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SOME OCEAN MODEL FUNDAMENTALS

Stephen M. Griffies
NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA

Abstract The purpose of these lectures is to present elements of the equations and
algorithms used in numerical models of the large-scale ocean circulation.
Such models generally integrate the ocean’s primitive equations, which
are based on Newton’s Laws applied to a continuum fluid under hy-
drostatic balance in a spherical geometry, along with linear irreversible
thermodynamics and subgrid scale (SGS) parameterizations. During
formulations of both the kinematics and dynamics, we highlight issues
related to the use of a generalized vertical coordinate. The vertical co-
ordinate is arguably the most critical element determining how a model
is designed and applications to which a model is of use.
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1. Concepts, themes, and questions

Numerical ocean models are computational tools used to understand
and predict aspects of the ocean. They are a repository for our best
ocean theories, and they provide an essential means to probe a mathe-
matical representation of this very rich and complex geophysical system.
That is, models provide an experimental apparatus for the scientific
rationalization of ocean phenomena. Indeed, during the past decade,
large-scale models have become the experimental tool of choice for many
oceanographers and climate scientists. The reason for this state of affairs
is largely due to improved understanding of both the ocean and ocean
models, as well as increased computer power allowing for increasingly
realistic representations of ocean fluid dynamics. Without computer
models, our ability to develop a robust and testable intellectual basis for
ocean and climate dynamics would be severely handicapped.
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The remainder of this section introduces some basic concepts, themes,
and questions, some of which are revisited later in the lectures. We
present some philosophical notions which motivate a focus on funda-
mental concepts and notions when designing, constructing, and analyz-
ing ocean models.

1.1 Model environments

The field of ocean model design is presently undergoing a rapid growth
phase. It is arguable that the field has reached adolescence, with further
maturation likely taking another 10-20 years as we take the models to
a new level of integrity and innovation. Many applications drive this
evolution, such as studies of climate change, operational oceanography,
and ultra-refined resolution process studies.

One goal of many developers is that the next decade of model evolu-
tion will lead to a reduction in code distinctions which presently hinder
the ability of modelers to interchange algorithms, make it difficult to
directly compare and reproduce simulations using different codes, and
increase the burdens of model maintenance in a world of increasingly
complex computational platforms and diverse applications. Notably,
the distinctions will not be removed by all modelers using a common al-
gorithm. Such is unreasonable and unwarranted since different scientific
problems call for different algorithmic tools. Instead, distinctions may
be removed by the development of new codes with general algorithmic
structures flexible enough to encompass multiple vertical coordinates,
different horizontal grids, various subgrid scale (SGS) parameterizations,
and alternate numerical methods.

The word environment has recently been proposed to describe these
highly flexible and general codes. As yet, no model environment exists
to satisfy the needs and desires of most modelers. Yet some models are
moving in this direction by providing the ability to choose more than
one vertical coordinate. This is a critical first step due to the central
importance of vertical coordinates. The present set of lectures formulates
the fundamental equations using generalized vertical coordinates, and
these equations form the basis for generalized vertical coordinate ocean
models. Ideally, the advent of general model environments will allow
scientists to use the same code, even though they may use different
vertical coordinates, horizontal grids, numerical methods, etc.

Many of the ideas presented here are an outgrowth of research and
development with the Modular Ocean Model of Griffies et al., 2004, as
well as the MITgcm (Marshall et al., 1997, Adcroft and Campin, 2004).
The MITgcm provides for a number of depth-based and pressure-based
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vertical coordinates. Another approach, starting from an isopycnal lay-
ered model, has been taken by the Hybrid Coordinate Ocean Model
(HYCOM) of Bleck, 2002. HYCOM is arguably the most mature of the
generalized vertical coordinate models.

From an abstract perspective, it is a minor point that different mod-
elers use the same code, since in principle all that matters should be the
continuum equations which are discretized. This perspective has, un-
fortunately, not been realized in practice. Differences in fundamentals
of the formulation and/or numerical methods often serve to make the
simulations quite distinct, even when in principle they should be nearly
identical. Details do matter, especially when considering long time scale
climate studies where small differences have years to magnify.

An argument against merging model development efforts is that there
is creative strength in diversity, and so there should remain many ocean
codes. A middle ground is argued here, whereby we maintain the frame-
work for independent creative work and innovation, yet little effort is
wasted developing redundant software and/or trying to compare differ-
ent model outputs using disparate conventions. To further emphasize
this point, we stress that the problems of ocean climate and operational
oceanography are vast and complex, thus requiring tremendous human
and computational resources. This situation calls for merging certain
efforts to optimize available resources. Furthermore, linking modelers
together to use a reduced set of code environments does not squelch cre-
ativity nor does it lead to less diversity in algorithmic approaches. In-
stead, environments ideally can provide modelers with common starting
points from which to investigate different methodologies, parameteriza-
tions, and the like.

The proposal for model environments is therefore analogous to use of a
few spoken/written languages (e.g., english, french) to communicate and
formulate arguments, or a few computer languages (e.g., Fortran, C++)
to translate numerical equations into computer code. Focusing on a few
ocean model environments, rather than many ocean models, can lead to
enhanced collaboration by removing awkward and frustrating barriers
that exist between the presently wide suite of model codes. Ultimately,
such will (it is hoped!) lead to better and more reproducible simulations,
thus facilitating the maturation of ocean modelling into a more robust
and respectable scientific discipline.

1.2 Some fundamental questions

It is possible to categorize nearly every question about ocean mod-
elling into three classes.
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1 Questions of model fundamentals, such as questions raised in this
section.

2 Questions of boundary fluxes/forcing, from either the surface air-
sea, river-sea, and ice-sea interactions, or forcing from the solid
earth boundary. The lectures in this volume from Bill Large touch
upon many of the surface flux issues.

