrow$ Hence matter** L_{1} or L_{∞} can be used. The L_{2} norm sequares* knowledge of the eiguvaules* of LTL.

The linear operator for the diffinive* scheme (24) is

U_{j}^{n} is replaced by $\frac{1}{2}\left(U_{f-1}^{n}+U_{f+1}^{n}\right.$
We find that
$\left\|L_{3}\right\|=\|L\|_{\infty}=1 y|\lambda| \leq 1,|\lambda| y|\lambda|>1^{* * * * * *}$
Hence, in this case, stability is assured as long as $|\lambda| \leq 1$ (Same as convergence)

Let's now consider the following parabolic differential equation.
$\frac{\partial F}{\partial t}=K \frac{\partial^{2} F}{\partial x^{2}}$
$\frac{F_{f}^{u+1}-F_{j}^{n}}{\text { or } \Delta t}=K \frac{F_{f+1}^{n}-2 F_{f}^{n}+F_{f-1}^{n}}{\Delta x^{2}}$
$F_{f}^{n+1}=\lambda F_{f-1}^{n}+(1-2 \lambda) F_{f}^{n}+\lambda F_{f+1}^{n}$, with $\lambda=\frac{K \Delta t}{\Delta x^{2}}$
If the boundary values $F_{o}^{n}=F_{J}^{n}=0$, then

(2) $F_{n}=L F_{n-1}=L^{n} F_{o}$, where L is an amplification matrix.

The eigeuvelues μ of L are the roots of
$|L-\mu I|-0$, where I is determined* of order J-1.
$\Rightarrow \mathrm{J}-1$ eiguenles**. Associated with each eigenwales is an eiguvector v which satisfies $L v_{i}=\mu_{c} v_{i}, c=1,2,------$

Eigautras* \Leftrightarrow base $\Rightarrow F_{o}=\Sigma_{i} C_{i} V_{i}$
$F_{n}=\Sigma_{i} C_{i} L^{n} v_{i}=\Sigma_{i} C_{i} L^{n-1} L v_{i} \leftarrow \mu_{i} V-i$
$=\ldots=\Sigma_{i} C_{i} \mu_{i}^{n} v_{i}$
Stable if $\left|\mu_{i}\right| \leq 1$ for all i.
Can be allowed for some growth novely
$\left|\mu_{i}\right| \leq 1+o(\Delta t)$
(spectral radius)
Remember that our* scheme was not perfectly cascoteint* and $|\lambda|$ is bound away from 0 . Both $|\lambda|<1$ and $|\lambda| \geq \lambda_{o}>0 *$ must be simplified for convergence.

Using Fourier* Methods (or Van Newan* analysis)

The previous method is attractive, but often difficult to put into practice in more complicated situations. A less geuerd*, but simpler method is based on a Fourier* decomposition of solution U_{f}^{n}

$$
U_{f}^{n}=\sum_{k=-J}^{J} A^{n} L e^{i k x j}
$$

The exact solution is

$$
(29) \mu(x, t,)=\sum_{k=-n}^{n} B k(t) e^{i k x}
$$

We can determine the amplibidies* $B_{k}(t)$ term by each $B_{k}(t)$ has then to satisfy
(30) $\frac{\partial B_{k}}{\partial t}=-i k c B_{k}$
or
(31) $B_{k}=a_{k} e^{-i k c t}$ where $a_{k}=B_{k}(0)$ represents the initial conditions.

Let's now insert (28) in (22)
$U_{f}^{n+1}=\Sigma A_{k}^{n} e^{i k x j}-\frac{\lambda}{2}\left[\Sigma A_{k}^{n}\left(e^{i k x j h}-e^{i k x j h * * * *}\right)\right]$
(32) $=\Sigma A_{k}^{n}(1-i \lambda \sin (k \Delta x)$
$=\Sigma A k^{n+1} e^{i k x j}$
or $A_{k}^{n+1}=A_{k}^{n}(1-i \lambda \sin (k \Delta X)$
The ratio $\frac{A_{k}^{n+1}}{A_{k}^{n}}$ is called the amplification* factor G .
(33) $G=1-i \lambda \sin (k \Delta x) ; A_{k}^{n+1}=G A_{k}^{n}$

If solutions are to remain bound, then we have $|G| \leq 1$ (Van Newman*)
$|G|^{2}=(1-i \lambda \sin (k \Delta x))(1+i \lambda \sin (k \Delta x)$
$=1+\lambda^{2} \sin ^{2}(k \Delta x)$
which shows that (22) is usable for all Δt
Exercise: Solve for deff ${ }^{* *}$ equation

- for both together.

Von Neunan* condition (more restricted)
$A_{k}^{n+1}=G A_{k}^{n}$
$=G^{n} A_{k}^{o}$ The scheme is stable y.
$\left|\mu_{i}\right| \leq 1+O(\Delta t)$ for all i
where μ_{i} are the eigewalier*** of the amplification matrix G since we have
$\left(S_{r}^{(g)}\right)^{n} \leq\left\|G^{n}\right\| \leq\|G\|^{n}$
(Richmyer*, See for details)

