
6. Solving the Poisson Equation

So far we have dealt only with either the advection or *maiertous*
equations or the vorticity transport equation. We also need methods
to solve the elliptic Poisson equation for the stream function ψ

(1) ∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
= ζ

Using standard second-order finite differences, (1) can be approx-
imated by:

ψi+1,k + ψj−1,f + ψi,f+1 + ψi,k−1 − 4ψi,f
∆x2

= ζi,j

We know that the ζi,j we want the ψi,j. In practice, it is a very
large set of equations that we are trying to solve.

Example:
The set of equations is for a 5 by 6 domain.

Block tridigonal set of equations can be used to our advantage in
many schemes to solve the set.
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6.1 Iteration Methods

These methods require the solution of a linear system of equa-
tions. The order of this system may be very large. However, the
properties of these systems allows us to construct effective iteration
methods for their solution.

We want to solve the matrix equation Ax = b where x and b are
n-dimensional vectors and A is a matrix of order n. We are trying to
then to find the zeros of the vector function f(x) = Ax− b. We can
then convert this to a fixed point problem by defining the functions
g(x) = x−f(x) = (I−A)x+b. We are then now looking for vectors
x such that x = g(x). The easiest iteration method is:
→Choose an initial guess xo
→ Define xm+1 = g(xm)
xm+1 = (I − A)xm + b = Mxm + b
We denote the error εm by εm = x− xm.
then
εm+1 = Mεm = Mmε(0)
The convergence will therefore depend on the conditions under

which Mm will approach zero. If M is convergent or F ∗R (M) < 1,
then the error will eventually reach zero.

In practice, we express any matrix A as the same** A = D−E−F
where D is diagonal, E and F are strictly lower and upper triangular
uth order matrix.
Ax = b→ Dx = (E + F )x+ b

a) Method 1 (insert alt. names here)

We define the iteration scheme as:
xm+1 = D−1(E + F )xm +D−1b

or in component form

xm+1
i = −

n∑
f=1,f 6=i

(
aif
aii

)xmf +
bi
aii

The method will converge if

SR(M) < 1 when M = D − 1(E + F )
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(b) Method 2

The iteration scheme is defined as

O − E)xm+1 = Fxm + b

In component form

‖ aiixm+1
i = −

∑
f<i

aifx
m+1
f −

∑
f>i

aifx
m
f + bi

The iteration matrix M is M = (D − E)−1F and converges if
SR(M) < 1

These methods require the storage* of only one vector x since
we replace the components of xm by components of xm+1 as seen as
they are amplified faster.

(c) Method 3 or (insert names here)
A = D − E − F
D−1A = I − L− U
L,U → strictly lower and triangular matrices.
*We define R, a residual vector which is the error vector at any

stage of the calculation*.
Rm = D−1b− xm + Lxm+1 + Uxm

if we consider the iteration scheme
(I − L)xm+1 = Uxm +D−1b

*We now define the iteration scheme to be used
(4) xm+1 = xm + αRm

where α is the called a relaxation parameter.
In general, we can show that 0 < α < 2 for the method to work.
This is an error correction* method. If α > 1 we are overcor-

recting the scheme. If α < 1 we are under-correcting the scheme. If
α = 1 similar* to method 2. the iterative scheme can be rewritten
xm+1 = xm − αxm + αLxm+1 + αUxm + αD−1b

Solving for xm+1 gives:
(1− αL)xm+1 = (I − αI + αU)xm + αD−1b

xm+1 = (I − αL)−1(L− αI + αU)xm) + (I − αL)−1αD−1b

OR

xm+1 = Mxm + (I − αL)−1αD−1b

with M = (I − αL)−1(I − αI + aU)
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Method 3 will then converge if SR(M) < 1, we then want to know
the optimal α for which ‖M3 ‖ is a minimum.

*If we define M(α) = (I − αL)−1(αU + (1− α)I)
then SR(M) ≥| α− 1 |

φ(λ) = deb(λI −M) = deb(λI − (I − αL)−1(αU + (1− α)
= deb[λ(I − αL)− (αU + (1− α)I)]
since: (1) deb [AB] = deb A deb B (2) deb (I − αL) = 1

If λi(α) are the roots of φ(λ) (and aigeuadles of M) then from
polynomials theory:

(−1)nΠuλi(α) = φ(0) but also,

φ(0) = (α− 1)n from (5).

This then → that Max | λi |≥| α− 1 |
−→ This method MAY converge ONLY if 0 < α < 2 but not for

other values.
vspace10mm
d. The Steady Solution
As discussed above, the solution of a steady elliptic equation

by iteration is analogous to solving a time-dependant problem to

an asymptotic* steady state (error = 0 or
∂ψ

∂t
= 0. Suppose we

consider the time dependent for ψ with a diffusion equation source*
foem, ζ, and a diffusion term*

∂ψ

∂t
= ∇2ψ − ζ

We are not interested in the significance of the traunests*, but
as the solution approaches a steady state, it also approaches the
desired solution for the Poisson equation.