3 Questions of analysis, such as how to rationalize the simulation to
enhance ones ability to understand, communicate, and conceptu-
alize.

If we ask questions about physical, mathematical, or numerical aspects
of an ocean model, then we ask questions about ocean model fundamen-
tals. The subject deals with elements of computational fluid mechanics,
geophysical fluid mechanics, oceanography (descriptive and dynamic),
and statistical physics. Given the wide scope of the subject, even a
monograph such as Griffies, 2004 can only provide partial coverage. We
consider even less in these lectures. The hope is that the material will
introduce the reader to methods and ideas serving as a foundation for
further study.

For the remainder of this section, we summarize a few of the many
fundamental questions that designers and users often ask about ocean
models. Some of the questions are briefly answered, yet some remain
unaswered because they remain part of present day research. It is no-
table that model users, especially students learning how to use a model,
often assume that someone else (e.g., their adviser, the author of a re-
search article, or the author of a book) has devoted a nontrivial level of
thought to answering many of the following questions. This is, unfor-
tunately, often an incorrect assumption. The field of ocean modelling
is not mature, and there are nearly as many outstanding questions as
there are model developers and users. Such hopefully will provide mo-
tivation to the student to learn some fundamentals in order to help the
field evolve.

Perhaps the most basic question to ask about an ocean model concerns
the continuum equations that the model aims to discretize.

Should the model be based on the non-hydrostatic equations, as
relevant for simulations at spatial scales less than 1km, or is the hy-
drostatic approximation sufficient? Global climate models have all
used the hydrostatic approximation, although the model of Mar-
shall et al., 1997 provides an option for using either. Perhaps in
10-20 years, computational power will be sufficient to allow fully
non-hydrostatic global climate simulations. Will the simulations
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change drastically at scales larger than 1km, or do the hydrostatic
models parameterize non-hydrostatic processes sufficiently well for
most applications at these scales? Note that the accuracy of the
hydrostatic approximation scales as the squared flow aspect ratio
(ratio of vertical to horizontal length scales). Atmospheric mod-
elers believe their simulations will be far more realistic with an
explicit representation of non-hydrostatic dynamics, such as con-
vection and cloud boundary layer processes. In contrast, it remains
unclear how necessary non-hydrostatic simulations are for global
ocean climate. Perhaps it will require plenty of experience run-
ning non-hydrostatic global models before we have unambiguous
answers.

Should the kinematics be based on incompressible volume con-
serving fluid parcels, as commonly assumed for ocean models us-
ing the Boussinesq approximation, or should the more accurate
mass conserving kinematics of the non-Boussinesq fluid be used, as
commonly assumed for the more compressible atmosphere. Ocean
model designers are moving away from the Boussinesq approxi-
mation since only a mass conserving fluid can directly represent
sea level changes due to steric effects (see Section 3.4.3 of Griffies,
2004), and because it is simple to use mass conserving kinematics
by exploiting the isomorphisms between depth and pressure dis-
cussed by DeSzoeke and Samelson, 2002, Marshall et al., 2003, and
Losch et al., 2004.

Can the upper ocean surface be fixed in time with a rigid lid, as
proposed decades ago by Bryan, 1969 and used for many years, or
should it be allowed to fluctuate with a more realistic free surface
so to provide a means to pass fresh water across the ocean surface
and to represent tidal fluctuations? Most models today employ a
free surface in order to remove the often unacceptable restrictions
of the rigid lid. Additionally, many free surface methods remove
elliptic problems from hydrostatic models. The absence of elliptic
problems from the free surface models greatly enhances their com-
putational efficiency on parallel computers (Griffies et al., 2001).

Should tracers, such as salt, be passed across the ocean surface via
virtual tracer fluxes, as required for rigid lid models, or should the
model employ real water fluxes thus allowing for a natural dilution
and concentration of tracer upon precipitation and evaporation, re-
spectively? As discussed more fully in Section 3.6, the advent of
free surface methods allows for modelers to jettison the unphysical
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virtual tracer methods of the rigid lid. Nonetheless, virtual tracer
fluxes remain one of the unnecessary legacy approximations plagu-
ing some modern ocean models using free surface methods. The
potential problems with virtual tracer fluxes are enhanced as the
time scales of the integration go to the decade to century climate
scale.

What is the desired manner to write the discrete momentum equa-
tion: advective, as commonly done in B-grid models, or vector in-
variant, as commonly in C-grid models? The answer to this ques-
tion may be based more on subjective notions of elegance than
clear numerical advantage.

How accurate should the thermodynamics be, such as the equation
of state and the model’s “heat” tracer? The work of McDougall
and collaborators provides some guidance on these questions (Mc-
Dougall, 2003, McDougall et al., 2003, Jackett et al., 2004). How
important is it to get these things accurate? The perspective taken
here is that it is useful to be more accurate and flexible with present
day ocean climate models, since the temperature and salinity range
over which they are used is quite wide, thus making the older ap-
proximations less valid. Additionally, many of the more accurate
approaches have been refined to reduce their costs, thus making
their use nearly painless.

After deciding on a set of model equations, further questions arise
concerning how to cast the continuum partial differential equations onto
a finite grid. First, we ask questions about the vertical coordinates.
Which one to use?

Geopotential (z-coordinate): This coordinate is natural for Boussi-
nesq or volume conserving kinematics and is most commonly used
in present-day global ocean climate models.

Pressure: This coordinate is natural for non-Boussinesq or mass
conserving kinematics and is commonly used in atmospheric mod-
els. As mentioned earlier, the isomorphism between pressure and
depth allow for a straightforward transformation of depth coordi-
nates to pressure coordinates, thus removing the Boussinesq ap-
proximation from having any practical basis. We return to this
point in Section 6.

