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ABSTRACT

Arakawa and Lamb discovered a finite-difference approximation to the shallow-water equations that exactly
conserves finite-difference approximations to the energy and potential enstrophy of the fluid. The Arakawa–
Lamb (AL) algorithm is a stunning and important achievement—stunning, because in the shallow-water case,
neither energy nor potential enstrophy is a simple quadratic, and important because the simultaneous conservation
of energy and potential enstrophy is known to prevent the spurious cascade of energy to high wavenumbers.
However, the method followed by AL is somewhat ad hoc, and it is difficult to see how it might be generalized
to other systems.

In this paper, the AL algorithm is rederived and greatly generalized in a way that should permit still further
generalizations. Beginning with the Hamiltonian formulation of shallow-water dynamics, its two essential in-
gredients—the Hamiltonian functional and the Poisson-bracket operator—are replaced by finite-difference ap-
proximations that maintain the desired conservation laws. Energy conservation is maintained if the discrete
Poisson bracket retains the antisymmetry property of the exact bracket, a trivial constraint. Potential enstrophy
is conserved if a set of otherwise arbitrary coefficients is chosen in such a way that a very large quadratic form
contains only diagonal terms. Using a symbolic manipulation program to satisfy the potential-enstrophy con-
straint, it is found that the energy- and potential-enstrophy-conserving schemes corresponding to a stencil of 25
grid points contain 22 free parameters. The AL scheme corresponds to the vanishing of all free parameters. No
parameter setting can increase the overall accuracy of the schemes beyond second order, but 19 of the free
parameters may be independently adjusted to yield a scheme with fourth-order accuracy in the vorticity equation.

1. Introduction

In a remarkable paper, Arakawa and Lamb (1981,
hereafter AL) discovered a finite-difference scheme for
the shallow-water equations that—apart from errors as-
sociated with the finite time step—exactly conserves
finite-difference analogs of the energy and potential en-
strophy of the flow. The practical importance of retain-
ing energy- and enstrophy-conservation laws in nu-
merical models had been appreciated since the earlier
work of Arakawa (1966) on two-dimensional, nondiv-
ergent flow; but whereas the derivation of Arakawa’s
Jacobian for nondivergent flow may be transparently
understood in a variety of ways (see, e.g., Salmon and
Talley 1989), the AL algorithm for shallow-water dy-
namics remains a stunning and somewhat mysterious
achievement. In the case of two-dimensional, nondiv-
ergent flow, both the energy and enstrophy are relatively
simple quadratic functionals of the streamfunction.
However, in the shallow-water case, the energy (2.3) is
a cubic functional of the velocity and depth, while the
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potential enstrophy (2.10) involves a quotient. The ex-
istence of a numerical scheme that conserves analogs
of both quantities is therefore somewhat surprising.

In deriving their scheme, AL followed the relatively
straightforward strategy of posing finite-difference
equations containing many arbitrary weights, and then
choosing the weights in such a way that the conservation
laws were maintained. However, success evidently re-
quired the inclusion of some highly unusual terms,
namely, unphysical Coriolis terms of the form fu in the
equation for ]u/]t, and fy in the equation for ]y/]t.
These terms turned out to be consistently small, but their
presence is apparently indispensable. In introducing the
unphysical terms into their initial ansatz, AL remark
only that the unphysical Coriolis terms ‘‘. . . give ad-
ditional generality to the scheme . . .’’ and ‘‘. . . should
vanish when the grid size approaches zero as required
for consistency’’—a rather coy motivation for what ap-
pears to be a crucial step!

In this paper we rederive and greatly generalize the
AL algorithm using the machinery of Hamiltonian me-
chanics. Our strategy is to replace the Poisson bracket
for the shallow-water equations by a finite-difference
approximation that retains two key properties of the
exact bracket: the antisymmetry property, which guar-
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antees that an arbitrary approximation to the energy is
conserved, and the Casimir property that the Poisson
bracket vanishes when either of its two functional ar-
guments is potential enstrophy. Following this strategy,
we show that the problem of obtaining energy- and po-
tential-enstrophy-conserving schemes reduces to the
problem of choosing a set of coefficients in such a way
that a very large quadratic form contains only diagonal
terms. In the case of one space dimension, this problem
is an easy one, and analysis yields a large, multiparam-
eter family of conserving schemes. In the two-dimen-
sional case, the problem is easy to pose but harder to
analyze, and we use a symbolic manipulation program
to diagonalize the quadratic form.

The resulting large, multiparameter set of two-di-
mensional, conserving, shallow-water algorithms con-
tains the AL scheme, as well as the scheme discovered
by Takano and Wurtele (1982, hereafter TW). These two
schemes appear to be the only energy- and potential-
enstrophy-conserving schemes known for shallow-wa-
ter dynamics until the work of Abramopoulos (1988),
who derived a large number of conserving schemes us-
ing a method based on ‘‘operator theory.’’ Abramopou-
los’s method is similar to ours in that it makes extensive
use of computer algebra. However, our method, which
quickly reduces to the solution of a linear system, ap-
pears much easier to code, and may yet yield to ana-
lytical solution. Moreover, unlike Abramopoulos, we
can present our results completely in a single table. The
strategy of seeking conserving numerical schemes by
discretizing the Poisson bracket was previously sug-
gested by Szunyogh (1993), but he did not proceed fur-
ther than verifying that three previously known schemes
(none of which apply to general shallow-water flow) fit
the Poisson-bracket form. The search for particular en-
ergy- and potential-enstrophy-conserving schemes con-
tinues right up to the present (see Ringler and Randall
2002).

Whenever conservation laws are at issue, Hamilto-
nian methods are the clear methods of choice; according
to Noether’s classic theorem, the conservation laws of
a Hamiltonian system correspond directly to the sym-
metry properties of its Hamiltonian. Motivated by this
correspondence, Salmon (1988, 1998) offered a general
method for deriving approximate fluid-dynamical equa-
tions that retain the conservation laws of a more exact
‘‘parent’’ dynamics. The key idea was to make all the
approximations directly on the Lagrangian of the parent
system, taking care not to disturb symmetry properties
that correspond to desired conservation laws. While this
method was proposed for continuous systems described
by differential equations, it is tempting to think that it
could somehow be generalized to approximations that
consist of replacing the continuous system by a discrete
set of gridded variables. Unfortunately, however, the
conservation of potential vorticity on fluid particles
(from which potential-enstrophy conservation descends)
corresponds to a symmetry property that amounts to a

continuous relabeling of the fluid particles. This seems
to be the primary reason why Hamiltonian methods have
not been especially helpful in constructing numerical
schemes that conserve quantities (like potential enstro-
phy) related to potential vorticity. The present work was
motivated by a strong desire to change this situation.

The paper is organized as follows. Section 2 provides
the necessary background in Hamiltonian fluid dynam-
ics, emphasizing the generic importance of the shallow-
water Poisson bracket. Section 3 illustrates our basic
idea by applying it to the one-dimensional shallow-wa-
ter equations. Unfortunately, the simplified approach of
section 3 does not apply successfully to the two-di-
mensional case, and in section 4 we derive general equa-
tions that determine the two-dimensional bracket. Spe-
cializing once again to the case of one dimension, we
solve these general equations to obtain the general, con-
serving, one-dimensional bracket in section 5. The gen-
eral one-dimensional bracket illuminates the structure
of the two-dimensional bracket, which is obtained, using
computer algebra, in section 6. There we find that the
two-dimensional, energy- and potential-enstrophy-con-
serving bracket corresponding to an arbitrarily chosen
stencil of moderate size contains 22 free parameters. No
parameter setting can completely eliminate unphysical
Coriolis terms of the kind originally introduced by AL.
However, 19 of the free parameters may be indepen-
dently adjusted to yield fourth-order accuracy in the
vorticity equation. Section 6 compares the potential vor-
ticity field computed with six distinct conserving
schemes, finding that schemes with the same accuracy
yield very similar results despite quite significant dif-
ferences in the form of the bracket. Section 7 concludes
with a philosophical discussion.

2. Background

The shallow-water equations may be written in the
form

u 2 qhy 5 2F , (2.1a)t x

y 1 qhu 5 2F , (2.1b)t y

h 1 (hu) 1 (hy) 5 0, (2.1c)t x y

where (u, y) 5 u(x, y, t) is the velocity in the (x, y)
direction at time t, h is the fluid depth, F 5 (1/2)u2 1
(1/2)y2 1 gh, g is the gravity constant, and q 5 (yx 2
uy)h21 is the potential vorticity. All of our results hold
also for the case of rotating flow, in which the numerator
of q includes a Coriolis-parameter term. In a slight de-
parture from the standard terminology, we shall call the
q terms in (2.1a) and (2.1b) Coriolis terms. For boundary
conditions, we take the flow to be periodic in x and y.

The dynamics (2.1) is equivalent to

dF
5 {F, H}, (2.2)

dt
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where F[u, y, h] is an arbitrary functional of the de-
pendent variables u(x, y, t), y(x, y, t), and h(x, y, t);

1 1 1
2 2 2H 5 dx hu 1 hy 1 gh (2.3)EE 1 22 2 2

is the Hamiltonian of the shallow-water system; and

d(A, B) dA dB
{A, B} 5 dx q 2 · =EE [ d(u, y) du dh

dB dA
1 · = (2.4)]du dh

is the Poisson bracket, defined for any two functionals
A and B. Here, = 5 (]x, ]y), dA/du is the functional
derivative of A with respect to u, and

d(A, B) dA dB dB dA
5 2 (2.5)

d(u, y) du dy du dy

is the functional Jacobian. Thus, for example,

dH dH
U [ 5 hu, V [ 5 hy ,

du dy

dH 1 1
2 2F [ 5 u 1 y 1 gh, (2.6)

dh 2 2

and using (2.2) we find that

]
u(x , t) 5 {u(x , t), H}0 0]t

dH ] dH
5 dx qd(x 2 x ) 2 d(x 2 x )EE 0 0[ ]dy ]x dh

]F
5 qhy(x , t) 2 , (2.7)0 )]x x0

in agreement with (2.1a).
Energy is conserved,

dH
5 {H, H} 5 0, (2.8)

dt

because the Poisson bracket (2.4) is antisymmetric in
its two arguments. However, the dynamics (2.2) also
conserves Casimirs of the form

C 5 dx hG(q), (2.9)EE
where G is an arbitrary function of the potential vorticity
q. Important special cases of (2.9) include the mass ## dx
h, the circulation ## dx hq, and the potential enstrophy

1 1
2 2 21Z 5 dx hq 5 dx(y 2 u ) h . (2.10)EE EE x y2 2

The conservation of (2.9) follows from the property of
the Poisson bracket (2.4) that

{A, C} 5 0 (2.11)

for any functional A. The Poisson bracket also obeys
the Jacobi identity

{A, {B, D}} 1 {B, {D, A}} 1 {D, {A, B}} 5 0
(2.12)

for any three functionals A, B, and D. For further back-
ground on Hamiltonian fluid dynamics and Poisson
brackets, refer to Shepherd (1990), Morrison (1998), or
Salmon (1998).

