
4. Stability properties of various time differencing schemes.

→ 4.1 - Applied to the advection* equation. (
∂u

∂t
= −c∂u

∂x
)

The FTCS is a one-step, explicit, two-time level method.

One-Step: One calculator step is required to advance to a new
time level.

Explicit: all the values on the right-side are known.
Two-time levels: Only two lines are involved in the calculation.

4. The Leap Frog scheme
The leap frog is centered in time which is unstable for the diffu-

sive equation and adv doff equation but when applied to the adv.
equation alone is stable.
Un+1
f = Un−1

f − λ(Un
f+1 − Un

f−1)

Uf = ΣAnke
ikxj

An+1
k = An−1

k − Ank(2iλ sin(k∆x))

which can be rewritten in matrix form

using the trivial Ank = Ank . G is now the amplification factor. In
this particular case of several time level, we are more cooditious* to
fall back on a simple two-line level. (See homework 2).

Another way of presenting it is:

An+1
k = Cn

k − Ank(2iA sin(k∆x))
Cn+1
k = Ank

The stability criteria for Von Neuman is | µi |≤ 1 + o(∆t) for
all i where µi or the eigourale* of the matrix G. Another sufficient
condition slightly schtline* is | G |) ≤ 1+0(∆t). Again, see Richtyer
for a complete derivation.

Solving for the eiqueales*

µλ2 =
λ

2
(a±

√
a2 ± 4)

or

µλ2 = −iλ sin(k∆x)±
√

1− λ2 sin2(k∆x)
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-If λ2 sin2(k∆x) > 1, the square root term is then imaginary and,

µλ2 = +i(−λ sin(k∆x))±
√
λ2 sin2(k∆x)− 1

| µλ2 |2= 2λ2 sin2(sin2(k∆x) = 1±2λ2 sin2(k∆x)[1− 1

λ2 sin2(k∆x)
]
1
2

* ± → obviously > 1, max(µλ2) > 1

If λ2 sin2 k∆x < 1 (True for λ < 1), then the module of | µi | is
given by
| µi |2= λ2 sin2(k∆x) + (1− λ2sin2(k∆x)] = 1
This obviously satisfies the requirement for stability provided

again that λ < 1 (
c∆t

∆x
< 1)

Any numerical method for the *wascid equation which excludes
an | G | (or SR)(G), ‖ G ‖)< 1 exhibits an artificial damping. For
any convergent method, the numerical damping error must of course,
vanish as ∆x,∆t → 0. In this particular case of the leap-frog, the
damping is equal to zero for µC = ct*** and λ < 1.

The leap-frog for λ = 1 perpetuates the exact solution for all
time given exact first time level solution. The vascid** equation
∂µ

∂t
= −c∂µ

∂x
is equivalent to say that

µ(x, t+ ζ) = µ(x− cζ, t)
if ζ = ∆t, then for c = 1

(4)Un+1
i = Un

i−1

over 2∆t, the exact solution is
(5) µn+1

i = µn−1
i−2

Applications of the leap frog method given
(6) Un+1

c = Un−1
i − Un

i+1 + Un
i−1

Given the correct starting values from (4)
Un
i+1 = Un−1

i andUn
i−1 = Un−1

i−2

then (6) is exactly equal to (5).

Two sets of values are required to start. If with an error, then
the error will persist in the calculation.

The corresponding eigevales** to µλ2 are
~x1 is not perpendicular to ~x2 but they are independent, and any

vector can be expressed as a factor of
~x1

~x2
= (α~x1 + β ~x2)
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The G1, ~x1 are associated with the steady part of the solution
(Physical mode).
G2, ~x2 part of the solution that changes sign every Form*** (Computational

mode)

If we restrict a maniel** to the case where G′ is equal for ***
consecutive line steps

G′ =
Ak(n+ 1)

Ak(n)
=

Ak(n)

Ak(n− 1)
Then G′2 + 2iλ sin(k∆x)− 1 = 0
and

G′′1 = µ1 = −iλ sin(k∆x) +
√

1− λ2 sin2(k∆x)

G′′2 = µ2 = −iλ sin(k∆x)−
√

1− λ2 sin2(k∆x)

(As ∆t→ 0, µ1 → 1 and µ2 → −1)

Its origin lies in the fact that the solution of the FD are indepen-
dent between odd and even numbers These two solutions will evolve
differently unless (a) the first time step generating Ak(1) is excluded
such that | β |<<| α | and (b)any component of the solution ‖ to ~x2

that might arise due to sound-off errors is periodically reduced****.

a)

Ak(o)[1− ip] = α[−ip+
√

1− p2] + β[−ip−
√

1− p]
Ak(o) = α + β
or
Ak(o)(1− ip) = Ak(o)[−ip+

√
1− p2] + β[−2

√
1− p2]