Terrain following sigma coordinates: This coordinate is commonly
used for coastal and estuarine models, with some recent efforts
aimed as using it for global modelling (Diansky et al., 2002).
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Potential density or isopycnal coordinates: This coordinate is com-
monly used for idealized adiabatic simulations, with increasing use
for operational and global climate simulations, especially when
combined with pressure coordinates for the upper ocean in a hybrid
context.

Generalized hybrid vertical coordinates: Models formulated for
general vertical coordinates allow for different vertical coordinates
depending on the model application and fluid regime. Models with
this facility provide an area of focus for the next generation of
ocean models.

What about the horizontal grid? Although horizontal grids do not
greatly determine the manner that many physical processes are repre-
sented or parameterized, they greatly influence on the representation of
the solid-earth boundary, and affect details of how numerical schemes
are implemented.

Should we cast the model variables on one of the traditional A
through E grids of Arakawa and Lamb, 1977? Which one? The
B and C grids are the most common in ocean and atmospheric
modelling. Why? Section 3.2 of Griffies et al., 2000a provides
some discussion of this question along with references.

What about spectral methods commonly used in atmospheric mod-
els? Can they be used accurately and effectively within the com-
plex geometry of an ocean basin? Haidvogel and Beckmann, 1999
present a summary of these methods with application to the ocean.
Typically, spectral methods have not been useful in the horizontal
with realistically complex land-sea boundaries, nor in the vertical
with realistically sharp pycnoclines. The reason is that a spectral
representation of such strong gradients in the ocean can lead to un-
acceptable Gibbs ripples and unphysically large levels of spurious
convective mixing.

Should the horizontal grid cells be arranged according to spherical
coordinates, even when doing so introduces a pesky coordinate
singularity at the North Pole? What about generalized orthogonal
coordinates such as a bipolar Arctic coupled to a spherical region
south of the Arctic (Figure 1)? Such grids are very common today
in global modelling, and their use is straightforward in practice
since they retain the regular rectangular logic assumed by spherical
coordinate models. Or what about strongly curved grid lines that
contour the coast, yet remain locally orthogonal? Haidvogel and
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Beckmann, 1999 provide some discussion of these grids and their
uses.

What about nested regions of refined resolution where it is critical
to explicitly resolve certain flow and/or boundary features? Blayo
at this school (see also Blayo and Debreu, 1999) illustrates the
potentials for this approach. Can it be successfully employed for
long term global climate simulations? What about coastal impacts
of climate change? These are important questions at the forefront
of ocean climate and regional modelling.

Can a non-rectangular mesh, such as a cubed sphere, be success-
fully used to replace all coordinate singularities with milder sin-
gularities that allow for both atmosphere and ocean models to
jettison polar filtering?1 The work of Marshall et al., 2003 provide
a compelling case for this approach, whereby both the ocean and
atmosphere use the same grid and same dynamical core. Figure 2
provides a schematic of a cubed-sphere tiling of the sphere.

What about icosahedrons, or spherical geodesics as invented by
Buckminster Fuller? These grids tile the sphere in a nearly isotropic
manner. Work at Colorado State University by David Randall and
collaborators has shown some promise for this approach in the at-
mosphere and ocean.

What about finite element or triangular meshes popular in engi-
neering, tidal, and coastal applications? These meshes more ac-
curately represent the solid earth boundary. Or what about time
dependent adaptive approaches, whereby the grid is refined ac-
cording to the time dependent flow regimes? Both methods have
traditionally failed to perform well for realistic ocean climate simu-
lations due to problems representing stratified and rotating fluids.
However, as reported in this volume by Jens Schröter, some im-
portant and promising advances have been made by researchers
at the University of Reading and Imperial College, both in Eng-
land, as well as the Alfred-Wegener Institute in Germany. Their
efforts have taken strides in overcoming some of the fundamental
problems. If this area of research and development is given time
to come to fruition, then perhaps in 10 years we will see finite ele-

1Polar filtering is a method to reduce the spatial scales of the simulation as one approaches
the coordinate singularity at the North Pole. Many computational and numerical problems
have been encountered with this approach.
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ments commonly used for regional and global models. Such could
represent a major advance in ocean modelling.

Figure 1. Illustration of the bipolar Arctic as prescribed by Murray, 1996 (see his
Figure 7) and realized in the global model discussed in Griffies et al., 2005. A similar
grid has also been proposed by Madec and Imbard, 1996. Shown here are grid lines
which are labeled with the integers for the grid points. The grid has 360 points in the
generalized longitude direction, and 200 points in the generalized latitude direction.
This, or similar, bipolar Arctic grids are commonly used in global ocean modelling to
overcome problems with the spherical coordinate singularity at the North Pole. Note
that the cut across the Arctic is a limitation of the graphics, and does not represent
a land-sea boundary in the model domain.

Figure 2. Cubed sphere tiling of the sphere. Note the singularities at the cube
corners are much milder than a spherical coordinate singularity found with spherical
grids at the poles. The cubed sphere tiling has been implemented in the MITgcm for
both the atmosphere and ocean model components. This figure was kindly provided
by Alistair Adcroft, a developer of the MITgcm.
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What processes are represented explicitly, and what are the impor-
tant ones to parameterize? This is one of the most critical and difficult
questions of ocean model design and use. The lectures by Anne Marie
Treguier from this school summarizes many of the issues. She notes
that the choice of model resolution and parameterization prejudices the
simulation so much so that they effectively determine the “ocean” to
be simulated. Discussions in Chassignet and Verron, 1998 thoroughly
survey various aspects of the parameterization problem. This book is
from a 1998 school on ocean modelling and parameterization. Many of
the issues raised there are still unresolved today. Finally, Griffies, 2004
has much to say about some of the common parameterizations used in
ocean climate models.