We construct discrete analogs of the shallow-water
equations by replacing the Hamiltonian (2.3) and Pois-
son bracket (2.4) by discrete approximations. The con-
servation of energy and potential enstrophy depend sole-
ly on the form of the discrete bracket. Energy is con-
served if the discrete bracket retains the antisymmetry
property of (2.4), a trivial constraint. Potential enstrophy
is conserved if the discrete bracket retains the property
{A, Z} 5 0 for arbitrary A; this second constraint proves
highly nontrivial.

Our results apply to systems much more general than
the one-layer shallow-water equations (2.1), because the
shallow-water bracket (2.4) is the standard noncanon-
ical bracket for all two-dimensional fluids. By this we
mean the following. If, for any two-dimensional system,
Hamilton’s principle may be stated as

]x ]y
d dt da db u 1 yE EE 1 2]t ]t

2 H[x, y, u, y] 5 0 (2.13)

for arbitrary independent variations in the locations dx,
dy(a, b, t) and momenta du, dy(a, b, t) of fluid particles
labeled by (a, b) at time t, and if the Hamiltonian is
expressible as a functional H[u, y, h] of the reduced
variables u, y, and h [ ](a, b)/](x, y), then the dynamics
may be expressed in the form (2.2)–(2.4) with (2.3)
replaced by the general Hamiltonian in (2.13). The proof
is a straightforward application of the chain rule for
functional derivatives; for a similar proof, see Shepherd
(1990, appendix). We recognize the x, y, u, y in (2.13)
as canonical variables. Only the form of (2.13) is rel-
evant to the proof; the physical interpretation of u and
y is arbitrary. The one-layer shallow-water equations fit
the form of (2.13) with (u, y) the velocity and h the
fluid depth. Multilayer shallow water systems take a
Hamiltonian form in which the Poisson bracket is the
sum of brackets of the form (2.4) for each layer, and
the Hamiltonian contains coupling terms between the
layers. As another example, the Green–Naghdi equa-
tions (e.g., Salmon 1998, 313–318) fit the form of (2.13)
with u replaced by u 1 (1/3)h21=(h2 Dh/Dt).

For all of these examples, we obtain energy and
potential-enstrophy-conserving numerical schemes
by combining the brackets derived in this paper—with
u and y regarded as the canonical momenta, and h [
](a, b)/](x, y)—with the appropriate Hamiltonian writ-
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ten in terms of these same variables. To shift from one
two-dimensional dynamics to a completely different
two-dimensional dynamics then only requires that the
form of the Hamiltonian be changed.

Hamiltonian methods have seen relatively limited use
in the construction of numerical algorithms. Most pre-
vious applications involve the construction of symplec-
tic integrators—time-stepping algorithms that (loosely
speaking) preserve volume conservation in phase space.
Such applications begin with coupled ordinary differ-
ential equations that are assumed to be Hamiltonian.
These ordinary differential equations might have been
obtained—but never actually are obtained—by discre-
tizing the space derivatives in field equations like (2.1).
In fact it seems almost impossible to discretize Ham-
iltonian field equations in such a way that the Jacobi
property (2.12) is maintained.1 In this paper we abandon
(2.12), thereby leaving the realm of true Hamiltonian
systems, and we maintain potential-enstrophy conser-
vation by stubborn insistence that the discrete bracket
retain some of the Casimir properties of (2.4).

3. Preview in one dimension

To explain ideas in the simplest context, we first con-
sider the case of one-dimensional flow, in which nothing
varies in the y direction. In one dimension, the Poisson
bracket (2.4) takes the form

d(A, B) dA ] dB dB ] dA
{A, B} 5 dx q 2 1 ,E [ ]d(u, y) du ]x dh du ]x dh

(3.1)

with q 5 yxh21. We obtain finite-difference analogs of
the one-dimensional shallow-water equations by re-
placing (3.1) and (2.3) by finite-difference approxima-
tions. Let D be the grid separation, and let ui, y i, hi be
the values at the ith grid point. Then the finite-difference
approximation

1 (y 2 y ) ](A, B)i11 i21{A, B} 5 O [2D h ](u , y )i i i i

]A ]B ]B
2 21 2]u ]h ]hi i11 i21

]B ]A ]A
1 2 (3.2)1 2]]u ]h ]hi i11 i21

to (3.1) yields the discrete dynamics

1 Exceptions to this statement include the familiar, canonical, point-
vortex formulation of two-dimensional incompressible flow, and the
discretizations proposed by Zeitlin (1991) for that same physics.

du ]H 1 ]H ]Hi 5 {u , H} 5 q 2 2 , (3.3a)i i 1 2dt ]y 2D ]h ]hi i11 i21

dy ]Hi 5 {y , H} 5 2q , (3.3b)i idt ]ui

dh 1 ]H ]Hi 5 {h , H} 5 2 , (3.3c)i 1 2dt 2D ]u ]ui21 i11

where

21 21q 5 (2D) (y 2 y )h ,i i11 i21 i (3.4)

and H is the yet-to-be-defined discrete Hamiltonian.2

The simplest choice is undoubtedly H 5 (1/2) Si

(hi 1 hi 1 g ). However, by the antisymmetry2 2 2u y hi i i

property of (3.2), the discrete dynamics (3.3) conserves
H for any choice of H. The mass Si hi and circulation
Si (y i11 2 yi21)/2D are likewise conserved. However,
the discrete potential enstrophy

1 1
2 2 22 21Z 5 h q 5 (y 2 y ) (2D) h (3.5)O Oi i i11 i21 i2 2i i

is not conserved by the dynamics (3.3).
To obtain a discrete dynamics that does conserve po-

tential enstrophy, we generalize (3.2) to

](A, B) ]A 1 ]B ]B
{A, B} 5 q̃ 2 2O i 1 2[ ](u , y ) ]u 2D ]h ]hi i i i i11 i21

]B 1 ]A ]A
1 2 , (3.6)1 2]]u 2D ]h ]hi i11 i21

where q̃i is an as-yet-unspecified approximation to qi.
Energy, mass, and circulation are conserved for any
choice of q̃i and H. To obtain potential-enstrophy con-
servation, we attempt to choose q̃i such that {A, Z}
vanishes for any A, where Z is given by (3.5). By the
chain rule, it clearly suffices to require that {ui, Z} 5
{yi, Z} 5 {hi, Z} 5 0 for arbitrary i. The second and
third of these equations are trivially satisfied, and the
first is satisfied if

]Z 1 ]Z ]Z
q̃ 2 2 5 0. (3.7)i 1 2]y 2D ]h ]hi i11 i21

From (3.5) we find that

]Z (q 2 q ) ]Z 1i21 i11 25 , 5 2 q . (3.8)i]y 2D ]h 2i i

It follows from (3.7)–(3.8) that

2 In (3.3), as throughout this paper, we regard the time derivatives
as exact. That is, we do not consider the loss of conservation prop-
erties that will result from replacing the time derivative by a finite
difference. Experience shows that the errors introduced by time dif-
ferencing are usually negligible in comparison to those introduced
by space differencing.
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1
q̃ 5 (q 1 q ). (3.9)i i21 i112

Suppose, instead of (3.5), we want the discrete dy-
namics to conserve the Casimir

21Z 5 h q (3.10)O i i
i

corresponding to G(q) 5 q21 in (2.9). For (3.10) we
obtain, instead of (3.8),

]Z 1 ]Z
22 22 215 (q 2 q ), 5 2q , (3.11)i11 i21 i]y 2D ]hi i

for which (3.7) implies
21q̃ 5 2q q (q 1 q )i i21 i11 i21 i11 (3.12)

instead of (3.9). More generally, the choice
21 l l l21 l21 21q̃ 5 (l 2 1)l (q 2 q )(q 2 q )i i11 i21 i11 i21

(3.13)

conserves the Casimir
21 lZ 5 l h q . (3.14)O i i

i

All these conserved quantities are global invariants,
expressed as sums over all the grid points. However,
each global conservation law also corresponds to a local
statement equating a time derivative to the difference
of a flux. The existence of a local conservation law
follows automatically from the global conservation law,
and from the use of a relatively small stencil of nearby
grid points in each summand of the discrete bracket.

Unfortunately, the problem of finding two-dimen-
sional Casimir-conserving schemes proves much more
difficult. Consider the obvious two-dimensional gen-
eralization of (3.6), and attempt to find q̃ij, such that the
potential enstrophy Z 5 (1/2) Si hij is a Casimir, where2qij

now
21 21q 5 (2D) (y 2 y 2 u 1 u )h .ij i11, j i21, j i, j11 i, j21 i j

(3.15)

The equation {hij, Z} 5 0 is still satisfied, but now
{uij, Z} 5 0 implies

1
q̃ 5 (q 1 q ), (3.16)i j i21, j i11, j2

whereas {y ij, Z} 5 0 implies

1
q̃ 5 (q 1 q ). (3.17)i j i, j21 i, j112

Of course, (3.16) and (3.17) cannot both be satisfied.
The difference between the naively chosen one-di-

mensional bracket (3.2) and the potential-enstrophy-
conserving bracket (3.6) and (3.9) is that the latter re-
places the term

d(A, B)
q (3.18)

d(u, y)

in (2.4) with an expression in which q and (u, y) are
evaluated at different grid points. The key to success in
two dimensions appears to be to generalize this ap-
proximation still further, replacing (3.18) by a sum of
terms of the form

](A, B)
q (3.19)i j ](u , y )kl mn

in which none of q, u, y are necessarily evaluated at the
same grid point.

