
7. Galerkin Methods

7.1 Introduction

Until now, finite-difference methods for solving partial differen-
tial equations were applied. These methods specify the dependent
variables at arbitrary grid-points in space and time and the deriva-
tives in the equations are evaluated using Taylor series expansions.
The definitions of convergence. accumulated error, ... are based on
comparing the solution
Un
f = U(f∆x, n∆t)

to the *continuous* solution µ(x, t) at grid point locations. The
Galerkin procedure represents the dependent variables with a sum
of functions that have a prescribed spatial structure. The coefficient
associated with each function is normally a function of time. This
procedure transforms a partial differential equation for the coeffi-
cients which are usually solved with finite difference in time. The
two most useful Galerkin methods are the spedmal* method and
the finite element method.

We now look at grid point values Un
f as being sepersenative of

grid-box averages of µ(x, t). Thus, in the case of one spatial dimen-
sion, we now compose

Un
j =

1

∆x

∫ (f+ 1
2

)∆x

(f− 1
2

)∆x

Un
f dxt

rather than Un
f to µ(n∆x, u∆t).

We can reformulate by defining

(1) φj(x) =

→ 1

∆x
for (j − 1

2
)∆x < x < (f +

1

2
)∆x

→ 0 elsewhere.

and the Un
f values as a vehicle for defining

√
a piecewise constant

approximation U(x, n∆t) such that

(2)U(x, n∆t) =
∞∑

f=−∞

Un
f φj(x)

A formal series expansion for the purpose of approximating µ(x, t
can be carried out with an infinite variety of function φj. The ones
from (1) are representative of the traditional grid point values asso-
ciated with the *straeland* finite difference equations.
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Example: Advection Equation.
∂µ

∂t
+ c

∂µ

∂x
= 0

By using (2), the advection equation can be rewritten:

(3)
∑
f

∂Un
f

∂t
φf = −c

∑
f

Un
f

∂φj
∂x

The *basic* function (1) are orthogonal →∫ ∞

−∞
φi(x)φj(x)dx =

→ (∆x)t∗ if i = f
→ 0 elsewhere

We can obtain an equation for
∂Un

f

∂t
by multiplying by φk and

integrating over x.

(4)
∑
j

∂Un
i

∂t

∫ ∞

−∞
φfφkdx = −c

∑
f

Un
f

∫ ∞

−∞

∂φf
∂x

φkdx

In order to compute the RMS integral, we consider the step func-
tion to atmosphere*

(4) then becomes
∂Un

k

∂t
= −c

Un
k+1 − Un

k−1

2∆x
* If we use a different φ such as a piecewise linear representation:
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and seccall** in

(5)
1

6
(
∂Un

k−1

∂t
+ 4

∂Un
k

∂t
+
∂Un

k+1

∂t
) = −c

Un
k+1 − Un

k−1

2∆x

* We can generalize these ideas into a formed definition of the
Galerkin Method.

Given a differential equation L(µ) > f(x) where L is a dif-
ferential operator, µ the dependent variable and f(x) a specified
forcity* function in the domain R (x may be multidimensional).
The Galerkin approximation is defined by:

(6)U(x, t) =
N∑
j=1

af (t)φj(x)

where the coefficients Aj(t) are determined by requiring that the
error

(7)eN = L(U(x, t)− f(x)) = L(
N∑
f=1

Aj(t)φf (x))− f(x)

be orthogonal to each basis* function.

(8)

∫
R

eNφj(x)dx = a f = 1, ..., N

The final form is:

(9)

∫
R

φk(
N∑
f=1

Aj(t)φj(x))dx−
∫
R

φkf(x)dx
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k = 1, ...N

This reduced to the problem of N algebraic equations that relate
the unknown coefficients Aj(t) to the ”transforms” of the forcing*
function. They are normally solved by finite difference in time.

there are various ways to interpret (8).

(1) The residual error is orthogonal to orthogonal to φf , i.e. the
error should leave no components in the space spanned* by φj.

(2) The coefficients Aj should be chosen to minimize the integral∫
R

e2(x, t, )dx straightforward when L is a linear operator. In more

complicated cases, not measurably valid.

(3) L(µ) = f(x) is approximated by L(U) = f(x) as in the
Introduction.

Schemes employing basis functions defined in terms of periodic
functions are referred to as ”spectrial*”. The ones using more ”
*****” basis functions are ”finite elements” schemes.