Numerical methods are necessary to transform the continuum equa-
tions into accurate and efficient discrete equations for stepping the ocean
forward in time. There are many methods of use for doing this task.

Should they be based on finite volume methods? Such methods
are becoming more common in ocean modelling. They provide the
numericist with a useful means to take the continuum equations
and cast them onto a finite grid.

What sorts of time stepping schemes are appropriate, and what
properties are essential to maintain? Will the ubiquitous leap-frog
methods2 be supplanted by methods that avoid the problematic
time splitting mode? Chapter 12 of Griffies, 2004 provides a dis-
cussion of these points, and argues for the use of a time staggered
method, similar to that discussed by Adcroft and Campin, 2004
and used in the Hallberg Isopycnal Model (Hallberg, 1997) and
Modular Ocean Model version 4 (Griffies et al., 2004).

Should the numerical equations maintain a discrete analog to con-
servation of energy, tracer, potential vorticity, and potential en-
strophy satisfied by the ideal continuum equations? For long term
climate simulations, tracer conservation is critical. What about
the other conserved quantities?

What are the essential features needed for the numerical tracer
advection operator? Should it maintain positivity of the tracer
field? Can such advection operators, which are nonlinear, be eas-
ily realized in their adjoint form as required for 4D variational

2As noted in Griffies et al., 2000a, the majority of ocean models supported for large-scale
oceanography continue to use the leap-frog discretization of the time tendency.
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assimilation (see the lectures at this school from Jens Schröter as
well as Thuburn and Haine, 2001).

How should the model treat the Coriolis force? On the B-grid, it
is common to do so implicitly or semi-implicitly in time, but this
method is not available on the C-grid since the velocity components
are not coincident in space. Also, the C-grid spatial averaging of
the Coriolis force can lead to problematical null modes (Adcroft
et al., 1999).

What about the pressure gradient calculation? We return to this
question in Section 5, where comments are made regarding the
difficulties of computing the pressure gradient.

1.3 Two themes

There are two themes emphasized in these lectures.

How the vertical coordinate is treated is the most fundamental
element of an ocean model design.

The development of ocean model algorithms should be based on
rational formulations starting from fundamental principles.

The first theme concerns the central importance of vertical coordinates
in ocean model design. Their importance stems from the large distinc-
tions at present between algorithms in models with differing vertical
coordinates. Further differences arise in analysis techniques. These fun-
damental and pervasive distinctions have led to disparate research and
development communities oriented around models of a particular class of
vertical coordinate. One purpose of these lectures is to describe methods
whereby these distinctions at the formulation stage are minimized, thus
in principle facilitating the design of a single code capable of employing
many vertical coordinates.

The second theme is a “motherhood” statement. What scientist or
engineer would disagree? Nonetheless, it remains nontrivial to satisfy for
three reasons. First, there are many important elements of the ocean
that we do not understand. This ignorance hinders our ability to pre-
scribe rational forms for the very important SGS operators. Second,
some approximations (e.g., Boussinesq approximation, rigid lid approx-
imation, virtual tracer fluxes), made years ago for good reasons then,
often remain in use today yet need not be made with our present-day
modelling capabilities and requirements. These legacy approximations
often compromise a model’s ability to realistically simulate certain as-
pects of the ocean and/or its interactions with other components of the



30 STEPHEN GRIFFIES

climate system. Third, developers are commonly under intense time
pressures to “get the model running.” These pressures often prompt ad
hoc measures which, unfortunately, tend to stay around far longer than
originally intended.

2. Kinematics of flow through a surface

In our presentation of ocean model fundamentals, we find it useful to
start with a discussion of fluid kinematics. Kinematics is that area of me-
chanics concerned with the intrinsic properties of motion, independent
of the dynamical laws governing the motion. In particular, we establish
expressions for the transport of fluid through a specified surface. The
specification of such transport arises in many areas of oceanography and
ocean model design.

There are three surfaces of special interest in this section.

The lower ocean surface which occurs at the time independent
solid earth boundary. This surface is commonly assumed to be
impenetrable to fluid.3 The expression for fluid transport at the
lower surface leads to the solid earth kinematic boundary condition.

To formulate budgets for mass, tracer, and momentum in the
ocean, we consider the upper ocean surface to be a time dependent
permeable membrane through which precipitation, evaporation,
ice melt, and river runoff pass. The expression for fluid transport
at the upper surface leads to the upper ocean kinematic boundary
condition.

A surface of constant generalized vertical coordinate, s, is of im-
portance when establishing the balances of mass, tracer, and mo-
mentum within a layer of fluid whose upper and lower bounds are
determined by surfaces of constant s. Fluid transport through this
surface is said to constitute the dia-surface transport.

2.1 Infinitesimal fluid parcels

Mass conservation for an infinitesimal parcel of fluid means that as it
moves through the fluid, its mass is constant in time

dM

dt
= 0. (1)

3This assumption may be broken in some cases. For example, when the lower boundary is
a moving sedimentary layer in a coastal estuary, or when there is seeping ground water. We
do not consider such cases here.
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In this equation, M = ρdV is the parcel’s mass, ρ is its in situ den-
sity, and dV is its infinitesimal volume. The time derivative is taken
following the parcel, and is known as a material or Lagrangian time
derivative. Writing dV = dxdy dz, and defining the parcel’s velocity as
v = dx/dt = (u, w) leads to

d ln ρ

dt
= −∇ · v. (2)

Note that the horizontal coordinates xh = (x, y) can generally be spher-
ical coordinates (λ, φ), or any other generalized horizontal coordinate
appropriate for the sphere, such as those illustrated in Figures 1 and 2
(see chapters 20 and 21 of Griffies, 2004 for a presentation of generalized
horizontal coordinates).