4. The two-dimensional case

Pursuing this suggestion, we replace the exact Poisson
bracket (2.4) by the approximation

{A, B} 5 {A, B} 1 {A, B} ,Q R (4.1)

where

](A, B)
{A, B} 5 q aO OQ x nm[ ](u , y )x n,m x1n x1m

](A, B)
1 bnm](u , u )x1n x1m

](A, B)
1 g (4.2)nm ]](y , y )x1n x1m

is the discrete approximation to the q part of the bracket
in (2.4), and

1 ]B ]A ]A
{A, B} 5 2OR 1 2[2D ]u ]h ]hx x x1i x2i

]B ]A ]A
1 2 2 (A ↔ B)1 2 ]]y ]h ]hx x1j x2j

(4.3)

is the approximation to the remaining part of (2.4). Here,

21q 5 z h̃x x x (4.4)

is an approximation to the potential vorticity at grid
point x, and the sums over x 5 (i, j), where i and j are
integers, represent sums over a square two-dimensional
lattice. The quantity zx is an arbitrary finite-difference
approximation to the relative vorticity; h̃x is an approx-
imation to hx. The sums over n and m represent sums
over grid points near x. That is, the coefficients anm,
bnm, gnm vanish if n 5 (nx, ny) or m 5 (mx, my) lies
outside a relatively small prescribed set {(nx, ny)} in
which (for example), | nx | , | ny | , M, where M is a small
integer; we call M the stencil size of the corresponding
discrete algorithm. In (4.3), i and j are the unit vectors
in the x and y direction, and the symbol (A ↔ B) stands
for the preceding expression with interchange of A
and B.
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The discrete bracket corresponding to the AL scheme
takes the form of (4.1)–(4.4) with

21z [ z 5 (2D) (y 2 y 2 u 1 u ), (4.5)x i, j i11, j i21, j i, j11 i, j21

1
h̃ 5 (h 1 h 1 h 1 h ), (4.6)i, j i11, j11 i11, j21 i21, j11 i21, j214

and with with 16 nonzero anm coefficients, 4 nonzero
bnm coefficients, and 4 nonzero gnm coefficients, as fol-
lows:

a 5 a 5 a 5 a(0,1)(1,2) (0.1)(21,2) (0,21)(1,22) (0,21)(21,22)

5 a 5 a 5 a(2,1)(1,0) (2,21)(1,0) (22,1)(21,0)

5 a 5 1/12, (4.7a)(22,21)(21,0)

a 5 a 5 a 5 a 5 1/24,(0,1)(1,0) (0,1)(21,0) (0,21)(1,0) (0,21)(21,0)

(4.7b)

a 5 a 5 a(2,1)(1,2) (2,21)(1,22) (22,21)(21,22)

5 a 5 1/24, (4.7c)(22,1)(21,2)

b 5 b 5 b 5 b(0,1)(2,1) (2,21)(0,21) (0,21)(22,21) (22,1)(0,1)

5 g 5 g 5 g(1,2)(1,0) (1,0)(1,22) (21,22)(21,0)

5 g 5 1/24. (4.7d)(21,0)(21,2)

The bnm and gnm terms in (4.2), which have no analogs
in (2.4), are the source of the unphysical Coriolis terms
in the AL scheme. But whereas the presence of these
terms is a somewhat jarring aspect of the AL derivation,
their occurrence in (4.2) seems almost unavoidable. This
is because, unlike the scalars q and h, the variables u
and y are the components of a vector. If we rotate, with
respect to the square lattice, the coordinate system with
respect to which u and y are defined, then u and y trans-
form in such a way that bnm and gnm terms would appear,
if not already present. For example, a 458 rotation gen-
erates the transformations u → 221/2(u 1 y) and y →
221/2(y 2 u). Then, using the chain rule, we easily see
that ](A, B)/](ux, yx9) transforms into an expression that
also contains ](A, B)/](ux, ux9) and ](A, B)/](yx, yx9),
provided that x ± x9. Thus, the a priori inclusion of
bnm and gnm terms seems to be a necessary consequence
of the decision to approximate (3.18) by an expression
involving staggered grid points.

More disturbing than the generality of (4.2) is the fact
that the AL scheme corresponds to so many nonzero
coefficients (4.7). Yet, as we shall see, (4.1)–(4.7) seems
to be the simplest potential-enstrophy-conserving brack-
et. The complexity of (4.7) is greatly offset by the fact
that only four of the coefficients in (4.7) are truly in-
dependent if we take the symmetry properties of anm,
bnm, and gnm into account. Before discussing these sym-
metry properties, we digress on the subject of grid sys-
tems.

By grid system we mean the set of discrete dependent
variables that appear in a numerical scheme. The so-
called A system uses all of the four variables u, y, h,

and q at every gridpoint. The E system (Fig. 1e) uses
(u, y) and (q, h) at alternate grid points. We view the
E system as a decimated A system in which half of the
A system variables have simply been discarded. Thus
every A system contains two E systems, each defined
by choosing one particular grid point to be a (u, y) point
or a (q, h) point. A further decimation produces the C
system, in which only one of u, y, h, q is defined at
every gridpoint, in the pattern shown on Fig. 1c. Thus,
every A system contains two E systems and four C
systems. Each E system is equivalent to a B system, by
a rotation and stretching of the lattice (Fig. 1b). These
four seem to be the square-lattice systems in widest
meteorological use. The designations A, B, C, E rep-
resent a well-established convention (see, e.g., Arakawa
and Lamb 1977).

The AL scheme is a C system; this is the reason for
the somewhat complicated form (4.6) of the denomi-
nator in (4.4). To maintain C system compatibility, the
AL scheme uses the Hamiltonian

1
2H 5 h (u 1 u )O x x1i x2i[8x

1 1
2 21 h (y 1 y ) 1 gh , (4.8)x x1j x2j x]8 2

in which the sum runs only over h points, the grid points
at which h is defined in Fig. 1c. Similarly, in the AL
scheme, the sum over x in (4.2) runs only over q points,
and the sums in (4.3) are similarly restricted. Alterna-
tively, we may regard the x sums in (4.2), (4.3), and
(4.8) as sums over all the grid points. Then the dynamics
(4.1)–(4.8) corresponds to four independent AL
schemes for four interleaved C systems. But if, instead
of (4.8), we use the Hamiltonian

1 1 1
2 2 2H 5 h u 1 h y 1 gh , (4.9)O x x x x x1 22 2 2x

then the four C systems are coupled together. Although
technically an A system, the resulting discrete equations
are simpler than those proposed by AL, because the
Hamiltonian (4.9) is simpler than (4.8).

This discussion illustrates an important advantage of
the Hamiltonian approach, namely, the separation of
dynamical structure into truly independent components.
From the Hamiltonian viewpoint, the dynamics com-
prises two geometrical objects—the Poisson bracket (a
bilinear operator) and the Hamiltonian (a scalar). In the
discrete case, as in the continuous case, potential-en-
strophy conservation is associated with the properties
of the bracket. However, the simplest discrete bracket
may be sought independently of the simplest discrete
Hamiltonian, because the two objects are independent.
We shall see that virtually all of the subtleties associated
with the choice of bracket involve the part (4.2). In
essence, the problem of finding discrete energy- and
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FIG. 1. The placement of the dependent variables on the various grid systems. The B grid may be viewed as a
rotation of the E grid.

FIG. 2. A diagrammatic description of the AL bracket (4.7). Each
of the 24 arrows represents a term in (4.2). The eight arrows labeled
with ‘‘2’’ have weight 2/24; all the other arrows have weight 1/24.
For a full explanation, see the text.

potential-enstrophy-conserving shallow-water schemes
reduces to the problem of finding the coefficients anm,
bnm, and gnm in (4.2).

The definition (4.7) of the bracket in the AL scheme
is rather unilluminating, and we therefore adopt the di-
agrammatic description of Fig. 2. In Fig. 2, each arrow
stands for one of the Jacobian terms

](A, B)
m (4.10)nm](a , b )x1n x1m

in (4.2), where m is a, b, or g, and a and b are either
u or y. The arrow points from location n to location m
and carries a weight equal to the coefficient mnm. (The
letters labeling the arrows have no physical meaning,

but serve to facilitate our discussion.) Thus, for ex-
ample, the a arrow in Fig. 2 stands for the term

](A, B)
a , (4.11)(22,1)(21,2)](u , y )x1(22,1) x1(21,2)

while the b arrow stands for

](A, B)
g . (4.12)(1,2)(1,0)](y , y )x1(1,2) x1(1,0)

Since, on the C grid, u points and y points never co-
incide, the diagonal arrows in Fig. 2 correspond to a
terms; horizontal arrows correspond to b terms; and
vertical arrows correspond to g terms. For A grid brack-
ets or E grid brackets, these three different types of
arrows must be distinguished. The diagrams, which be-
come more useful as the schemes become more com-
plex, display the symmetries of the coefficients much
more transparently than definitions like (4.7). We shall
see that, because of symmetry, only four of the arrows
in Fig. 2 are actually independent. In a sense, therefore,
the AL scheme is completely specified by four arrows
and their accompanying weights.

Now we address the symmetry properties of the co-
efficients. Suppose we want to conserve potential en-
strophy in the AL form

1
2 21Z 5 z h̃ , (4.13)O x x2 x

where zx and h̃x are given by (4.5)–(4.6). It follows
that

21Û [ ]Z /]u 5 (2D) (q 2 q ), (4.14a)i, j i, j i, j11 i, j21

21V̂ [ ]Z /]y 5 (2D) (q 2 q ), (4.14b)i, j i, j i21, j i11, j

]Z 1
2 2 2F̂ [ 5 2 (q 1 q 1 qi, j i11, j11 i11, j21 i21, j11]h 8i, j

21 q ). (4.14c)i21, j21

[We reserve the notation Uij, Vij, F ij—without hats—
for the corresponding derivatives of the Hamiltonian;
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cf. (2.6) and (5.31).] To conserve (4.13), we must en-
force the Casimir property {A, Z} 5 0 for any functional
A. Once again, by the chain rule, it suffices to require
that {ux, Z} 5 {yx, Z} 5 {hx, Z} 5 0 for every x.
Since our scheme is homogeneous, we may take x 5 0
with no loss in generality. Then from (4.1)–(4.3), we
find that

{h , Z} 5 {h , Z}0 0 R

21 ˆ ˆ ˆ ˆ5 (2D) [U 2 U 1 V 2 V ](21,0) (1,0) (0,21) (0,1)

5 0. (4.15)

The last step in (4.15) follows by substitution from
(4.14a)–(4.14b). Close examination reveals that (4.15)
vanishes because we have used the same approximation
for first derivatives in (4.3) as in (4.5), and because
finite-difference operators commute. Similarly, by
(4.1)–(4.3), we find that

ˆ ˆ{u , Z} 5 q (a V 1 2b U )O0 2n nm 2n1m nm 2n1m
n,m

21 ˆ ˆ2 (2D) [F 2 F ], (4.16)(1,0) (21,0)

where, with no loss in generality, we have assumed that
bnm 5 2bmn. Then, using (4.14), we find that {u0, Z}
5 0 implies

21(2D) q [a (q 2 q )O 2n nm 2n1m2i 2n1m1i
n,m

1 2b (q 2 q )]nm 2n1m1j 2n1m2j

1
21 2 2 2 25 2(2D) [q 1 q 2 q 2 q ]. (4.17)(2,1) (2,21) (22,1) (22,21)8

By similar steps, we find that {y0, Z} 5 0 implies
21(2D) 2 q [a (q 2 q )O 2m nm n2m1j n2m2j

n,m

1 2g (q 2 q )]nm n2m2i n2m1i

1
21 2 2 2 25 2(2D) [q 1 q 2 q 2 q ], (4.18)(1,2) (21,2) (1,22) (21,22)8

where, again, with no loss in generality, we have as-
sumed that gnm 5 2gmn. The right-hand side of (4.17)
is, as it must be, a finite-difference approximation to
]x(dZ/dh) 5 ]x(2(1/2)q2). Similarly, the right-hand side
of (4.18) is an approximation to ]y(2(1/2)q2).