7.2 Energy Conservation
If we consider the simplified equation

(10)
∂µ

∂t
+ L(µ) = 0

then the Galerkin form is:

(11)
N∑
f=1

∂Aj
∂t

∫
R

φkφfdx+

∫
R

φkα(
N∑
f=1

Afφj)dx = 0 k = 1, .., N

this process gives N coupled ordinary differential equations in the
coefficients Af (t). this can be solved by introducing finite differences
in time.

We already discussed the importance of energy conserving schemes.
The Galerkin method leads naturally to energy conversation in equa-
tions with quadratic energy invariants.

For an energy conserving system:

(12)

∫
R

∂ µ
2

2

∂t
= −

∫
R

µL(µ)dx,

the operator L must satisfy the condition

∫
R

ψL(ψ)dx = 0 where
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ψ is any reasonable function that satisfies the boundary conditions.
Then (12) satisfies

(13)
d

dt

∫
R

µ2

2
dx = 0

which shows the energy conservation for the exact equation. We
need to demonstrate that it holds for the finite sum.

We multiply the kth equation (11) by Ak and sum from k = 1 to
N

(14)

∫
R

(
N∑
k=1

Akφk)
∂

∂t
(
N∑
f=1

Afφf )dx = −
∫
R

(
N∑
k=1

Akφk)L(
N∑
f=1

Ajφj)dx

The integral on the right side vanishes if we set ψ =
N∑
f=1

Afφf =

N∑
k=1

Akφk

and (14) can be rewritten as:

λ

2

∫
R

∂

∂t
(
N∑
k=1

Akφk)
2dx = 0 (Energy conservation for the Galerkin Approximation)

7.3 The Advection equation with Finite Elements

∂µ

∂t
+ c

∂µ

∂x
= 0

We use again piecewise linear elements such as

The Galerkin equations is obtained by setting

L = c
∂

∂λ∗
, f(x) = 0

(15)
N∑
f=1

∂Af
∂t

∫
R

φkφfdx+ c
N∑
f=1

Af

∫
R

φk
∂φf
∂x

= 0 k = 1...N
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The resulting equation is the one derived in the introduction:

(15)
1

6
(
∂Ak+1

∂t
+ 4

∂Ak
∂t

+
∂Ak−1

∂t
) = −cAk+1 − Ak−1

2∆x
The advection term is the same as if obtained from *eiterated

differencing, but the time derivative appears as a weighted ever-
age over time periods*. This greatly increases the accuracy of the
solution.

We may now apply the leap frog time differencing scheme.

1

12∆t
(An+1

k+1−A
n−1
k+1+4(An+1

k −An−1
k )+An+1

k−1−A
n−1
k−1) = −c

Ank+1 − Ank−1

2∆x

The stability and phase error of this scheme can be investigated
by substituting Ank = Aei(µ∆xnk+αn∆t)∗ (Variation of the Fourier
Transform)

Substitution into (17) leads to

(18) sin(α∆t) = −c∆t
∆x

(3 sin(µ∆x)

2 + cos(µ∆x))

(for the leap frog sin(α∆t) = −c∆t
∆x

)

the solution is stable (neutral solutions with no damping or am-
plification) if α) is real or | sin(α∆t |≤ 1. To insure stability for all
wavelengths, it is necessary to find the maximum magnitude of the
RMS of (18).

Maximum when µ∆x = 120 deg

| c∆t

∆x
|≤ 1√

3
Which is more restrictive than the lealfrog FD scheme. How-

ever it guves even better phase speed than the fourth-order leapfrog
scheme.

Finite elements are an interesting alternative to classic FD meth-
ods. They offer a high level of slexibility offered for the use of guds*
of variable give* shape and flexability and are attractive despite a
higher cast* in coupler* tune*. They are popular in the engineer-
ing field and ceu*uld* daneri*. For a review, Le Provost* (1985) in
O’Brian.

7.4 The Spectral and Pseudo- Spectral method applied to the non-linear advection equation
(Burger)
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Before the advert of the fast Fourier Transform (FFT) spectral
methods played only a minor role in fluid dynamics because they
were far less economical* than grid parts methods.