For many purposes in fluid mechanics as well as ocean model design,
it is useful to transform the frame of reference from the moving parcel to
a fixed point in space. This transformation takes us from the material
or Lagrangian frame to the Eulerian frame. It engenders a difference in
how observers measure time changes in a fluid parcel’s properties. In
particular, the material time derivative picks up a transport or advective
term associated with motion of the parcel

d

dt
= ∂t + v · ∇. (3)

This relation allows us to write the Lagrangian expression (2) for mass
conservation in an Eulerian conservation form4

ρ,t + ∇ · (ρv) = 0. (4)

Fluids that conserve mass are said to be compressible since the vol-
ume of a mass conserving fluid parcel can expand or contract based on
pressure forces acting on the parcel, or properties such as temperature
and salinity. However, in many circumstances, it is useful to consider
the kinematics of a parcel that conserves its volume, in which case

1

dV

dV

dt
= −∇ · v = 0. (5)

The non-divergence condition ∇ · v = 0 provides a constraint on the
parcel’s velocity that must be satisfied at each point of the fluid. Fluid

4Throughout these lectures, a comma is used as a shorthand for partial derivative. Hence,
ρ,t = ∂ρ/∂t. This notation follows Griffies, 2004, and is commonly used in mathematical
physics. It is a useful means to distinguish a derivative from some of the many other uses of
subscripts, such as a tensor component or as part of the name of a variable such as the fresh
water flux qw introduced in equation (27).
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parcels that conserve their volume are known as Boussinesq parcels,
whereas mass conserving parcels are non-Boussinesq. Non-Boussinesq
parcels are generally considered in atmospheric dynamics, since the at-
mosphere is far more compressible than the ocean. However, most new
ocean models are removing the Boussinesq approximation since straight-
forward means are known to solve the more general non-Boussinesq evo-
lution using pressure-based coordinates.

2.2 Solid earth kinematic boundary condition

To begin our discussion of fluid flow through a surface, we start with
the simplest surface: the time independent solid earth boundary. As
mentioned earlier, one typically assumes in ocean modelling that there
is no fluid crossing the solid earth lower boundary. In this case, a no-
normal flow condition is imposed at the solid earth boundary at the
depth

z = −H(x, y). (6)

To develop a mathematical expression for the boundary condition, we
note that the outward unit normal pointing from the ocean into the
underlying rock is given by5 (see Figure 3)

n̂H = −
∇(z + H)

|∇(z + H)|
. (7)

Furthermore, we assume that the bottom topography can be represented
as a continuous function H(x, y) that does not possess “overturns.” That
is, we do not consider caves or overhangs in the bottom boundary where
the topographic slope becomes infinite. Such would make it difficult to
consider the slope of the bottom in our formulations. This limitation is
common for ocean models.6

A no-normal flow condition on fluid flow at the ocean bottom implies

v · n̂H = 0 at z = −H(x, y). (8)

Expanding this constraint into its horizontal and vertical components
leads to

u · ∇H + w = 0 at z = −H(x, y), (9)

5The three dimensional gradient operator ∇ = (∂x, ∂y , ∂z) reduces to the two dimensional
horizontal operator ∇z = (∂x, ∂y , 0) when acting on functions that depend only on the
horizontal directions. To reduce notation clutter, we do not expose the z subscript in cases
where it is clear that the horizontal gradient is all that is relevant.
6For hydrostatic models, the solution algorithms rely on the ability to integrate vertically from
the ocean bottom to the top, uninterrupted by rock in between. Non-hydrostatic models do
not employ such algorithms, and so may in principle allow for arbitrary bottom topography,
including overhangs.
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x,y

n̂H

z=−H(x,y)

z

Figure 3. Schematic of the ocean’s bottom surface with a smoothed undulating solid
earth topography at z = −H(x, y) and outward normal direction n̂H. Undulations
of the bottom are far greater than the surface height (see Figure 4), as they can
reach from the ocean bottom at 5000m-6000m to the surface over the course of a
few kilometers (slopes on the order of 0.1 to 1.0). It is important for simulations to
employ numerics that facilitate an accurate representation of the ocean bottom.

which can be written in the material derivative form

d(z + H)

dt
= 0 at z = −H(x, y). (10)

Equation (10) expresses in a material or Lagrangian form the impen-
etrable nature of the solid earth lower surface, whereas equation (9)
expresses the same constraint in an Eulerian form.

2.3 Generalized vertical coordinates

We now consider the form of the bottom kinematic boundary condi-
tion in generalized vertical coordinates. Generalized vertical coordinates
provide the ocean theorist and modeler with a powerful set of tools to
describe ocean flow, which in many situations is far more natural than
the more traditional geopotential coordinates (x, y, z) that we have been
using thus far. Therefore, it is important for the student to gain some ex-
posure to the fundamentals of these coordinates, as they are ubiquitous
in ocean modelling today.

Chapter 6 of Griffies, 2004 develops a calculus for generalized verti-
cal coordinates. Some experience with these equations is useful to nur-
ture an intuition for ocean modelling in generalized vertical coordinates.



34 STEPHEN GRIFFIES

Most notably, these coordinates, when used with the familiar horizontal
coordinates (x, y), form a non-orthogonal triad, and thus lead to some
unfamiliar relationships. To proceed in this section, we present some
salient results of the mathematics of generalized vertical coordinates,
and reserve many of the derivations for Griffies, 2004.

When considering generalized vertical coordinates in oceanography,
we always assume that the surfaces cannot overturn on themselves. This
constraint means that the Jacobian of transformation between the gen-
eralized vertical coordinate

s = s(x, y, z, t) (11)

and the geopotential coordinate z, must be one signed. That is, the
specific thickness

∂z

∂s
= z,s (12)

is of the same sign throughout the ocean fluid. The name specific thick-
ness arises from the property that

dz = z,s ds (13)

is an expression for the thickness of an infinitesimal layer of fluid bounded
by two constant s surfaces.