To obtain a potential-enstrophy-conserving scheme
we must choose the coefficients anm, bnm, gnm in such
a way that (4.17) and (4.18) are satisfied for arbitrary
qi,j values. Suppose that the arbitrary q field is altered
such that qi,j → qj,i. Making this alteration to the q terms
in (4.18), and then interchanging the dummy variables
nx ↔ my and mx ↔ ny, where n 5 (nx, ny) and m 5
(mx, my), we find that the result is identical to (4.17) if
the coefficients obey

a(n , n )(m , m ) 5 a(m , m )(n , n ) and (4.19a)x y x y y x y x

g(n , n )(m , m ) 5 b(m , m )(n , n ), (4.19b)x y x y y x y x

where we write a(i,j)(k,l) as a(i, j)(k, l) for greater clarity.
Thus, solutions a, g of (4.18) that satisfy (4.19a) au-
tomatically satisfy (4.17) with b determined by (4.19b).
Next we note that the alteration qi,j → q2i,j leaves the
right-hand side of (4.18) unchanged. The same alteration
leaves the left-hand side unchanged if

a(n , n )(m , m ) 5 a(2n , n )(2m , m ) and (4.20a)x y x y x y x y

g(n , n )(m , m ) 5 2g(2n , n )(2m , m ). (4.20b)x y x y x y x y

Similarly, qi,j → qi,2j leads to the symmetry properties

a(n , n )(m , m ) 5 a(n , 2n )(m , 2m ) and (4.21a)x y x y x y x y

g(n , n )(m , m ) 5 2g(n , 2n )(m , 2m ). (4.21b)x y x y x y x y

To these we add the arbitrary property

g(n , n )(m , m ) 5 2g(m , m )(n , n ),x y x y x y x y (4.22)

already imposed.3

We define a class to be a set of coefficients whose
values are determined by giving the value of one mem-
ber of the set, and then using the symmetry properties
(4.19)–(4.22). For example, each of the four equations
in (4.7) refers to the members of a single class. These
four classes correspond to four classes of arrows in Fig.
2. The four classes comprise the set of four diagonal
arrows closest to the origin, the set of four diagonal
arrows furthest from the origin, the remaining diagonal
arrows, and all the vertical and horizontal arrows. The
symmetry property (4.19a) corresponds to the fact that,
if the a arrow in Fig. 2 is reflected across the diagonal
through the first and third quadrant, and if its direction
is then reversed, it becomes the c arrow. The symmetry
property (4.19b) corresponds to the fact that the same
operation converts the b arrow into the d arrow. The
other symmetry properties have similar interpretations.

We have reduced the problem of finding energy- and
potential-enstrophy-conserving shallow-water dynam-
ics to two steps. First, we use the symmetry properties
(4.19a) and (4.20)–(4.22) to reduce the set of unknown
a and g coefficents to a set containing only one member
from each class. Then we solve for the members of this
reduced set by requiring that the coefficient of each
monomial qnqm vanish in (4.18). This yields a large
linear system for the reduced set of a and g coefficients.
The size of this system is determined by the stencil
size—the range of the sums over n and m in (4.2). Once
all the a and g coefficients are determined, we determine
the b coefficients from (4.19b). The bracket (4.1)–(4.6)
is then completely determined. This determines the dis-
crete dynamics, except for the choice of Hamiltonian.
The potential enstrophy (4.13) and the energy (i.e., the
Hamiltonian) are conserved for any choice of Hamil-
tonian; (4.8) and (4.9) are two of many possible choices.

3 Unlike (4.19)–(4.21), (4.22) has no physical content; it merely
removes a physically undetectable arbitrariness in the g coefficients.
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Except for stencil size, the only arbitrary ingredient
of the discrete dynamics is the finite-difference form of
q. As already noted, the finite-difference approximation
to the numerator of q—the relative vorticity—deter-
mines the finite-difference approximation in {A, B}R.
Only by matching these two approximations, in the
sense that (4.3) matches (4.5), do we satisfy the Casimir
property {h0, Z} 5 0. In this paper, we restrict our
attention to (4.5), the simplest second-order approxi-
mation.

However, the denominator h̃ of q is still completely
arbitrary. If instead of (4.6) we use the approximation

1
h̃ 5 ah 1 b(h 1 h 1 h 1 h )i, j i, j i11, j i, j21 i21, j i, j114

1
1 c(h 1 h 1 h 1 h ),i11, j11 i11, j21 i21, j11 i21, j214

(4.23)

where a, b, c are any three constants satisfying

a 1 b 1 c 5 1, (4.24)

then (4.18) generalizes to

q [a (q 2 q )O 2m nm n2m1j n2m2j
n,m

1 2g (q 2 q )]nm n2m2i n2m1i

1
2 25 a[q 2 q ](0,1) (0,21)2

1
2 2 2 2 21 b[q 1 q 1 q 2 q 2 q(0,2) (1,1) (21,1) (0,22) (1,21)8

22 q ](21,21)

1
2 2 2 21 c[q 1 q 2 q 2 q ]. (4.25)(1,2) (21,2) (1,22) (21,22)8

We require that (4.24)–(4.25) hold for arbitrary q. This
yields a large linear system of equations in k 1 3 un-
knowns, where k is the number of classes of a and g
coefficients allowed by the truncation in n and m, and
the three additional unknowns correspond to a, b, c. We
call this system of equations the determining system of
the numerical scheme. Classes contain 1, 2, 4, or 8
members, but the majority of classes contain 8. Thus
symmetry considerations reduce the size of the deter-
mining system by a factor of almost 16 [considering
that symmetry makes (4.17) equivalent to (4.18)]. We
find that, for sufficiently large stencil size, the solution
of the determining system contains a large number of
arbitrary parameters; thus there are a great many energy-
and potential-enstrophy-conserving shallow-water
schemes. The number of schemes increases with the
stencil size and would presumably further increase with
generalization of (4.5) and (4.23). But before proceeding
any further with the two-dimensional case, we recur to
the case of one spatial dimension, in which the deter-
mining system is easy to solve by hand.

5. Analysis of the one-dimensional case

The one-dimensional analog of (4.1)–(4.5) is
` ` ](A, B)

{A, B} 5 q aO O O i nm](u , y )i n52` m52` i1n i1m

]B ]A ]A
211 (2D) 2O 1 2[]u ]h ]hi i i11 i21

]A ]B ]B
2 2 , (5.1)1 2]]u ]h ]hi i11 i21

where

21 21q 5 (2D) (y 2 y )h̃i i11 i21 i (5.2)

is the potential vorticity at the ith grid point, and

1
h̃ 5 ah 1 b(h 1 h )i i i21 i112

1
1 c(h 1 h ) 1 · · · (5.3a)i22 i122

with

a 1 b 1 c 1 · · · 5 1 (5.3b)

is a general approximation to hi, analogous to (4.23).
In (5.1) the sum over i represents a sum over all the
grid points in the periodic, one-dimensional domain.
The sums over n and m have infinite ranges, but we
assume that anm vanishes if the magnitude of n or m
exceeds the small prescribed integer M, where M is the
stencil size of the numerical scheme.

The dynamics corresponding to (5.1)–(5.3) conserves
the potential enstrophy

22 2 21Z 5 (2D) (y 2 y ) h̃ (5.4)O i11 i21 i
i

if {u0, Z} 5 {y0, Z} 5 {h0, Z} 5 0. As in section 3,
the last two of these are trivially satisfied in one di-
mension, and {u0, Z} 5 0 implies

Q 5 D, (5.5)

where

` `

Q [ q a (q 2 q ) and (5.6)O O 2n nm m2n11 m2n21
n52` m52`

1 1
2 2 2 2D [ a(q 2 q ) 1 b(q 2 q )1 21 2 222 4

1
2 2 2 21 c(q 1 q 2 q 2 q ) 1 · · · . (5.7)3 21 23 14

We also obtain (5.5)–(5.7) (with b 5 1) directly from
(4.17) by deleting the y component of all the vector
subscripts in (4.17); note that the b terms then cancel.
Similarly, there is no a priori motivation like that in
section 4 for inserting b or g terms in (5.1), because
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there are no rotations in one dimension. Thus, the only
coefficient symmetry property is the analog,

a(n, m) 5 a(2n, 2m), (5.8)

of (4.20a), where we write a(n, m) [ anm for clarity.4

We must choose the anm to satisfy (5.5)–(5.7), subject
to (5.8), for arbitrary qi. Clearly, (5.7) can be rewritten
in the form

2 2 2 2D [ a (q 2 q ) 1 a (q 2 q )1 1 21 2 2 22

2 21 a (q 2 q ) 1 · · · , (5.9)3 3 23

where a1, a2, a3. . . are determined by a, b, c. . . in the
obvious way. The normalization condition (5.3b) is
equivalent to the requirement that the right-hand side
of (5.7) or (5.9) is a consistent approximation to D]x(q2).
By straightforward steps we rewrite (5.6) in the form

`

2Q 5 [a(2n, 21) 2 a(2n, 1)]qO n
n52`

` `

1 [a(2n, r 2 1) 2 a(2n, r 1 1)O O
n52` r51

1 a(2n 2 r, 2r 2 1)

2 a(2n 2 r, 2r 1 1)]q q . (5.10)n n1r

Then (5.5)–(5.10) imply

a(n, 1) 2 a(n, 21) 5 an (5.11)

for all n (with a2n [ 2an), and

a(n, r 1 1) 2 a(n, r 2 1) 2 a(n 2 r, 2r 2 1)

1 a(n 2 r, 2r 1 1) 5 0 (5.12)

for all n and all r $ 1. The an, which correspond to the
choice of the denominator (5.3) in potential vorticity,
act as the ‘‘forcing term’’ in the equations (5.11)–(5.12)
for the a’s. To solve (5.11)–(5.12), we define

m(n, r) [ a(n, r 2 1) 2 a(n, r 1 1). (5.13)

