
3. Basic Finite Difference Concepts

We concentrate at the finite-difference approach. Other methods
will be stretched later. Now, first the framework in which we proceed
to solve the equations of Chapter 2.

First a set of critical values ψ, ζ, µ, γ everywhere at time t=0. The
computational cycle then starts with the use of a finite-difference

equation for ζ to approximate
dζ

dt
. We then computer ζ at a new

time level. Then we solve the Poisson equation for ψ which then
gives us µ, γ and so on as depicted by this figure below.
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3.1 Basic Finite - difference forms.

a. Taylor series expansions

- Rectangular Mesh

- Taylor series expansion is an interval about x = a.

(1) f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)(x− a)2

2!
+
f (n)(a)(x− a)(n)

n!

Then the uncentered first derivative form of
∂f

∂x
can then be

expressed as a function of

fi,j , fi+1,j , fi−1,j

Taylor series expansion −→

(2) fCH,j = fi,j +
∂f

∂x

∣∣∣∣∣
i,j

(xi+1,j−xi,j) +
1

2

∂2f

∂x2

∣∣∣∣∣
i,j

(xi+1,j−xi,j)
2 + ...

or

fi+1,j = fi,j +
∂f

∂x

∣∣∣∣∣
i,j

∆x+
1

2

∂2f

∂x2

∣∣∣∣∣
i,j

δx2 +O(∆x3)

−→ ∂f

∂x

∣∣∣∣∣
i,j

=
fi+1,j − fi,j

∆x
+O(∆x)← Terms of order ∆x or first-

order accuracy.
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We can expand backwards which then gives

(
∂f

∂x
)i,j =

fi,j − fi−1,j

∆x

The centered difference approximation
∂f

∂x
is obtained by sub-

tracting the forward and backwards expansions.

(6)fi+1,j = fi,j+
∂f

∂x

∣∣∣∣∣
i,j

∆x+
1

2

∂2f

∂x2

∣∣∣∣∣
i,j

∆x2+
1

6

∂3f

∂x3

∣∣∣∣∣
i,j

∆x3+
1

24

∂4f

∂x4

∣∣∣∣∣
i,j

∆x4+

O(∆x5)

fi−1,j = fi,j−
∂f

∂x

∣∣∣∣∣
i,j

∆x+
1

2

∂2f

∂x2

∣∣∣∣∣
i,j

∆x2−1

6

∂3f

∂x3

∣∣∣∣∣
i,j

∆x3+
1

24

∂4f

∂x4

∣∣∣∣∣
i,j

∆x4+

O(∆x5)

−→ fi+1,j − fi−1,j = 2
∂f

∂x

∣∣∣∣∣
i,j

∆x+
1

3

∂3f

∂x3

∣∣∣∣∣
i,j

∆x3 +O(∆x5)

or
∂f

∂x

∣∣∣∣∣
i,j,

=
fi+1,j − fi−1,j

2∆x
− 1

6

∂3f

∂x3

∣∣∣∣∣
i,j

∆x2 +O(∆x4)

(7)
∂f

∂x

∣∣∣∣∣
i,j

=
fi+1,j − fi−1,j

2∆x
+O(∆x2)←− Second-order accuracy

Analog expressions can be derived for y and t

(8)
∂f

∂y

∣∣∣∣∣
i,j

=
fi,f+1 − fi,f−1

2∆y
+O(∆y2)

(9)
∂f

∂t

∣∣∣∣∣
n

i,j

=
fn+1

ij ∗ −fn−1
ij

2∆t
+O(∆t2)
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We can also derive an expression for
∂2f

∂x2

∂2f

∂x2

∣∣∣∣∣
i,j

=
fi+1,j + fi−1,j − 2fij

∆x2
+O(∆x2)

Second Order Accurate

Polynomial fitting

Another method of obtaining finite-difference expressions is to
fit an analytical function with free parameters to mesh-pour* values
and then to analytically differentiate the function.

Commonly, polynomials are used.

Parabolic fit: Data* at* i, i+ 1, i− 1 for f
For convenience, x = 0 is at the location i
f(x) = a+ bx+ cx2∣∣∣∣∣fi−1 = a− b∆x+ c∆x2∣∣∣∣∣fi = a∣∣∣∣∣fi+1 = a+ b∆x+ c∆x2

→ c =
fi+1 + fi−1 − 2fi

2∆x2

b =
fi+1 − fi−1

2∆x

(11) → ∂f

∂x

∣∣∣∣∣ = b and
∂2f

∂x2

∣∣∣∣∣ = 2c

which are obviously equivalent to the second order FD obtained
in the previous section.