In order to solve the equation over a region, we need to know an*
the boundary curve C enclosing the region either

(1) The values of ψ
(2) It’s normal derivations*
(3)A combination of the two

Applyinf FTCS, (6) can be rewritten as

(7)ψn+1
i,j = ψni,j+

∆t

∆x2
(ψni+1,f+ψni−1,f+ψni,f−1+ψ

n
i,f+1−4ψni,j)−∆tζi,j

Assuming ∆x = ∆y for the time being.
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The errors for the iteration values ψni,j are then
εni,f = ψi,f − ψi,j,n
*Exact value or ”∞” iterations*

(7) can be rewritten as:

εn+1
i,j = En

i,j +
∆t

∆x2
[εi+1,f + εi−1,f + εi,j+1 + εi,j−1 − 4εi,j]

which is independent of ζ and therefore the stability properties
of (6) are not affected by ζ.

The stability criteria for the diffusion equation in kuro* diversion

is α
∆t

∆x2
≤ 1

4
(instead of

1

2
for diverted*)

For α = 1, the criteria is ∆t ≤ ∆x2

4
since we wish to approach

the asymptote solution as fast as possible, we consider the largest

∆t =
∆x2

4
which gives for (7):

ψn+1
i,f =

1

4
[ψni+1,f + ψni−1,f + ψni,f+1 + ψni,f−1 −∆x2ζi,j]

This is the solution by Method 1 for ∆x = ∆y. Each ψn+1 is
calculated independent of the sequence in i, j) and therefore in a
seus* simultaneously.

If we define a mesh ratio of δ =
∆x

∆y
, the same method gives

(10) ψn+1
i,f =

1

2(1 + δ2)
[ψni+1,f + ψni−1,f + δ2ψni,f+1 + δ2ψni,f−1 −∆x2ζi,j]

The of the convergence rate can proceed from the analysis of the
error equation.

Ek+1 = GEk

Fraunkel (1950):

The highest and loudest* wavelength error components* damp
most slowly. This* regardless of the wtrial* error distribution, *
there components will dominate for k large.

*Now we can improve method 1. Equation (10) is a two-time
level equation which requires storage of ψn+1

i.j ** and ψn. If we swap
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the ψni,j by new values when ever it is possible in equation (10), then
we obtain:

(11) ψn+1
i,f =

1

2(1 + δ2)
[ψni+1,f + ψn+1

i−1,j + δ2ψn+1
i,j−1 + δ2ψni,f+1 −∆x2ζi,j]

This is the solution by Method 2 and only one storage level is
needed. Frankel (1950) showed that asymptotically, k method 1
iterations are worth 2k method 1 iterations and only require half
the storage.

Now, it was also found that optimum convergence could be achieved
by ”over-relaxing” or ”under-relaxing” depending on whether weight-
ening* seridudals* were* of the same or opposite sign.

Frankel (1950) developed a method of applying over relaxation
to method 2. It is called Successive Over-Relaxation or SOR or
Method 3.

(11) can be rewritten as the following with the bracketed term
manipulated by a relaxation coefficient α

(12) ψn+1
i,f = ψni,f +

α

2(1 + δ2)
[ψni+1,j + ψn+1

i−1,j + δ2ψni,f+1 + δ2ψn+1
i,j−1 −∆x2ζi,f − 2(1 + δ2)ψni,f ]

We saw in section c) that 1 ≤ α ≤ 2 for convergence (over-
relaxation). The optimum value αo depends on the mesh, the shape
of the domain, and the tyoe of boundary conditions.

For a *Dirichtel* problem in a rectangular domain of size (I −
1)∆x by (σ − 1)∆y, Frankel (1950) showed that

α0 = 2(
1−
√

1− β
β

)

with β =
cos π

I−1
+ δ2 cos π

J−1

1 + δ2
)2

Because of its simplicity and effectiveness, the sole this sole method
has been the most popular of the iterative methods for solving the
Poissen* equation in complicated fluid dynamics problems. How-
ever, this method takes considerable computer time, and has been
now replaced by faster, accurate direct methods in most problems.

The SOR method is very flexible and can be used under a wide
range of conditions, including irregular boundaries, inr*** points....

6.2 Direct methods
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There is another class of solvers, the direct methods, that treat
the finite difference equations as a large linear system and employ
same tools from linear algebra to operate on the matrix of the finite
difference coefficients. The methods take advantage of the sparse-
ness and regular structure of the coefficient matrices to minimize
storage requirements and operation counts*. Although they require
more storage than the iterative methods, they require fewer opera-
tions.

Let’s now consider the Posson** equation on a rectangle

(13) ∇2ψ = ζ n×m domain

As described at the beginning of this chapter, the FD form can
be expressed as

(14) Mψ = g in matrix form where M is of the form

and B of the form

→ The vectors ψ and g are vectors of subvectors

φ k
g k

of solution values along the kth vector of the mesh.

7



(correspond to the Si and Li of the beginning of the chapter)

The matrix M is very sparse did cheers* a very regular black
structure. All the direct methods take advantage of this structure.
Irregularly shaped boundaries destroy this structure and thus pro-
hibit the use of direct method.