β1 = Ak(•)
1−

√
1− p2

−2
√

1− p2
= Ak(o)[

λ

2
− 1

2

1√
1− p2

]

b)

Ak(o) = α[−ip+
√

1− p2] + β[−ip−
√

1− p2]
Ak(o) = α + β

β2 = Ak(o)
1 + ip ∗ −

√
1− p2

−2
√

1− p2
= Ak(o)[

λ

2
− 1 + ip

2
√

1− p2
]

The two eigemvectors of the leap-grog scheme are
~x1 =
~x2 =
= α~x1 + β ~x2p = λ sin(kπ∆x)
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We are looking for the method which produces the smaller com-
putational mode (smallest β) from starting

a) U1
j = U0

j −
λ

2
(U0

j+1 − U0
j−1)

b) U1
j = U0

j **
or in function of the test function

a) Ak(1) = Ak(0)− λ

2
Ak(0)(2i sin(kπ∆x)

b) Ak(1) = Ak(0)

In order to have a stable scheme*, λ ≤ 1 then 1− p2 ≥ 0
and we can write
| β2 |2

| β1 |2
=

(1−
√

1− p2
2

+ p2

(1−
√

1− p2
2 ≥ 1

Then a leapfrog integration of the advection equation
∂µ

∂t
=

−x∂µ
∂x

should be started with a single forward step,

i.e. U1
j = U0

j −
λ

2
(U0

j+1 − U0
j−1)

(Smallest computational mode)

b) Upstream differencing (Donor all)
(7) Un+1

f = Un
f − λ

Un
f+1 − Un

j if λ < 0
Un
f − Un

f−1 if λ > 0
The amplification factor G is then equal to 1− λ

eik∆x − 1 if λ < 0
1− e−ik∆x if λ > 0

This scheme is stable if | λ |< 1. Easy to implement, but not
recommended because introduces* artificial dissipation. (computa-
tional verceility**)

(7) can be rewritten as

Un+1
f = Un

f −
λ

2
(Un

f+1 − Un
f−1)← FTCS (unstable)

+
| λ |

2
(Un

f+1 + Un
f−1 − 2Un

f ) ← second order approximation to a

definite equation.

α =
c∆x

2
represents the value for the eddy viscosity!
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c) Diffusion scheme** (Also called Friedrich’s scheme)
Already presented before

Un+1
f =

1

2
)(Un

f+1 + Un
f1

)− λ

2
(Un

f+1 − Un
f−1)

The amplification factor is G = cos(k∆x)− iλ sin(∆x)
Stable if | λ |< 1

this scheme does introduce diffusion* to stabilize the FTCS scheme.

FTCS← Un+1
j = U f

n −
λ

2
(Un

f+1 − Un
j−1)+

1

2
(Un

f+1 − Un
f−1 − 2Un

f )→
diffusion

with α′ =
∆x2

2∆t
←Analytical viscosity

d) The Lax-Wendroff scheme
We saw that the various* ruco schemes did introduce artificial

viscosity. The reasoning behind the Lax- Wendroff scheme is the
following: can we stabilize he FTCD shown by adding the minimal
amount of artificial damping? We can write the FD equation as:

Un+1
j = U f

n −
λ

2
(Un

f+1 − Un
g−1) + ν(Un

f−1 + Un
f+1 − 2Un

j

V = 0 ν =
1

2
ν∗ =

| λ |
2

The amplification factor for such a scheme is

(8) G =
An+1
k

Ank
= 1− iλ sin(k∆x) + 2ν(cos(k∆x)− 1)

Stability is assured if | G |≤ 1 + o(∆t) for all k
(9) | G |2= 1+(2λ2−4ν)[1−cos(k∆x)]+(4ν2−λ2)[1−cos(k∆x)]2

= 1 + (2λ2 − 4ν)p+ (4ν2λ)p2.

For ν =
| λ |

2
, G is a linear function of p = 1− cos(k∆x) scheme

strartle, upstream diff scheme.
We look for a better scheme, namely

ν <
| λ |

2
or λ2 > 4ν2

(9) is maximum for pmax =
λ2 − 2ν

λ2 − 4ν2

5



and | G |2 is then equal to at this point:

1 +
(λ2 − 2ν)2

λ2 − 4ν2

(10) then max | G |2≤ 1 +
(λ2 − 2ν)2

λ2 − 4ν2
, 0 ≤ p ≤ 2 (maximum not

necessarily located in [0,2]**)

This implies λ2 − 2ν)2 = 0 or ν =
λ2

2
Further reduction is NOT possible.

ν <
λ2

2

Max | G |2 =

∣∣∣∣∣ 1+ (λ2 − 2ν)2
λ2−4ν2 >1forpmax<2
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