If we just use y = ax+b, then we obtained a first order *accuracy
(forward and backward of the previous section). Higher polynomials
give higher order. Beware of too high.
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In general, a cubic spline* (polynomial) is often used since they
indicate the presence of an uflexion* prout**.

c)Integral Method
In the integral method, we satisfy the governing equation in an

integral *use, rather than a differential use*. We write the model
equation in conservation* form

(12)
∂ζ

∂t
= −∂(µζ)

∂x
+ α

∂2ζ

∂x2

Integration from t to t+ ∆t and x− ∆x

2
to x+

∆x

2

(13)
∫ x+ ∆x

2

x−∆x
2

)(
∫ t+∆t

t

∂ζ

∂t
dt)dx = −

∫ t+∆t

t
(
∫ x+ ∆x

2

x−∆x
2

∂(µζ)

∂x
dx+k

∫ x+ ∆x
2

x−∆x
2

∂2ζ

∂x2
dx)dt

∫ x+ ∆x
2

x−∆x
2

(ζt+∆t−

ζt)dx = −
∫ t+∆t

t
****FORMULA NOT READABLE FROM THIS POINT ON****

Theorem: Mean Value Theorem∣∣∣∣∣
∣∣∣∣∣
∫ z1+∆z

z1
f(z)dz∃f(~z ∗∆z∃~z ∈ z1, z1 + ∆z

Convergence is observed for ∆z → 0.

Using z at the lower integration limit (Euler’s Integration) then
(14) can be rewritten as∫ t+∆t

x
−
∫ ∆t

x
]∆x = −[(µζ)tx+

∆x

2
−(µζ)tx−∆

2
∆t+α[

∂ζ

∂x

∣∣∣∣∣
t

x+ ∆
2

−

∂ζ

∂x

∣∣∣∣∣
t

x−∆x
2

∆t

The first derivatives can be evaluated as

ζt
x+∆x = ζt

x +
∫ x+∆x

x

∂ζ

∂x
dx

or
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∂z

∂x

∣∣∣∣∣
t

x+ ∆x
2

=
zt

x+∆x − zt
x

∆x

(µζ)t
x+ ∆x

2
=

1

2
[(µζ)t

x + (µζ)t
x+∆x]→

(16)
ζt+∆t
x − ζt

x

∆t
= −

(µζ)t
x+∆x − (µζ)t

x−∆x

2∆x
+α

ζt
x+∆x + ζx−∆x − 2ζt

x

∆x2

Integration from t−∆t to t+ ∆t will give *catered in time

Advantage of this method is often appreciated in non-rectangular
coordinate systems and because of the conservative property.

3.2 Trumcabion* errors, consistency, stability, and convergence
Suppose µ(x, t) is the exact solution to the initial value problem

(17)
∂µ

∂t
= alpha(x, t)

and U(n∆t, j∆x) is = Un
j is the solution to the FD approximation

of (17). This approach must be underlineconsistent, underlinestable,
and must underlineconverge to be useful in physical problems.

Consistency: A FD approximation is consistent with a differential
equation is the FD equation converges to the convect* differential
equation as the space and time grid spacing* → 0.

Stability: If Un
j is the numerical solution and µj the exact solution

at t = n∆t and x = j∆x, then the FD approximation is stable of
Zn

j = Un
j − µn

j remains founded as n trends to infinity for fixed ∆t.

Convergence: If the difference between the theoretical solutions
of FD and differential equations at a fixed point (x, t) trends to zero
as t → 0 and ∆x → 0 and n, j → ∞ then the finite difference
approximation converges to the continuous equation.

Trumbration* error: The local difference between the FD ap-
proximation and the Taylor series representation of the continuous
problem as a fixed point is the *tr—- error.

Theorem: (Lax and Richtmyer)
Given a properly parcel linear initial value problem and a finite

difference approximation to it that solidifies* the consistency condi-
tion, stability ( as ∆x and ∆t → o) is the necessary and sufficient
condition for convergence.