Generalized form of Mockey’s method or Fouanier Transform method***

We define the Matrix Q such that Q−1BQ = Λ

where Λ =
λi o
o λn

. Thus Q is the matrix ehose colius are the

eigeuvectos of B and theλi, the corresponding eigeuvalues.

We can also define the transform

Φk = Q−1φk ; Gk = Q−1gk
For the kth now of (14), we have

Iφk−1 +Bφk + Iφk+1 = gk

Multiply by Q−1 and asig (15)

IΦk−1 +Q−1BQΦk + IΦk+1 = Gk

(Where Q−1BQΦk is the eiguvalues)

Then for each value of λν , eigalue, we get a triagonal system
Φν,k−1 + λνΦν,k + Φν,k+1 = Gν , k

Each of the triagonal systems can be easily solved by Gaussion
eliminators. The solution is then given by the uieux* transforma-
tion:

(17) φk = QΦk

*In particular, if the Fourier transform of (15) are defined a:

φj,k =
∑
ν

Φν,ke
i 2πνf

n

gj,k =
∑
ν

Gν,ke
i 2πνf

n

FFT Transform
and are substituted in the FD form of the Poisson’s equation,

then for the part j, k we get:

(18)
∑
ν

Φν,k−1e
i 2πνj
n +

∑
ν

Φν,ke
i
2πν(f−1)

n +ei
2ν(f+1)

n +
∑
ν

Φν,k+1e
i 2πνf

n −

4
∑
ν

Φν,ke
inπνf

n =
∑
ν

Gν,ke
i 2πνj
n
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Due to the orthigonality of the ei
nπνj
n terms, we have n indepen-

dent tridiagonal systems for the Φν,k

(19) Φν,k−1 + (−4 + e
i2πν
n + e

−inπν
n )Φν,k + Φν,k+1 = Gν,k

so that λν = −4 + 2 cos(
2πν

n
).

Once the triidiogonal* system are solved the solution is recovered
*usicky* a back-transform or inverse FFT.

b) Cydic reduction

Mockney* rec....ded* for efficiency to reduce the order of the
drichigonal systems by applying a** or more passes of cydic reduc-
tion ( or odd-even reduction) before performing the Fourier Trans-
form.

(20):
Iφk−2 +Bφk−1 + Iφk = gk−1

Iφk−1 +Bφk + Iφk+1 = gk
Iφk +Bφk+1 + Iφk+2 = gk+1

Multiply the second by −B and *add the threer* gives

(21) Iφk−2 + (2I −B2)φk + Iφk+2 = gk−1 + gk+1 −Bgk

The system is now reduced to only even-numbered rows. At this
point, we can apply the Fourier Transformation method as at* the
even rows and we use (20) to get the odd rows. This is referred to
as Hockney’s method.

One does not have to perform the Fouirner Transformation. If m
is a power of 2, m = 2ρ+1, the reduction process can be performed
until we are left with only one row of numbers to solve for.

We can define the recursions
Bp+1 = 2I − (B(p))2

g
(p+1)
k = g

(p)
k−2p + g

(p)
k+2p −B

(p)gk
for : k = 2p,m− 2p, every 2p, and p = 1, ..., ϕ

After ϕ reductions, we are left with:

(22) Iφo +B(ρ)φ2ρ + Iφm = g
(ρ)
2ρ

φo and φm are known from the boundary conditions → φ2ρ can
be found easily.
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Advantages:

• Every g
(p+1)
k can overwrite the previous g

(p)
k → Little storage is

needed
• Each B(p) is a polynomial of B of order 2p and can be re-

expressed* as a sequence of tridiagonal matrices Bp = A1A2A3...A2p

Disadvantages:

• The computation of g(p) is subject to severe round off errors.
(Buzbe* et. al., 1970)* → unstable for many values of p*.

there are various ways to stabilize the method (”Bumuam vari-
ants an eydic reduction” or ”the Bunenman algorithms”). The al-
gorithms are mathematically identical to the previous derivations,
but are not prone to round off errors.

c) Block Method

Used mostly for the general forms of an elliptic equation which
can not be solved by the two previous methods and is too time
consuming if done by iterative methods.

General form of an elliptic equation

(23)a(x, y, )φxx+b(x, y)φxy+c(x, y, )φyy+d(x, y, )φx+e(x, y, )φy+
f(x, y)φ = g(x, y)

In finite-difference form, the matrices are:

with
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M can be factored. M = LU
L = Lower Triangular
U = Upper ——–

~Ak and ~Bk are given by:

(24)
~Ak−1

~Bk − ∗Bk

~Ak = Ak − ~BkCk−1

where ~A1 = A1

On a vector computer*, these recursions* can be preformed very
efficently since Ak, Bk, and Ck are tridiagonal. To obtain φk, we first
solve Lφ = g (forward sweep) by

(25) φαk = gk − ~Bkφk−1 (φ1 = g1) k = 2m

Then Uφ = φ is solved (backward sweep)

(26) Amφm = φαm
Akφk = φαk − Ckφαk+1 k = m− 1, 1

This method can handle very general boundary conditions, but
are as before restricted to rectangular domain. Very fast as a vector
machine, but is machine specific. *Camed salroutunes* are *avail-
able.
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