Then (5.11)–(5.12) take the respective forms

m(n, 0) 5 2a and (5.14)n

m(n, r) 5 m(r 2 n, r). (5.15)

The general solution of (5.15) is

1
m(n, r) 5 f n 2 r , (5.16)r ) )1 22

where f r is an arbitrary function defined at integer ar-
guments if r is even, and half-integer arguments if r is
odd. Thus, for each n, we have from (5.14) and (5.16)
the sequence of equations

4 The notation a(n)(m) [ anm would be more consistent with section
4, but is too cumbersome.

a(n, 21) 2 a(n, 1) 5 a ,n

1
a(n, 0) 2 a(n, 2) 5 f n 2 ,1 ) )1 22

a(n, 1) 2 a(n, 3) 5 f (|n 2 1|),2

3
a(n, 2) 2 a(n, 4) 5 f n 2 ,3 ) )1 22

_

M 2 1
a(n, M 2 2) 2 a(n, M ) 5 f n 2 ,M21 ) )1 22

M
a(n, M 2 1) 2 0 5 f n 2 ,M ) )1 22

M 1 1
a(n, M ) 2 0 5 f n 2 .M11 ) )1 22

(5.17)
We see that the equations for a(n, m) with even m de-
couple from those with odd m. Only the latter feel the
forcing term an. With no loss in generality we assume
that the stencil size M is odd. Then the general solution
of (5.17) is easily seen to be

a(n, 0) 5 f 1 f 1 · · · 1 f ,1 3 M

a(n, 2) 5 f 1 · · · 1 f ,3 M

_

a(n, M 2 1) 5 f , (5.18)M

and
a(n, 21) 5 a 1 f 1 f 1 · · · 1 f ,n 2 4 M11

a(n, 1) 5 f 1 f 1 · · · 1 f ,2 4 M11

a(n, 3) 5 f 1 · · · 1 f ,4 M11

_

a(n, M ) 5 f . (5.19)M11

In (5.18) and (5.19) the argument of each f r is the same
as in (5.17). Equations (5.18) and (5.19) give a(n, m)
for all n and all positive m. The symmetry property
(5.8) then determines a(n, m) for negative m. This same
symmetry property imposes two conditions on the oth-
erwise arbitrary f r. That is, from a(n, 0) 5 a(2n, 0),
we obtain

1 1 3
f n 1 2 f n 2 1 f n 11 1 3) ) ) ) ) )1 2 1 2 1 22 2 2

3 M
2 f n 2 1 · · · 1 f n 13 M) ) ) )1 2 1 22 2

M
2 f n 2 5 0, (5.20)M ) )1 22

and from a(n, 1) 5 a(2n, 21), we obtain
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f (|n 1 1|) 2 f (|n 2 1|) 1 f (|n 1 2|)2 2 4

M 1 1
2 f (|n 2 2|) 1 · · · 1 f n 14 M11 ) )1 22

M 1 1
2 f n 2 5 a . (5.21)M n) )1 22

In overall summary, the general, one-dimensional, po-
tential-enstrophy-conserving, shallow-water bracket is
given by (5.1)–(5.3) and (5.18)–(5.19), where an is de-
termined by the form of (5.3), and the functions f r are
arbitrary except for the two constraints (5.20) and
(5.21).

To satisfy (5.18) and (5.20), we may choose f r 5 0
for all odd r. Then a(n, m) vanishes for all even m. The
odd-m solution (5.19) contains arbitrary parameters of
the form f r(s), where r is a positive even integer (r 5
2, 4, 6. . .), and s is a nonnegative integer (s 5 0, 1, 2,
3, . . .). Suppose that only one particular f r(s) is non-
zero. We calculate the corresponding solution. The gen-
eral solution (5.19) is a superposition of such solutions.
The normalization condition (5.21) or (5.11) can be sat-
isfied by an a posteriori scaling of the arbitrary param-
eters. If only f r(s) ± 0 then (5.19) implies that the only
nonvanishing a(n, m) with positive m are

r r r
a 1 s, 1 5 a 2 s, 1 5 a 1 s, 31 2 1 2 1 22 2 2

r
5 a 2 s, 3 5 · · ·1 22

r
5 a 1 s, r 2 11 22

r
5 a 2 s, r 2 1 . (5.22)1 22

The simplest such schemes correspond to the smallest
values of r and s. For the case r 5 2, s 5 0, the only
nonzero coefficients are

a(1, 1) 5 a(21, 21). (5.23)

The size of (5.23) is determined by the normalization
condition (5.11) to be

1
a(1, 1) 5 a 5 , (5.24)1 2

corresponding to a 5 1, b 5 c 5 . . . 5 0 in (5.3). This
is the previously found scheme (3.6) and (3.9).

For the case r 5 2, s 5 1, we obtain from (5.22) the
nonvanishing coefficients

a(2, 1) 5 a(22, 21) 5 a(0, 1) 5 a(0, 21).
(5.25)

The normalization requirements (5.11) imply a(0, 1) 5
a(0, 21), and

1 1
a(2, 1) 5 a 5 b 5 . (5.26)2 4 4

Thus, h̃i 5 (1/2)(hi21 1 hi11) by (5.3). This scheme is
the one-dimensional projection of the AL scheme (4.5)–
(4.7).

Now consider the scheme corresponding to arbitrary
values of r and s. By (5.22) and (5.8) this scheme con-
tains r equal, nonvanishing a’s if s 5 0, and 2r equal,
nonvanishing a’s if s . 0. The common value of (5.22)
is determined by (5.11) in the form

1 1
a r 1 s, 1 2 a r 1 s, 21 5 a , (5.27a)r /21s1 2 1 22 2

1 1
a r 2 s, 1 2 a r 2 s, 21 5 a . (5.27b)r /22s1 2 1 22 2

The second terms in (5.27a,b) vanish [except in the case
r 5 2s, in which (5.27b) reduces to the identity a(0, 1)
2 a(0, 21) 5 a0 5 0]. Thus, when s 5 0, (5.27) implies
that the common value of (5.22) is ar/2, which is then
the only nonvanishing coefficient in (5.9). When s .
0, (5.27) implies that the common value of (5.22) is
ar/21s 5 ar/22s, which are then the only two nonvanishing
coefficients in (5.9). Suppose, for example, that r 5 s
5 2. From (5.22) and (5.8), we have the four nonvan-
ishing coefficients

a(3, 1) 5 a(23, 21) 5 a(21, 1) 5 a(1, 21).
(5.28)

The normalization requirements (5.27) imply that a3 5
2a1 5 1/4 in (5.9), corresponding to a 5 b 5 0, c 5 1
in (5.7) and (5.3). The common value of (5.28) is 1/4,
and (5.3) takes the form h̃i 5 (1/2)(hi22 1 hi12).

It is perhaps easier to reverse the process of nor-
malization by noting that the nonvanishing a’s must sum
to unity. That is, the common value of (5.22) is r21 if
s 5 0, and (2r)21 if s . 0. With the a’s thus completely
determined, Q is a completely determined sum of
squares; that is, the double sum in (5.10) vanishes. It
only remains to adjust the coefficients in (5.7) such that
Q 5 D; this determines the form of (5.3). The numerical
scheme is than completely determined except for the
choice of Hamiltonian. This viewpoint shows that the
problem of finding one-dimensional, potential-enstro-
phy-conserving schemes essentially reduces to the prob-
lem of finding a’s consistent with (5.8) that reduce
(5.10) to a nontrivial sum of squares.

What happens if nontrivial solutions of (5.18) and
(5.20) are included? Since the a’s that solve the forced
system (5.19) and (4.21) automatically sum to unity, the
a’s that solve the unforced system (5.18) and (5.20)
automatically sum to zero. For example, the simplest
solution to (5.18) and (5.20) contains the seven non-
vanishing coefficients
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a(0, 0) 5 2g,

a(1, 0) 5 a(21, 0) 5 g, and

a(1, 2) 5 a(21, 22) 5 a(2, 2)

5 a(22, 22) 5 2g, (5.29)

where g is an arbitrary constant. The numerical scheme
corresponding to (5.25), (5.26), and (5.29) is

du 1i 5 (q V 1 q V 1 q V 1 q V )i22 i21 i12 i11 i i11 i i21dt 4

1 g(2q V 1 q V 1 q V 2 q Vi i i21 i21 i11 i11 i21 i11

2 q V 2 q V 2 q V )i11 i21 i22 i i12 i

212 (2D) (F 2 F ), (5.30a)i11 i21

dy 1i 5 2 (q U 1 q U 1 q U 1 q U )i21 i11 i11 i21 i21 i21 i11 i11dt 4

2 g(2q U 1 q U 1 q U 2 q Ui i i i11 i i21 i22 i21

2 q U 2 q U 2 q U ), (5.30b)i12 i11 i22 i i12 i

dhi 215 2(2D) (U 2 U ), (5.30c)i11 i21dt

where

U [ ]H/]u , V [ ]H/]y , F [ ]H/]h , (5.31)i i i i i i

and H is the arbitrary discrete Hamiltonian. When g 5
0, the scheme (5.30) reduces to the one-dimensional
version of the AL scheme (for their choice of Hamil-
tonian). The g terms, which contribute equal numbers
of Coriolis terms of both signs, certainly complicate
(5.30), but in the next section we shall see that the ability
to adjust g can sometimes be very useful.

6. Analysis of the two-dimensional case

Now we return to the two-dimensional case. The fun-
damental equation (4.25) can be written in the form

Q 5 D, (6.1)

where
2Q 5 m(0, 2m)qO m

m

1 [m(r, 2m) 2 m(r, r 1 m)]q q ,OO m m1r
r m

(6.2)

m(r, m) [ a(r 2 j, m) 2 a(r 1 j, m)

1 2g(r 1 i, m) 2 2g(r 2 i, m), and (6.3)
2D 5 a q . (6.4)O m m

m

In (6.2), the summation over m 5 (mx, my) is over all
integers mx, my, while the sum over r is over the half-
plane excluding r 5 0. Thus (6.2) is analogous to (5.10),
and (6.3) is analogous to (5.13). The coefficients am in

(6.4) are determined by the coefficients a, b, c in (4.25)
in the same way that (5.7) determines (5.9), hence am

5 2a2m. Since (6.1) must hold for arbitrary qn, it fol-
lows that

m(0, 2m) 5 am (6.5)

for all m, and

m(r, m) 5 m(r, r 2 m) (6.6)

for all m and all r ± 0. The general solution of (6.6)
is

1
m(r, m) 5 f m 2 r , (6.7)r1 22

where f r(s) is an arbitrary function with the properties
f r(s) 5 f r(2s) and f r(s) 5 2 f 2r(s). Equation (6.7) is
analogous to (5.16). Combining (6.5) and (6.7) with the
definition (6.3), we obtain the analog

a(r 2 j, m) 2 a(r 1 j, m) 1 2g(r 1 i, m)

a , r 5 0m2 2g(r 2 i, m) 5 (6.8) 1
f m 2 r , r ± 0 r1 22

of (5.17). By the symmetry properties (4.19), (6.8) im-
plies

a(m, r 2 i) 2 a(m, r 1 i) 1 2b(m, r 1 j)

a , r 5 0m*2 2b(m, r 2 j) 5  1
f m* 2 r* , r ± 0, r*1 22

(6.9)

where (mx, my)* [ (my, mx). The set (6.9) bears the
same relation to (4.17) as does (6.8) to (4.18). Either
set, (6.8) or (6.9), combined with the symmetry con-
ditions (4.19)–(4.22), completely determines the dis-
crete bracket.