Example:
Let’s consider the one-dimensional advection* equation with con-

stant speed c
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∂µ

∂t
+ c

∂µ

∂x
= 0.

The Taylor series for second order derivatives are

µn+1
j − µn−1

j = 2∆t(
∂µ

∂t
)

∣∣∣∣∣
n

j

+
∆t3

3
(
∂3µ

∂t3
)

∣∣∣∣∣
n

j

+ ...

µn
f+ − µn

f−1 = 2∆x(
∂µ

∂x
)n
f +

∆x3

3
(
∂3µ

∂x3
)

∣∣∣∣∣
n

f

+ ...

Combining we obtain
***insert formula here***
This FD approximation is consistent if the truscabian* error ne-

his** is 0(∆t2 + ∆x2) goes to zero as ∆t,∆x→ 0.

From (19)

| En
j |≤

∆t2

126
M1+ | c | ∆x2

12
M2

where M1 and M2 are the bounds for | ∂
3µ

∂t3
| and | ∂

3µ

∂x3
| re-

spectively. Note that these bounds hold for the true solution, i.e
they are independent of the numerical treatment* of the equation.
Therefore En

f → 0 as ∆x,∆t→ 0.

If we consider only finite-difference forward in Vines*, then

| En
f |≤

∆t

2
M3+ | c | ∆x2

12
M4 whose M3 and M4) are the bounds*

for | ∂
2µ

∂t2
| and | ∂

3µ

∂x3
| respectively.

We are now interested in the accumulated error of FD solution.
If we consider the latter (FD found in *line)

(20) Un+1
f = Un

f −
λ

2
(Un

f+1 − Un
f−1)

(21) µn+1
f = µn

f −
λ

2
(µn

f+1 − µn
f−1) + ∆tξn

f

with λ =
c∆t

∆x
The accumulated error is en

f+1 − en
f−1) + ∆tεn

j

By substitution of (21) to (20),

(22) en+1
f = en

f −
λ

2
(en

f+1 − en
f−1) + ∆tεn

j

By defining En = maxf | en
f | and ε = maxf,u | ξn

f | then

En+1 ≤ (1+ | λ |)En + ∆tε
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Successive use of this recursion* formula does NOT lead to a
finite bound for E

En+1 ≤ (1+ | λ |)[(1+ | λ |)En−1 + ∆tε] + ∆tε
≤ ....
≤ [1 + (1+ | λ |) + (1+ | λ |)i + ...+ (1 + (λ1)∗u]∆tε

if E0 = 0

≤ 1+ | λ |)n − 1

| λ |
∆tε

≤ ε∆x

| c |
[(1 +

| c | t
n∆x

)n − 1]
z∆x

| c |
(with ∆t =

t

n

≤ ε∆x

| c |
(e
| c | t
∆x

− 1)

which does to ∞ as ∆x→ 0 and n→∞
Failure to find an upper limit for the error does not imply that

this error will grow indefinitely. This can be done only by a practical
test.

For this case, it turns out that an upper limit can be found if we

replace Un
f of (20) by

1

2
(Un

f−1 + Un
f+1)

Then, instead of (22), we have

en+1
f = (

1

2
+
λ

2
en

f−1 + (
1

2
− λ

2
)en

f+1 + ∆tεn
f

or

En + 1 ≤ (| 1

2
+
λ

2
| + | 1

2
− λ

2
|)En + ∆tε

As long as | λ |≤ 1 (CFL critoud*)
En+1 ≤ En + ∆tε
≤ n∆tε = tε
The accumulated error at a fixed time is then proportional to the

trucation error varepsilon.
From Taylor series expansions
i

2
(µn

f−1 + µn
f+1) = un

f +
∆x2

4
((
∂2µ

∂x2
)

∣∣∣∣∣
n

f

+ (
∂2µ

∂x2
)

∣∣∣∣∣
n

j

)

The overall trucation* error can be bounded by

| εn
f |≤ ∆t

M1

2
+ ∆x

| c |M2

2λ
+ ∆x2 | c |M3

C

Where M1,M2, and M3 are upper bounds for
∂2µ

∂t2
∂2µ

∂x2
,
∂3µ

∂x3
re-

spectively.
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Thus* the soleve is ** first λ 6= 0 and E, the accumulated error
varesters* as the mesh width goes to zero.∣∣∣∣∣ limUn

f = µ(x, t)∣∣∣∣∣∆x→ 0∣∣∣∣∣∆t→ 0∣∣∣∣∣λ < 0

This FD scheme* is then convergent

3.3 Norms and numerical stability analysis

a. Vector and matrix norms and stability definition

Stability is associated with the property of a numerical solution
which remain finite at all points in the (x, t) domain. (Unstable ↔
blow ups of the solution.)