We want to solve L(µ) =
∂µ

∂t
+ µ

∂µ

∂x
Let aronee* a cydyic* boundary condition at* the domain −1 ≤

x ≤ 1

We use for the basis function, the trigonometric*

(19) φj(x) = eiπfx (f = −J, J)

The Galerkin approximation is then
(20) φm,ΣfA

′
fφf > + < φm, (ΣAfφf )(ΣAkφ

′
k) >= 0 m =J , ...J

and φi, φf >=

∫
R

φi ~φj

The general form of this set of equations is:

(21)
∑
f

amfA
′
f +

∑
f

∑
k

bmjkAfAk = 0 m = −J → J

To advance the solutions by one step, we need (2σ+1)3 multipliers
for the ”interaction” term (RMS of (21)) and an inversion* of the
matrix components amg. The basic functions are orthogonal ⇒
< φm, φf >= 2 when m = f,= 0 otherwise.

< φm, φfφ
′
k >= 2iπk when m = j + k, 0 otherwise.

(21) then reduces to

(22) A′M +
∑

f+k=m

iπkAfAk = 0

Thus, in practice, the inversion problem does not arise and the
operation cout for the interaction terms in only σ2. The operation
count for grid points methods on the other is proportioned to the
number of grid points 2σ+1. The difference is significant and acted
as a major deterrent* in the past.

The FFT can improve the speed of the spectral method. There
is not approach need to perform Fourier Transform except at t = 0
when the initial conditions have to be transformed from physical*
to phase space and vise-vera at the end the speed of the transforms
does not effect the overall efficiency of the method.

The so-called ”pseudo-spectral” method produces similar results
to the spectral method by transforming the variables back and forth
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between grid point and phase space every few steps* the transform
(Pseudo-Spectral) method seaws* the revies* at certain spatrial*
grid points and these fields are multiplied together at each point
to form the non-linear terms. Then these terms are transformed
back to spectral space. The usefulness of this method is enhanced
by the existence of efficient transform methods such as the FTTs.
this method is essentially a grid point method which uses spectral
decomposition techniques to eliminiate the problem of FD in space,
namely the phase retordation* of short waves by computing the spa-
tial derivatives by differentiating the individual Fourier components.

We define the grid points by xf =
f

J
for −σ < f < σ. With

φk(xf) = eiπkxf as basis functions we have

(23) Uf (t) = U)xj, t) =
J−1∑
k=−J

Ak(t)e
iπkxj

Note that the number of Fourier components matches the number
of grid points (Cyclic). Also, if k = J then we have two individual
basis functions.

The orthogavelty* relaxation is then

(24)< φp, φq >=
1

J

σ−1∑
f=−σ

eiπ(p−q)xf = 2 when p = q(2J), 0 other-

wise.

The inverse transform of (23) is then:

(25) Ak(t) =
1

2S

σ−1∑
f=−σ

Uf (t)e
−iπkxj

Starting with grid points values Uf , the coefficients Ak can be

computed from (25). The derivative
∂Uf
dx

is obtained by a second

transform.

(26)
∂Uj(t)

∂x
=

σ−1∑
k=−J

iπkAk(t)e
iπkxf

Time integration is normally due by finite-defferenciy. An alter-
native method is to perform the time integration in phase space,
but then transform the dependent variables back and forth to grid
point space for the evaluation of the non-linear terms.
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The final equation which approximates the advection equation is
then

(27)
∂Uf (t)

∂t
+ Uf (t)

σ−1∑
k=J

iπkAk(t)e
iπkxj = 0

Let’s now compare the two methods (Spectral and Pseudo).

We first transform (27) (PS) with* an equation for the Ak

(28) (25)(A′k(t) +
∑
p

+
∑
q

+
∑
f

iπqAp(t)Aq(t)e
iπ(p+q−k)∗∗∗∗∗∗ =

0

Using the orthgeniability* of the basis functions, we can rewrite
(28) as:

(29) A′k(t) + ΣiπqApAq + ΣiπqApAq
p+ q = k p+ q = k + 2J
+ΣiπqApAq = 0 (Since the orthogonably* is module* 2σ)
p+ q = k − 2J

The last two terms* show a significant difference between (P)
and (PS). They are referred to as ”alised” terms brought by the
finite sampling interval of the discrete Fourier decomposition. This
method is clearly much faster sure* the number of operations is
Σ + 1 log2(2Σ + 1) versus 2Σ + 1)2 for the uiberction* method (P).

There are two basic techniques for removing the alisasity* error
introduced in (29).

(1) Aliasing removal by Padding or Tseucation.
The key is to use a discrete transform with M rather than N

points where M ≥ 3N

2

(2) Alisaily* removal by phase shifts

Both methods can be escheated to two and three dimensions. For
a complete description of spectral methods:

”Spectral Methods in Fluid Dynamics”
by Mauto, Hussaini, Quanteroni, Zaug
Spanger-Verlay 1988
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