Deriving the bottom kinematic boundary condition in s-coordinates
requires a relation between the vertical velocity component used in geopo-
tential coordinates, w = dz/dt, and the pseudo-velocity component
ds/dt. For this purpose, we refer to some results from Section 6.5.5
of Griffies, 2004. As in that discussion, we note isomorphic relations

dz/dt = z,t + u · ∇sz + z,s ds/dt (14)

ds/dt = s,t + u · ∇zs + s,z dz/dt, (15)

with rearrangement leading to

dz/dt = z,s (d/dt − ∂t − u · ∇z) s. (16)

This expression is relevant when measurements are taken on surfaces
of constant geopotential, or depth. To apply this relation to the ocean
bottom, which is generally not a surface of constant depth, it is necessary
to transform the constant depth gradient ∇z to a horizontal gradient
taken along the bottom. We thus proceed as in Section 6.5.3 of Griffies,
2004 and consider the time-independent coordinate transformation

(x, y, z, t) = (x, y,−H(x, y), t). (17)
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The horizontal gradient taken on constant depth surfaces, ∇z, and the
horizontal gradient along the bottom, ∇z, are thus related by

∇z = ∇z − (∇H) ∂z . (18)

Using this result in equation (16) yields

s,z (w + u · ∇H) = (d/dt − ∂t − u · ∇z) s at z = −H. (19)

The left hand side vanishes due to the kinematic boundary condition
(9), which then leads to

ds/dt = (∂t + u · ∇z) s at s = s(x, y, z = −H(x, y), t). (20)

The value of the generalized coordinate at the ocean bottom can be
written in the shorthand form

sbot(x, y, t) = s(x, y, z = −H, t) (21)

which leads to

d (s − sbot)

dt
= 0 at s = sbot. (22)

This relation is analogous to equation (10) appropriate to z-coordinates.
Indeed, it is actually a basic statement of the impenetrable nature of
the solid earth lower boundary, which is true regardless the vertical
coordinates.

2.4 Upper surface kinematic condition

The upper ocean surface is penetrable and time dependent and full
of breaking waves. Changes in ocean tracer concentration arise from
precipitation, evaporation, river runoff,7 and ice melt. These fluxes are
critical agents in forcing the large scale ocean circulation via changes in
ocean density and hence the water mass characteristics.

To describe the kinematics of water transport into the ocean, it is use-
ful to introduce an effective transport through a smoothed ocean surface,
where smoothing is performed via an ensemble average. We assume that
this averaging leads to a surface absent overturns or breaking waves, thus

7River runoff generally enters the ocean at a nonzero depth rather than through the surface.
Many global models, however, have traditionally inserted river runoff to the top model cell.
Such can become problematic numerically and physically when the top grid cells are refined
to levels common in coastal modelling. Hence, more applications are now considering the
input of runoff throughout a nonzero depth.
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facilitating a mathematical description analogous to the ocean bottom
just considered. The vertical coordinate takes on the value

z = η(x, y, t) (23)

at this idealized ocean surface.
We furthermore assume that density of the water crossing the ocean

surface is ρw, which is a function of the temperature, salinity, and pres-
sure. Different water densities can be considered for precipitation, evap-
oration, runoff, and ice melt, but this level of detail is not warranted for
present purposes. The mass transport crossing the ocean surface can be
written

(mass/time) through surface = n̂η · n̂w (P − E + R) ρw dAη. (24)

In this expression, P > 0 is the volume per time per area of precipitation
entering the ocean, E > 0 is the evaporation leaving the ocean, and
R > 0 is the river runoff and ice melt entering the ocean. The unit
normal

n̂η =
∇ (z − η)

|∇ (z − η)|
(25)

points from the ocean surface at z = η into the overlying atmosphere,
whereas the unit normal n̂w orients the flow of the water mass trans-
ported across the ocean surface (see Figure 4). Finally, the area element
dAη measures the infinitesimal area on the ocean surface z = η, and it
is given by (see Section 20.13.2 of Griffies, 2004)

dAη = |∇(z − η)|dxdy. (26)

z

x,y

nη^
nw

z=η

^

Figure 4. Schematic of the ocean’s upper surface with a smoothed undulating surface
height at z = η(x, y, t), outward normal direction n̂η , and freshwater normal direction
n̂w. Undulations of the surface height are on the order of a few meters due to tidal
fluctuations in the open ocean, and order 10m-20m in certain embayments (e.g., Bay
of Fundy in Nova Scotia). When imposing the weight of sea ice onto the ocean surface,
the surface height can depress even further, on the order of 5m-10m, with larger values
possible in some cases. It is important for simulations to employ numerical schemes
facilitating such wide surface height undulations.
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We now introduce a more convenient expression for the mass transport
across the surface by exploiting our assumption that the ocean surface
has no overturns. For this purpose, define

qw dA = n̂η · n̂w (P − E + R) dAη, (27)

where
dA = dxdy (28)

is the horizontal projection of the surface area element dAη. The vol-
ume per time per horizontal area of fluid crossing the ocean surface is
therefore defined by qw

qw =
n̂η · n̂w (P − E + R) dAη

dA

=
(volume/time) through free surface

horizontal area under free surface
.

(29)

This is the surface water flux that appears in ocean model budgets for
mass, tracer, and momentum.