A vector norm is defined as a measure of a vector in real-number
space. The norm must satisfy

|| ~x ||≥ 0, ~x ||= 0,↔ ~x = ~0
|| x~x ||=| α ||| ~x || for any scalar x
|| ~x+ ~y ||≤|| ~x || + || ~y || for any ~x, ~y

A frequently used form is the Lp norm.

|| ~x ||= (
n∑

f=1

| xj |p)
1
p

when ~x = (xj) is an n-dimensional vector. Most used* are:
(a) Euchidian norm, p = 2
L∞(b) ”mascinus” norm, p = ∞ || x ||∞= maxf | xj |
(c) L1) norm, p=1 || x ||1= Σf | xj |

If we define ~Un by ~Un = (Un
f ), then a numerical scheme is stable

if there exists a number M such that || ~Un ||≤M || ~U0 || (M can be
a function of time t since solutions grow in time)

By analogy with the definition of vector norms*, we define the
matrix norm as a measure in real-number space. The following
conditions must be satisfied:

|| A > 0, || A ||= 0,↔ A = (0)
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|| αA ||=| α ||| A || for any scalar α
|| A+B ||≤|| A || + || B ||
|| A−B ||≤|| A |||| B || for any A, B.

The most cower* norms are as before the L1, L2, andL∞ norms.

|| A ||1= MaxfΣi | aij | (Sum of all colors*)
|| A ||∞= MaxiΣf | aij | (Sum of all norms*)

|| A ||2=
√
a(AtA) where A is the absolute tangent eigurate* of

the matrix AtA.

b) The Lax-Richtmyer Theorem
Theorem: Numerical* stability and consistency of a finite differ-

ence scheme imply convergence.
This theorem is important because it enables us to prove con-

vergence of a numerical solution without explicit knowledge of the
exact solution. The FD equation can be rewritten as

~Un+1 = L~Un + ~Rn

where L is a linear operator (expressed in a matrix form) and ~Rn

is the in-homogenous part of the equation such as foraing*

Another definition of the stability, slightly more restrictive, let
f = r for most purposes, *especially in the following*. A finite FD
scheme of the type of (26) is stable for any time t and any S > 0,
there exists rwo* values ρ, n such that
|| (L)n ||≤ M for all ∆x < δ,∆t < y∆x and n provided that

n∆t ≤ t.

Since ‖ ~Un ‖≤‖ (L)n ‖‖ ~U0+ ‖ (L)n−1 ‖‖ ~R0 ‖ +... ‖ (L)0 ‖‖
~Rn−1 ‖

and since we can reasonably assume the total ferciy * Σk ‖ Rk ‖
to be finite, this definition does imply *the are given before.

Proof of the LR Theorem

~Un+1 = L~Un + ~Rn

~µn+1 = L~µn + ~Rn + ∆t~εn

The accumulated error vector ~en+1 is then

~en+1 = Lvecen + ∆t~εn

= L(Len−1 + ∆t~εn−1) + ∆t~εn

= ((L)n~ε0 + (L)n−1~ε1 + ....(∆0~εn)∆t

→‖ ~en ‖≤ ∆t(‖ (L)n−1 ‖‖ ~ε0 ‖ +...+ ‖ (L)0 ‖‖ εn−1 ‖)
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since the scheme* is constant*, for every ε > 0, there exists two
numbers δ, η such that ‖ ~εk ‖< ε for all ∆x < δ,∆t < η∆x

Since the scheme is furthermore stable, we have ‖ (L)k ‖≤M for
all k, k∆t ≤ t,then

(27) ‖ ~en ‖≤ n∆tεM = tεM
Since ε is arbitrarily small, the theorem is proven.
The 2R theorem also holds in the opposite direction...convergence

and consistency → stability.