I have not succeeded in solving (6.8) or (6.9) by
hand, as (5.17) was solved to yield (5.18)–(5.21). In-
stead we resort to machine manipulations. However,
we can deduce some important properties of the so-
lutions directly from (6.8) and (6.9). Like (5.17), the
set (6.8) decouples into independent subsets of equa-
tions. The subset corresponding to r 5 (even, even) is
analogous to (5.19), and it alone feels the forcing terms
am . The other three subsets are analogous to (5.18).
By (6.8) and (6.9), this forced subset involves only
a(n, m) with n 5 (even, odd) and m 5 (odd, even),
g(n, m) with n, m 5 (odd, even), and b(n, m) with
n, m 5 (even, odd). In other words, the directly forced
scheme corresponds to a C system. Thus the a, b, g
coefficients corresponding to E- or A-grid arrange-
ments of the variables can be set to zero a priori, with
no effect on our ability to satisfy (6.8) or (6.9), just as
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FIG. 3. The stencil for the numerical schemes discussed in section
6. Each of the sums over n and m in (4.2) runs over the 25 values
of (nx, ny) represented in the figure.

(5.17) is most easily satisfied by setting the coefficients
in (5.18) to zero. This step would reduce the size of
(6.8) or (6.9) by about a factor 4. Furthermore, since
m 5 (odd, even) in (6.8) and (6.9), we can expect to
find solutions only for the case a 5 b 5 0, c 5 1 in
(4.23)–(4.25). This property that the simplest schemes
satisfying (6.8) or (6.9) are C schemes is a direct con-
sequence of the choice (4.5) for the numerator of qij .
As emphasized in section 4, this choice, which deter-
mines the form of the left-hand sides of (6.8) and (6.9),
is the only arbitrary component (besides the stencil
size) of schemes based on (4.2).

We solve for schemes by demanding that (4.25) hold
for arbitrary values of the q’s, subject to the symmetry
requirements (4.19)–(4.22), in the manner outlined at
the end of section 4. A relatively simple computer pro-
gram assembles the quadratic form in (4.25); uses the
symmetry requirements to eliminate all of the a and g
coefficients except for a single coefficient in each class;
forms the determining system of equations by demand-
ing that the coefficient of each monomial qnqm vanish;
solves for the a and g coefficients and the constants a,
b, c; assembles the Poisson bracket; and checks the re-
sulting schemes for accuracy and potential-enstrophy
conservation.

In presenting results, it is convenient to specify the
value of a single member of each class of coefficients,
the values of the other members being determined by
(4.19)–(4.21) but not (4.22). That is, in presenting
our results, we drop the arbitrary property (4.22) used
to simplify the equations in section 4.5 With this un-
derstood, the AL bracket is defined by

1
a(2, 1)(1, 0) 5 ,

12

1
a(0, 1)(1, 0) 5 a(2, 1)(1, 2) 5 g(1, 2)(1, 0) 5 .

24

(6.10)

The specification (6.10) is equivalent to (4.7) and to
Fig. 2.

We present results for the stencil shown in Fig. 3.
That is, we assume that the sums over n and m in (4.2)
are over the 25 values of (nx, ny) depicted in Fig. 3.
The determining system corresponding to Fig. 3 com-
prises 461 equations in 193 unknowns. Other, larger,
stencils were also investigated, but the general scheme
corresponding to Fig. 3 is already quite large—contain-
ing 22 free parameters!—and is certainly large enough
to illustrate general properties of the schemes. As ex-
pected from our discussion of (6.8) and (6.9), we find
that a 5 b 5 0 and c 5 1; the denominator of qij takes

5 Thus, (6.10) implies g(1, 0)(1, 2) 5 0, and not g(1, 0)(1, 2) 5
21/24.

the form (4.6). The ‘‘forced’’ coefficients conform to
the C grid. For the chosen stencil, these coefficients take
the forms

g(1, 2)(21, 2) 5 g [4], (6.11a)1

g(1, 2)(21, 0) 5 g [8], (6.11b)2

1
g(1, 2)(1, 0) 5 1 g [8], (6.11c)224

g(1, 2)(1, 22) 5 2g [4]; (6.11d)2

and

1
a(2, 1)(1, 2) 5 [4], (6.12a)

24

1
a(0, 1)(1, 0) 5 1 2g [4], (6.12b)124

1
a(2, 1)(1, 0) 5 1 g [8], (6.12c)212

a(2, 1)(3, 0) 5 2g 2 g [8], (6.12d)1 2

a(2, 1)(21, 0) 5 g [8], (6.12e)2

a(2, 1)(1, 22) 5 2g [8], (6.12f)2

where g 1 and g 2 are arbitrary constants. Once again,
each of (6.11)–(6.12) specifies the values of an entire
class of a or g coefficients. The square bracket after
each equation gives the size of the class, which is
equal to the number of Coriolis terms contributed by
the class to each momentum equation. The solution
(6.11)–(6.12) is analogous to (5.19) after normali-
zation (5.21). The constants g 1 and g 2 are analogous
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FIG. 4. Every point on the g1–g2 plane corresponds to an energy- and
potential-enstrophy-conserving scheme defined by (6.11)–(6.12). All are
consistent with the C grid. The Arakawa–Lamb (AL) scheme, at the
origin, is the simplest such scheme; AL1 is the second simplest. The
Takano–Wurtele (TW) scheme and the TW2 scheme lie on the (dashed)
line of schemes with fourth-order accuracy in the vorticity equation.

to the f r on the right-hand side of (5.19). (Only two
such constants survive truncation to the chosen stencil
size.) The AL scheme corresponds to g 1 5 g 2 5 0.
The scheme proposed by TW corresponds to g1 5 1/24
and g 2 5 0.

In addition to the C-grid coefficients (6.11)–(6.12),
the general scheme corresponding to the stencil in Fig.
3 contains a 20-parameter set of ‘‘unforced’’ coeffi-
cients, analogous to (5.18); 8 of these 20 are E-grid
solutions inconsistent with the C-grid; 12 of the 20 are
A-grid schemes inconsistent with the E-grid and the C-
grid. Appendix A lists the simplest of the 20 non-C-
grid solutions. These include one especially simple so-
lution:

g(1, 1)(21, 1) 5 g [4], (6.13a)3

a(0, 1)(0, 0) 5 g [4], (6.13b)3

a(2, 0)(3, 0) 5 2g [4], (6.13c)3

containing only three classes and 12 Coriolis terms; and
the somewhat more complicated solution:

g(1, 1)(0, 1) 5 g [8], (6.14a)4

a(2, 0)(2, 0) 5 2g [4], (6.14b)4

a(1, 0)(2, 0) 5 2g [4], (6.14c)4

a(1, 0)(0, 0) 5 g [4], (6.14d)4

a(0, 0)(0, 0) 5 4g [1], (6.14e)4

which is interesting because it is one of the few schemes
involving the nonstaggered term (6.14e). None of the
20 unforced solutions contains constant terms like those
in (6.11) and (6.12).

As in the one-dimensional case, we satisfy (6.8)–
(6.9) most easily by discarding all the unforced so-
lutions, that is, by setting g 3 , g 4 , and the remaining
18 free parameters to zero. The surviving scheme is
then completely summarized by (6.11) and (6.12). We
study (6.11)–(6.12) as a representative subset—a
‘‘microcosm’’—of the larger set of all conserving
schemes. Then we consider the more general scheme
(6.11)–(6.14).

Equations (6.11)–(6.12) represent a two parameter
set of shallow-water schemes that conserve mass, cir-
culation, energy and potential enstrophy. Each point
in the g 1–g 2 plane shown in Fig. 4 corresponds to
one such scheme. All the points not on solid lines
(including the axes) correspond to schemes involving
all 10 of the classes in (6.11)–(6.12); such schemes
have 64 Coriolis terms of the form qij Vmn or qij Umn

in each momentum equation. Points on the solid lines
in Fig. 4 correspond to schemes in which at least one
of the 10 classes in (6.11)–(6.12) is absent. In fact,
four classes vanish along the g 1 axis in Fig. 4, while
one class vanishes along each of the other solid lines.
The simpler schemes, comprising fewer classes, lie
at the intersections of the solid lines in Fig. 4. The

AL scheme, at the origin, lies at the intersection of
the g 1 axis (with four vanishing classes), the g 2 axis
(with one vanishing class), and the line g 1 5 2g 2

(with one vanishing class). It is the simplest scheme,
with only four classes and 24 Coriolis terms. The next
simplest scheme, at g 1 5 21/48, g 2 5 0, contains 5
classes and 32 Coriolis terms. All the other schemes
with g 2 5 0, including TW, contain 6 classes and 36
Coriolis terms. All the schemes with g 2 ± 0 contain
at least 8 classes.

Since no choice of g1 and g 2 can make all of (6.11)
vanish, all of the schemes on Fig. 4 contain unphysical
Coriolis terms of the kind originally introduced by AL.
Since the additional, non-C-grid solutions like (6.13)
and (6.14) do not affect (6.11), this fact remains gen-
erally true: All potential-enstrophy-conserving
schemes contain unphysical Coriolis terms. Likewise
we shall show that all potential-enstrophy-conserving
schemes have only second-order accuracy in the grid-
spacing D.

