
5. Energetically Constant Finite Difference Schemes

5.1 Nonlinear Stability
Inverted *nonlinear equation may become unstable even if the linear stability

inversion* is not violated. After some time, ”va***” (or noise) will appear on
small scales, will grow slowly and eventually grow exponentially. In a linear
problem, no Fourier models can interact with the other. One expect* the n***
to interact when nonlinearity is included→ creation of variance. Since a uniform

grid can only have wave numbers kε[o,
2π

2∆x
] if any nonlinear interaction creates

variance in scales k >
2π

2∆x
, the grid cannot resolve this energy and it will be

folded into some other ucrewbles* (accumulation of small scales energy). The
feed back through aliaxing* explains how nonlinear unstability can develope if
energy is fadely* gathered* In numerical models, it is therefore important to
damp out the small space scales to control nonlinear usabilities. This is done
by getting rid of the accumication of energy in the small scales with an explicit
viscosity (Leap—* Boharmonic*) or with a dissipation* finite difference method.

5.2 Energy Method
So far we have investigated the numerical stability of linear equations pri-

marily by using the Fourier method. In the presence of non linear terms, to
reduce the preuce* of non linear terms, the so called ”energy method” is a pow-
erful tool. This method may or may not have anything o do with physical forms
of energy. It provides a sufficient condition for stability and is applicable to
nonlinear equations.

If the true solution is known to be bounded, then the finite-diffrence solution
should also be examined for boundaries. In other words, are quantities* that
are conserved by the differential equations conserved by the FD equations?

a) Burger Equation

Lets first consider the simple case of the Burger equation (
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Integration with respect to x gives:∫ L
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which implies conservation of the kinetic energy if Uo = UL = 0 ( zero flux
at the boundaries)

If the interval [0, L] is discretized* in N regards* to ∆x, then the RMS of
(3) can be rewritten as :
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The integral is approximated by a sum with all neighbors canceling. Lets
now examine several finite difference approximations.

*centered in space
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Multiplying by µf and forming the sum (integral)∫ L
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scheme does not conserve energy.

Flex difference form
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Conserving scheme
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which cancel.
This scheme is too simple for more complex systems.

b) Two-dimentional nonlinear advection* equation
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* x is a scalar which may depend on µ, v

(4) can be rewritten as:
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For non divergent flow, the area average α remains constant provided the
spatial integration is done over a closed domain e. Under the same circum-
stances, any power of x is also conserved and in particular α2
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(6) = −∇ · (α
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We then are trying to achive the same with the finite-difference expression
of (5)
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The following finite difference operator can be shown as ”quadratic-conservative,”
i.w. that it leads to a FD conservation equation analog to (6) µ, v, α) are defined
at the same grid functions.

(7) ∇ · (α~v) = δx(αxµx) + δy(αyvy)
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