C) Stability Analysis
The previous theorem allows us to concentrate on the stability of

the numerical scheme *otter* then it’s convergence, one you admit
consistency. **

In section 3.2, we were not able to prove convergence of the
scheme ***

U f+1
n = Un

f −
λ

2
(Un

f+1 − Un
f−1)
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1) Using matrix norms
The linear operator applicable in this case is

Since ‖ Ln ‖≤‖ L ‖n stability is assured if ‖ L ‖≤ 1. Actually,
‖ L ‖≤ 1 + 0(∆t) is sufficient since

lim
n→∞

‖ L ‖n≤ lim(1 +
0(f)

n
)n = e0(t))

which is compatible with the previous definition. this criteria is
named after Von Neumann.

We find that ‖ L1 ‖=‖ L∞ ‖= 1+ | λ |.
Since λ =

c∆t

∆x
, the assumption | λ |= 0(∆t) would imply ∆x =

constant. This is incompatible** with the limit process ∆x,∆t →
Hence matter** L1orL∞ can be used. The L2 norm sequares* knowl-
edge of the eiguvaules* of LTL.

The linear operator for the diffinive* scheme (24) is

Un
j is replaced by

1

2
(Un

f−1 + Un
f+1

We find that
‖ L3 ‖=‖ L ‖∞= 1y | λ |≤ 1, | λ | y | λ |> 1******
Hence, in this case, stability is assured as long as | λ |≤ 1 (Same

as convergence)
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Let’s now consider the following parabolic differential equation.

∂F

∂t
= K

∂2F

∂x2

F u+1
f − F n

j

∆t
= K

F n
f+1 − 2F n

f + F n
f−1

∆x2
or

F n+1
f = λF n

f−1 + (1− 2λ)F n
f + λF n

f+1, with λ =
K∆t

∆x2

If the boundary values F n
o = F n

J = 0, then

(2) Fn = LFn−1 = LnFo, where L is an amplification matrix.
The eigeuvelues µ of L are the roots of
| L− µI | −0, where I is determined* of order J-1.
⇒ J-1 eiguenles**. Associated with each eigenwales is an eigu-

vector v which satisfies Lvi = µcvi, c = 1, 2,−−−−−−
Eigautras* ⇔ base ⇒ Fo = ΣiCiVi

Fn = ΣiCiL
nvi = ΣiCiL

n−1Lvi ← µiV − i
= ... = ΣiCiµ

n
i vi

Stable if | µi |≤ 1 for all i.
Can be allowed for some growth novely
| µi |≤ 1 + o(∆t)
(spectral radius)

Remember that our* scheme was not perfectly cascoteint* and
| λ | is bound away from 0. Both | λ |< 1 and | λ |≥ λo > 0∗ must
be simplified for convergence.

Using Fourier* Methods ( or Van Newan* analysis)
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The previous method is attractive, but often difficult to put into
practice in more complicated situations. A less geuerd*, but simpler
method is based on a Fourier* decomposition of solution Un

f

Un
f =

J∑
k=−J

AnLeikxj

The exact solution is

(29)µ(x, t, ) =
n∑

k=−n

Bk(t)eikx

We can determine the amplibidies* Bk(t) term by each Bk(t) has
then to satisfy

(30)
∂Bk

∂t
= −ikcBk

or

(31) Bk = ake
−ikct where ak = Bk(0) represents the initial condi-

tions.

Let’s now insert (28) in (22)

Un+1
f = ΣAn

ke
ikxj − λ

2
[ΣAn

k(eikxjh − eikxjh∗∗∗∗)]

(32) = ΣAn
k(1− iλ sin(k∆x)

= ΣAkn+1eikxj

or An+1
k = An

k(1− iλ sin(k∆X)

The ratio
An+1

k

An
k

is called the amplification* factor G.

(33) G = 1− iλ sin(k∆x) ; An+1
k = GAn

k

If solutions are to remain bound, then we have | G |≤ 1 (Van
Newman*)
| G |2= (1− iλ sin(k∆x))(1 + iλ sin(k∆x)
= 1 + λ2 sin2(k∆x)
which shows that (22) is usable for all ∆t
Exercise: Solve for deff** equation
- for both together.
Von Neunan* condition (more restricted)
An+1

k = GAn
k

= GnAo
k The scheme is stable y.

| µi |≤ 1 +O(∆t) for all i
where µi are the eigewalier*** of the amplification matrix G since

we have
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(S(g)
r )n ≤‖ Gn ‖≤‖ G ‖n

(Richmyer*, See for details)
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