Appendix B gives the explicit finite-difference for-
mulas corresponding to the scheme (6.11)–(6.14) By
Taylor expanding these formulas in the usual way, we
obtain
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]u 1
25 2F 1 qV 2 D Fx xxx]t 6

1
21 D (3qV 1 3qV 1 6q V 1 6q V 1 3q V 2 4q U 2 2q U )xx yy xx x x yy y x xy6

2 41 4(2g 1 2g 1 g 1 g )D (q V 2 q V 2 2q V 2 q V 2 q U 2 2q U ) 1 O(D ), (6.15a)1 2 3 4 x x xx yy y y xy x y

]y 1
25 2F 2 qU 2 D Fy yyy]t 6

1
22 D (3qU 1 3qU 1 6q U 1 6q U 1 3q U 2 4q V 2 2q V ) (6.15b)xx yy yy y y xx x y xy6

2 42 4(2g 1 2g 1 g 1 g )D (q U 2 q U 2 2q U 2 q U 2 q V 2 2q V ) 1 O(D ), and1 2 3 4 y y yy xx x x xy y x

]h 1
2 45 2U 2 V 2 D (U 1 V ) 1 O(D ). (6.15c)x y xxx yyy]t 6

To fully assess (6.15), we must express q, U [ dH/du,
V [ dH/dy, and F [ dH/dh in terms of u, y, and h.
The potential vorticity q, defined by (4.4)–(4.6), is then
a further source of O(D2) truncation error. On the other
hand, the further error introduced by U, V, and F de-
pends upon the choice of Hamiltonian. The choice (4.9)
introduces no further truncation error, while (4.8) intro-
duces a further O(D2) truncation error. Quite apart from
these issues, it is obvious from (6.15) that no choice of
the g’s can completely cancel the O(D2) terms. In par-
ticular, the accuracy of (6.15c) cannot be improved.
More surprisingly, we note that the leading-order trun-
cation error associated with each of the four free pa-
rameters g1, g 2, g 3, g 4 has exactly the same form. This
means that, insofar as accuracy is concerned, we can
(for example) do nothing by adjusting g 2 that we cannot
do by adjusting g1. Then, since the most complicated
schemes with g 2 5 0 are simpler than the simplest
schemes with g 2 ± 0, there would seem, from the stand-
point of accuracy and conservation properties alone, to
be no reason whatsoever to consider schemes with g 2

± 0.
Remarkably, this rule of proportional truncation er-

ror seems to be generally true. We find that 19 of the
22 free parameters in the general scheme corresponding
to the stencil in Fig. 3 contribute an O(D2) truncation
error proportional to that in (6.15a–b), while 3 of the
22 parameters contribute no O(D2) error at all. If this
were not the case, that is, if the different parameters
contributed different forms of truncation error, then it
might be possible to adjust the parameters to cancel
much of the error in the momentum equations. Instead
it seems that one adjustable parameter is as good as
many, and that we may as well consider only those
single parameters that correspond to the simplest
schemes.

Using an approach similar to AL, TW obtained a po-
tential-enstrophy-conserving scheme with O(D4) accu-

racy in the vorticity equation only, provided that the mass
flux could be assumed nondivergent, Ux 1 Vy 5 0. The
TW scheme, which corresponds to the point g1 5 1/24,
g 2 5 0 in Fig. 4, is subject to two important caveats.
First, the vorticity itself retains only second-order ac-
curacy in D. Second, the condition Ux 1 Vy 5 0 is im-
posed with only second-order accuracy. To recover the
TW result, we first note that (4.5) implies that

1
2 4z 5 (y 2 u ) 1 D (y 2 u ) 1 O(D ), (6.16)x y xxx yyy6

and thus

1
2z 5 ] 1 D ] 1 · · · yt x xx t1 26

1
2 42 ] 1 D ] 1 · · · u 1 O(D ). (6.17)y yy t1 26

Then, putting
21U 5 2(2D) (c 2 c )i, j11 i, j21

1
2 45 2c 2 D c 1 O(D ), (6.18a)y yyy6

21V 5 (2D) (c 2 c )i11, j i21, j

1
2 45 c 1 D c 1 O(D ) (6.18b)x xxx6

in (6.15) and substituting the result into (6.17), we find
that

4z 5 2c q 1 c q 1 O(D ),t x y y x (6.19)

provided that

1
2g 1 2g 1 g 1 g 5 , (6.20)1 2 3 4 12

where each coefficient occurs, as it must, in the same
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TABLE 1. Summary of numerical solutions depicted in Fig. 6.

Scheme g1 g2 g3 g4 Classes
Coriolis

terms Accuracy Symmetry

AL
AL1
TW
TW2
TW3
TW4

0
2 1

48
1
24

0
0
0

0
0
0
1
24

0
0

0
0
0
0
1
12

0

0
0
0
0
0
1
12

4
5
6
9
7
9

24
32
36
60
36
45

Second order
Second order
Fourth order
Fourth order
Fourth order
Fourth order

C grid
C grid
C grid
C grid
A grid
A grid

proportion as in (6.15a) and (6.15b). If (6.20) is satis-
fied, then schemes of the general form (6.11)–(6.14)
have fourth-order accuracy in the vorticity equation. The
equation corresponding to (6.20) for the most general
scheme based on our chosen lattice contains 19 free
parameters. Thus pseudo-fourth-order schemes occupy
a 19-dimensional space!

If we once again restrict ourselves to schemes of the
form (6.11)–(6.12), then the fourth-order schemes lie
on the dashed line g1 1 g 2 5 1/24 on Fig. 4. The TW
scheme lies at the intersection of this line with g 2 5 0.
With its 6 classes and 36 Coriolis terms, TW is by far
the simplest fourth-order scheme on Fig. 4; all other
schemes on the dashed line contain at least 9 classes of
coefficients. However, the A-grid fourth-order scheme
with g 3 5 1/12 and g1 5 g 2 5 g 4 5 0 contains only
7 classes and 36 Coriolis terms—the same number as
TW.

To assess the performance of the schemes, we com-
pare results from numerical experiments using the six
schemes given in Table 1. These include: the simplest
(AL) and second-simplest (AL1) second-order C-grid-
brackets, the simplest fourth-order C-bracket (TW), and
a much more complicated fourth-order C-bracket
(TW2). All four of these schemes are shown on Fig. 4.
We also test the fourth-order A-bracket TW3, which is
the only fourth-order bracket as simple as TW, and the
more complicated fourth-order A-bracket TW4. Each of
these six schemes comprises the AL ‘‘core’’ plus terms
proportional to one of the four g’s. In every case except
AL1, the g terms are chosen to give the scheme fourth-
order accuracy in the vorticity equation. In the case of
AL1, g1 is chosen to cancel (6.12b) by introducing
(6.11a) and (6.12d); once again, this is the second-sim-
plest scheme after AL. The terms proportional to each
g are shown diagrammatically in Fig. 5, using the same
arrow conventions as in Fig. 2. Figure 5 shows more
clearly than any mathematical formula that the four
schemes TW1, TW2, TW3, and TW4 achieve fourth-
order accuracy by adding very different types of Cor-
iolis terms to the AL core.

Figure 6 shows the potential vorticity field in nu-
merical solutions using the six schemes defined in Table
1. The common initial conditions are parallel shear lay-
ers slightly perturbed by a sinusoidal cross flow. All six
solutions use the simple Hamiltonian (4.9) and thus are

technically A-grid schemes. All have the same small
Navier–Stokes viscosity. At the time shown in Fig. 6,
the viscosity has reduced the energy by less than 0.02%
and the potential enstrophy by about 13%. Some further
details of the calculations are given in appendix B. Fig-
ure 6 shows that, despite significant differences among
the schemes, the solutions are very similar, with the
biggest differences between the two second-order
schemes at the top of Fig. 6 and the four fourth-order
schemes at the bottom.

The ‘‘rule of proportional truncation error’’ noted
above must surely have its source in the exactly con-
serving nature of our schemes. Exact conservation
means conservation to all orders in D. Thus, the fact
that (6.11)–(6.14) conserves energy for arbitrary values
of g1, g 2, g 3, g 4 means that

dx(Fh 1 Uu 1 Vy ) 5 0 (6.21)EE t t t

for arbitrary F, U, and V, if ht, ut, and y t are replaced
by the terms proportional to D2g i in (6.15). Similarly,
conservation of potential enstrophy implies that

1
2dx ] 1 D ] 1 · · · yEE x xx t1 2[ 6

1
2 42 ] 1 D ] 1 · · · u 5 O(D ), (6.22)y yy t1 2 ]6

following the same substitution [cf. (6.17)]. The steps
required to verify (6.21) and (6.22), which involve
many integrations by parts, evidently require that the
truncation error associated with each g i take the very
particular, common form in (6.15). Since this same
commonality represents an obstacle to the construc-
tion of higher-order schemes, the requirements of con-
servation and accuracy are seen to be somewhat an-
tagonistic.

The search for genuinely fourth-order conserving
schemes must begin by replacing the finite differences
in (4.3) and (4.5) by fourth-order differences. Such a
search yielded a fourth-order, conserving bracket for
the one-dimensional shallow-water equations, but
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FIG. 5. Diagrammatic representation of the terms in (4.2) proportional to each of the free parameters
g1, g 2, g 3, g 4 in numerical schemes of the general form (6.11)–(6.14). The general scheme comprises
the AL core (Fig. 2) plus an arbitrary weighting of each of the four diagrams on this figure. Since the g1

and g 2 terms are consistent with the C grid, the meaning of the arrows in the top two diagrams is—as in
Fig. 2—unambiguous. In the two bottom diagrams, each arrow is labeled as an a, b, or g term. The small
circles on the g 4 diagram represent the a terms corresponding to (6.14b) and (6.14e). These may be
regarded as arrows that begin and end at the same point. For clarity, the relative weight of each arrow is
not shown. This figure is primarily intended to depict the very different structures of the arbitrary com-
ponents of (6.11)–(6.14).

only at the relatively large stencil size of M 5 7.
Two-dimensional searches failed for stencil sizes up
to M 5 9.

I also searched for schemes that conserve other mo-

ments of the potential vorticity, besides potential en-
strophy. If we ask that the dynamics (4.1)–(4.5) and
(4.23)–(4.24) conserve the analog of l21 ## dx hql ,
then the coefficients in (4.2) and (4.23) must satisfy

l21 l21 l21 l21q [a (q 2 q ) 1 2g (q 2 q )]O 2m nm n2m1j n2m2j nm n2m2i n2m1i
n,m

1
21 l l l l l l l l5 l (l 2 1){a[q 2 q ] 1 b[q 1 q 1 q 2 q 2 q 2 q ](0,1) (0,21) (0,2) (1,1) (21,1) (0,22) (1,21) (21,21)4

1
l l l l1 c[q 1 q 2 q 2 q ]} (6.23)(1,2) (21,2) (1,22) (21,22)4
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FIG. 6. The potential vorticity field corresponding to an initial condition of slightly perturbed shear
layers, as computed by the six distinct energy- and potential-enstrophy-conserving schemes summarized
in Table 1. The two schemes at the top have second-order accuracy in the grid spacing. The other four
schemes have fourth-order accuracy in the vorticity equation.

for arbitrary values of the q’s. When l 5 2 (6.23) re-
duces to (4.25). No solutions of (6.23) were found for
l 5 3 or 4. This is perhaps unsurprising, because for
given n, m (6.23) contains monomials of the form
qn , as well as qm. Thus, when l 5 3 or 4, thel21 l21q qm n

determining system is roughly twice as large as when
l 5 2.