As discussed in Section 3.4.3 of Griffies, 2004, the mass budget per
horizontal area of a column of fluid extending from the ocean surface to
its bottom is given by

∂t





η
∫

−H

dz ρ



 = −∇ ·





η
∫

−H

dz ρu



 + qw ρw. (30)

This budget says that the time tendency of the total fluid mass per
unit horizontal area within a column (left hand side) is balanced by the
convergence of mass into the column (first term on the right hand side)
and transport across the upper ocean surface (second term on the right
hand side). To develop the upper ocean kinematic boundary condition,
perform the derivatives in equation (30), keeping in mind Leibnitz’s Rule
when differentiating an integral. This step then leads to

[ρ (∂t+u·∇) η]z=η+[ρ∇H ·u]z=−H +

η
∫

−H

dz [ρ,t+∇·(ρu)] = ρw qw. (31)

Use of the mass conservation equation (4) yields

[ρ (η,t + u · ∇η − w)]z=η + [ρ (w + ∇H · u)]z=−H = ρw qw. (32)

The solid earth kinematic boundary condition (9) allows us to cancel
the second term on the left hand side, thus leading to the surface ocean
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kinematic boundary condition

ρ (∂t + u · ∇) η = ρw qw + ρw at z = η (33)

which can be written in the material form

ρ

(

d(z − η)

dt

)

= −ρw qw at z = η. (34)

Contrary to the solid earth condition (10), where z + H is materially
constant, permeability of the ocean surface leads to a nontrivial material
evolution of z − η.

To derive the analogous s-coordinate boundary condition, we proceed
as for the bottom. Here, the coordinate transformation is time depen-
dent

(x, y, z, t) = (x, y, η(x, y, t), t). (35)

The horizontal gradient and time derivative operators are therefore re-
lated by

∇z = ∇z + (∇ η) ∂z (36)

∂t = ∂t + η,t ∂z. (37)

Hence, the relation (16) between vertical velocity components takes the
following form at the ocean surface

w = z,s (d/dt − ∂t − u · ∇z) s + (∂t + u · ∇)η at z = η. (38)

Substitution of the z-coordinate kinematic boundary condition (33) leads
to

ρ z,s (d/dt − ∂t − u · ∇z) s = −ρw qw at s = stop (39)

where stop = s(x, y, z = η, t) is the value of the generalized vertical
coordinate at the ocean surface. Reorganizing the result (39) leads to
the material time derivative form

ρ z,s

(

d(s − stop)

dt

)

= −ρw qw at s = stop (40)

which is analogous to the z-coordinate result (34). Indeed, it can be
derived trivially by noting that dz/dt = z,s ds/dt. Even so, it is useful
to have gone through the previous manipulations in order to garner
experience and confidence with the formalism. Such confidence becomes
of particular use in the next section focusing on the dia-surface flux.
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2.5 Dia-surface transport

We seek an expression for the flux of fluid passing through a surface of
constant generalized vertical coordinate. The result will be an expression
for the dia-surface transport. It plays a fundamental role in generalized
vertical coordinate modelling. Our derivation here follows that given in
Section 6.7 of Griffies, 2004.

At an arbitrary point on a surface of constant generalized vertical
coordinate (see Figure 5), the flux of fluid in the direction normal to the
surface is given by

seawater flux in direction n̂ = v · n̂, (41)

with

n̂ = ∇s |∇s|−1 (42)

the surface unit normal direction. Introducing the material time deriva-
tive ds/dt = s,t + v · ∇s leads to the equivalent expression

v · n̂ = |∇s|−1 (d/dt − ∂t) s. (43)

That is, the normal component to a fluid parcel’s velocity is proportional
to the difference between the material time derivative of the surface and
its partial time derivative.

Since the surface is generally moving, the net flux of seawater pene-
trating the surface is obtained by subtracting the velocity of the surface
v(ref) in the n̂ direction from the velocity component v · n̂ of the fluid
parcels

flux of seawater through surface = n̂ · (v − v(ref)). (44)

The velocity v(ref) is the velocity of a reference point fixed on the surface,
and it is written

v(ref) = u(ref) + w(ref) ẑ. (45)

Since the reference point remains on the same s = const surface, ds/dt =
0 for the reference point. Consequently, we can write the vertical velocity
component w(ref) as

w(ref) = −z,s (∂t + u(ref) · ∇z) s, (46)

where equation (16) was used with ds/dt = 0. This result then leads to

n̂ · v(ref) = n̂ · u(ref) + n̂ · ẑw(ref)

= −s,t |∇s|−1,
(47)
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which says that the normal component of the surface’s velocity vanishes
when the surface is static, as may be expected. It then leads to the
following expression for the net flux of seawater crossing the surface

n̂ · (v − v(ref)) = |∇s|−1 (∂t + v · ∇) s

= |∇s|−1 ds/dt.
(48)

Hence, the material time derivative of the generalized surface vanishes
if and only if no water parcels cross it. This important result is used
throughout ocean theory and modelling.

z

n̂

s=constant

v
vref

x,y

Figure 5. Surfaces of constant generalized vertical coordinate living interior to the
ocean. An upward normal direction n̂ is indicated on one of the surfaces. Also shown
is the orientation of a fluid parcel’s velocity v and the velocity v(ref) of a reference
point living on the surface.

Expression (48) gives the volume of seawater crossing a generalized
surface, per time, per area. The area normalizing the volume flux is that
area dA(n̂) of an infinitesimal patch on the surface of constant generalized
vertical coordinate with outward unit normal n̂. This area can be written
(see equation (6.58) of Griffies, 2004)

dA(n̂) = |z,s ∇s|dxdy. (49)

Hence, the volume per time of fluid passing through the generalized
surface is

(volume/time) through surface = n̂ · (v − v(ref)) dA(n̂)

= |z,s| (ds/dt) dxdy,
(50)

and the magnitude of this flux is

|n̂ · (v − v(ref)) dA(n̂)| ≡ |w(s)|dxdy. (51)
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We introduced the expression

w(s) = z,s ds/dt, (52)

which measures the volume of fluid passing through the surface, per
unit area dA = dxdy of the horizontal projection of the surface, per
unit time. That is,

w(s) ≡
n̂ · (v − v(ref)) dA(n̂)

dA

=
(volume/time) of fluid through surface

area of horizontal projection of surface
.