7. Philosophy

For better or worse, the day of the pure theoretician
in our field is long past. Research in geophysical fluid
dynamics now primarily involves the numerical simu-
lation of fluid motions. Yet despite huge advances in

computer hardware, the methodology of software con-
struction has hardly changed in 50 years. This construc-
tion normally proceeds in two stages. In the first stage,
we introduce approximate differential equations that ex-
press the underlying physics. In the second stage, we
replace the differential equations with discrete analogs
using well-established techniques that often rely on
ideas about smoothness and the use of Taylor series.
These techniques are usually of a kind that could be
applied to almost any set of nonlinear partial differential
equations.

However, the equations of fluid motion are of a very
particular type. In their inviscid form, they possess
Hamiltonian structure, with a very distinctive set of
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symmetry properties and conservation laws. The con-
servation laws express the fundamental physics more
perfectly than does the typical discrete approximation
to the differential equations, designed, as it usually is,
to apply equally well to nonconserving equations. It
therefore seems preferable to construct the discrete dy-
namics directly on the basis of the conservation laws
alone, without actually writing—and with no pretense
at solving—a set of partial differential equations. Of
course, in hindsight it will always be true that the re-
sulting discrete dynamics is a logical finite-difference
approximation to a consistent set of differential equa-
tions, just as the dynamics (6.11)–(6.14) correctly limits
on (6.15). However, it may be equally true that, in the
construction of discrete dynamics, the introduction of
differential equations can never be more than a mis-
leading distraction.

This somewhat iconoclastic viewpoint finds support
in the popularity and success of lattice-gas models and
the closely related lattice-Boltzmann method. However,
lattice-Boltzmann models do not seem adaptable to con-
servation laws besides mass and momentum, and, some-
what contrary to popular belief, cannot be constructed
on the basis of local conservation laws alone; on the
latter point, see especially Dellar (2002). In fact, dis-
illusionment with the lattice-Boltzmann method largely
motivated the present work. The present method, like
the lattice-Boltzmann method, scarcely invokes the con-
cept of spatial derivative; in fact (4.3) and (4.5) contain
the only finite differences involved. However, the pre-
sent, Poisson-bracket approach seems adaptable to al-
most any dynamics, whereas the lattice-Boltzmann ap-
proach seems fundamentally limited to systems resem-
bling the Navier–Stokes equations.

Nonetheless, we must admit that, although our results
are, on the one hand, much more general than those of
AL and TW, and on the other hand, more streamlined

than those of Abramopoulos (1988), the ansatz (4.1)–
(4.3) copies their common basic strategy of postulating
a general form with a great many undetermined weights
and then determining the weights in such a way that
conservation laws survive. Such an approach is clumsy,
wasteful of effort, and seems incapable of finding
schemes with genuine fourth-order accuracy or schemes
conserving additional Casimirs. Moreover, one-dimen-
sional results like (3.13) suggest that the corresponding
two-dimensional form may be very hard to guess. What
is really needed is a purely constructive method of de-
termining Poisson brackets, free of undetermined
weights, that can—with sufficient effort—attain any lev-
el of accuracy and accommodate any number of con-
servation laws. Strenuous efforts to find such a con-
structive method have failed, but I have no doubt that
it exists. In the meantime, the present paper is offered
as one small step in what is perceived to be the right
direction.
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APPENDIX A

Summary of Solutions

The general energy- and potential-enstrophy-con-
serving shallow-water scheme corresponding to (4.1)–
(4.3) and the stencil in Fig. 3 comprises (6.11)–(6.12)
with its 2 free parameters, plus expressions involving
20 additional free parameters. Here, we record the sim-
plest of these 20 additional contributions, namely those
involving five or fewer classes of a and g coefficients.
They are

g(1, 2, 1, 1) 5 2g(1, 1, 1, 21) [12] (A.1)

a(0, 1, 0, 0) 5 2a(2, 0, 3, 0) 5 g(1, 1, 21, 1) [12] (A.2)

1
a(0, 0, 0, 0) 5 a(1, 0, 0, 0) 5 2a(1, 0, 2, 0) 5 2a(2, 0, 2, 0) 5 g(1, 1, 0, 1) [21] (A.3)

4

a(1, 0, 21, 0) 5 a(1, 0, 1, 0) 5 2 a(1, 0, 3, 0) 5 2a(3, 0, 3, 0) 5 g(2, 1, 0, 1) [24] (A.4)

a(2, 0, 0, 0) 5 a(1, 0, 0, 0) 5 2a(3, 0, 2, 0) 5 2a(0, 2, 0, 0) 5 g(2, 1, 1, 1) [28] and (A.5)

1
a(0, 1, 0, 0) 5 a(1, 1, 0, 0) 5 2a(1, 1, 2, 0) 5 2a(2, 1, 2, 0) 5 g(1, 2, 0, 2) [36] (A.6)

2

Equations (A.1)–(A.6) are analogous to (5.25) except
that (A.1)–(A.6) contain only one representative mem-
ber of each class. The square bracket after each of (A.1)–
(A.6) contains the number of Coriolis terms contributed

to each momentum equation. None of (A.1)–(A.6) is
consistent with the C grid; only (A.4) is consistent with
the E grid. Solution (A.1) contributes only unphysical
Coriolis terms, and because it contributes no O(D2) trun-
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cation error, it cannot be used to construct higher-order
schemes. Solution (A.2) is equivalent to (6.13), and
(A.3) is equivalent to (6.14). The remaining 14 solutions
(not shown) contain between 6 and 22 classes of co-
efficients.

APPENDIX B

Dynamical Equations
In explicit form, the numerical scheme corresponding

to (6.11)–(6.14) is

d
21h 5 2(2D) (U 2 U 1 V 2 V ) and (B.1)0,0 1,0 21,0 0,1 0,21dt

d
21u 5 2(2D) (F 2 F )0,0 1,0 21,0dt

1
1 [(2q 1 2q 1 q 1 q )V 1 (2q 1 2q 1 q 1 q )V2,1 0,21 0,1 2,21 1,1 0,1 2,21 0,21 2,1 1,2124

1 (2q 1 2q 1 q 1 q )V 1 (2q 1 2q 1 q 1 q )V22,1 0,21 22,21 0,1 21,1 0,1 22,21 22,1 0,21 21,21

1 (q 1 q 2 q 2 q )U 1 (q 1 q 2 q 2 q )U ]0,21 2,21 2,1 0,1 2,0 0,1 22,1 22,21 0,21 22,0

1 g [(2q 2 q 2 q )V 1 (2q 2 q 2 q )V 1 (2q 2 q 2 q )V1 0,1 0,3 22,1 1,1 0,21 22,21 0,23 1,21 0,1 0,3 2,1 21,1

1 (2q 2 q 2 q )V 1 (q 2 q )U 1 (q 2 q )U ]0,21 2,21 0,23 21,21 22,1 2,1 0,2 2,21 22,21 0,22

1 g [(q 1 q 2 q 2 q )V 1 (q 1 q 2 q 2 q )V2 2,1 0,21 0,3 22,1 1,1 0,1 2,21 22,21 0,23 1,21

1 (q 1 q 2 q 2 q )V 1 (q 1 q 2 q 2 q )V 1 (q 2 q )V0,21 22,1 0,3 2,1 21,1 22,21 0,1 2,21 0,23 21,21 0,1 2,1 1,3

1 (q 2 q )V 1 (q 2 q )V 1 (q 2 q )V 1 (q 2 q )V0,21 2,21 1,23 0,1 22,1 21,3 0,21 22,21 21,23 2,1 2,21 3,1

1 (q 2 q )V 1 (q 2 q )V 1 (q 2 q )V2,21 2,1 3,21 22,1 22,21 23,1 22,21 22,1 23,21

1 (q 1 q 2 q 2 q )U 1 (q 1 q 2 q 2 q )U 1 (q 2 q )U0,21 2,21 0,1 2,1 2,0 0,1 22,1 22,21 0,21 22,0 2,1 2,21 4,0

1 (q 2 q )U 1 (q 2 q )U 1 (q 2 q )U 1 (q 2 q )U22,21 22,1 24,0 0,1 2,1 2,2 2,21 0,21 2,22 22,1 0,1 22,2

1 (q 2 q )U ]0,21 22,21 22,22

1 g [(q 2 q )V 1 (q 2 q )V 1 (q 2 q )V 1 (q 2 q )V3 0,21 0,23 0,21 00 2,0 21,0 00 22,0 1,0 0,1 0,3 0,1

1 (q 2 q )U 1 (q 2 q )U ]21,1 1,1 0,2 1,21 21,21 0,22

1 g [(4q 2 q 2 q 2 q 2 q )V 1 (q 2 q )V 1 (q 2 q )V 1 (q 2 q )V4 00 0,22 0,2 22,0 2,0 00 1,0 21,0 1,0 21,0 1,0 21,0 00 0,2 0,1

1 (q 2 q )V 1 (q 1 q 2 q 2 q )U 1 (q 1 q 2 q 2 q )U ], (B.2)00 0,22 0,21 21,0 21,1 1,0 1,1 0,1 1,0 1,21 21,21 21,0 0,21

where ui,j is the value of u at the ij grid point, and Uij

5 ]H/]uij, Vij 5 ]H/]yij, and Fij 5 ]H/]hij are approx-
imations to hu, hy, and F, respectively, that depend on
the choice of Hamiltonian. To save space, the formulas
are written for dh00/dt and du00/dt, but the generalization
to dhi,j/dt and dui,j/dt is obvious. The formula for dy00/dt
is obtained from (B.2) as follows. In (B.2), interchange
the symbols u and y; interchange U and V; interchange
all subscripts; and reverse the sign of every q. Thus,

d
21y 5 2(2D) (F 2 F )0,0 0,1 0,21dt

1
2 [(2q 1 2q 1 q 1 q )U1,2 21,0 1,0 21,2 1,124

1 (2q 1 2q 1 q 1 q )U1,0 21,2 21,0 1,2 21,1

1 · · ·] (B.3)

The numerical solutions depicted in Fig. 6 use the Ham-
iltonian (4.9) and an eddy viscosity of the form ](hu)/]t
5 . . .n= · (h=u), which conserves momentum and dis-
sipates energy. The resolution is 200 3 200, and the
time derivative has been computed using second-order
Runge–Kutta.
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