(53)

The quantity w(s) is called the dia-surface velocity component. It is
directly analogous to the fresh water flux qw defined in equation (27),
which measures the volume of freshwater crossing the ocean surface,
per unit time per horizontal area. To gain some experience with the
dia-surface velocity component, it is useful to write it in the equivalent
forms

w(s) = z,s ds/dt

= z,s ∇s · (v − v(ref))

= (ẑ − S) · (v − v(ref))

(54)

where

S = ∇sz

= −z,s ∇zs
(55)

is the slope of the s surface as projected onto the horizontal directions.
For example, if the slope vanishes, then the dia-surface velocity compo-
nent measures the flux of fluid moving vertically relative to the motion
of the generalized surface. When the surface is static and flat, then the
dia-surface velocity component is simply the vertical velocity component
w = dz/dt.

The expression (52) for w(s) allows one to write the material time
derivative in one of the following equivalent manners

d

dt
=

(

∂

∂t

)

z

+ u · ∇z + w

(

∂

∂z

)

=

(

∂

∂t

)

s

+ u · ∇s +
ds

dt

(

∂

∂s

)

=

(

∂

∂t

)

s

+ u · ∇s + w(s)

(

∂

∂z

)

,

(56)
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where ∂s = z,s ∂z. The last form motivates some to consider w(s) as a
vertical velocity component that measures the rate at which fluid parcels
penetrate the surface of constant generalized coordinate (see Appendix
A to McDougall, 1995). One should be mindful, however, to distinguish
w(s) from the generally different vertical velocity component w = dz/dt,
which measures the water flux crossing constant geopotential surfaces.

We close with a few points of clarification for the case where no fluid
parcels cross the generalized surface. Such occurs, in particular, in the
case of adiabatic flows with s = ρ an isopycnal coordinate. In this case,
the material time derivative (56) only has a horizontal two-dimensional
advective component u · ∇s. This result should not be interpreted to
mean that the velocity of a fluid parcel is strictly horizontal. Indeed, it
generally is not, as the previous derivation should make clear. Rather,
it means that the transport of fluid properties occurs along surfaces
of constant s, and such transport is measured by the convergence of
horizontal advective fluxes as measured along surfaces of constant s.
We revisit this point in Section 3.2 when discussing tracer transport
(see in particular Figure 7).

3. Mass and tracer budgets

The purpose of this section is to extend the kinematics discussed in
the previous section to the case of mass and tracer budgets for finite
domains within the ocean fluid. In the formulation of ocean models,
these domains are thought of as discrete model grid cells.

3.1 General formulation

Assume that mass and tracer are altered within a finite region by
transport across boundaries of the region and by sources within the
region. Hence, the tracer mass within an arbitrary fluid region evolves
according to

∂t

(∫∫∫

C ρdV

)

=

∫∫∫

S(C) ρdV −

∫∫

dA(n̂) n̂ · [(v− vref) ρC + J].

(57)
The left hand side of this equation is the time tendency for the tracer
mass within the region, where C is the tracer concentration and ρ is
the in situ fluid density (mass of seawater per volume). As discussed
in Sections 5.1 and 5.6 of Griffies, 2004, C represents a mass of tracer
per mass of seawater for non-thermodynamic tracers such as salt or
biogeochemical tracers, whereas C represents the potential temperature
or the conservative temperature (McDougall, 2003) for the “heat” tracer
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used in the model. On the right hand side, S(C) represents a tracer
source with units of tracer concentration per time. As seen in Section
2.5, dA(n̂) n̂ ·(v−vref) measures the volume per time of fluid penetrating
the domain boundary at a point.

The tracer flux J arises from subgrid scale transport, such as diffusion
and/or unresolved advection. This flux is assumed to vanish when the
tracer concentration is uniform, in which case the tracer budget (57)
reduces to a mass budget. In addition to the tracer flux, it is convenient
to define the tracer concentration flux F via

J = ρF, (58)

where the dimensions of F are velocity × tracer concentration.

3.2 Budget for an interior grid cell

Grid cell k x,y

z

s=s

s=s

k−1

k

Figure 6. Schematic of an ocean grid cell labeled by the vertical integer k. Its sides
are vertical and oriented according to x̂ and ŷ, and its horizontal position is fixed in
time. The top and bottom surfaces are determined by constant generalized vertical
coordinates sk−1 and sk, respectively. Furthermore, the top and bottom are assumed
to always have an outward normal with a nonzero component in the vertical direction
ẑ. That is, the top and bottom are never vertical. Note that we take the convention
that the discrete vertical label k increases as moving downward in the column, and
grid cell k is bounded at its upper face by s = sk−1 and lower face by s = sk.

Consider the budget for a region bounded away from the ocean surface
and bottom, such as that shown in Figure 6. There are two assumptions
which define a grid cell region in this case.

The sides of the cell are vertical, and so they are parallel to ẑ

and aligned with the horizontal coordinate directions (x̂, ŷ). Their
horizontal positions are fixed in time.
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The top and bottom of the cell are defined by surfaces of constant
generalized vertical coordinate s = s(x, y, z, t). The generalized
surfaces do not overturn, which means that s,z is single signed
throughout the ocean.

These assumptions lead to the following results for the sides of the grid
cell

tracer mass entering cell west face =

∫∫

x=x1

dy dz (u ρC + ρF x) (59)

tracer mass leaving cell east face = −

∫∫

x=x2

dy dz (u ρC + ρF x) (60)

where x1 ≤ x ≤ x2 defines the domain boundaries for the east-west
coordinates.8 Similar results hold for the tracer mass crossing the cell
in the north-south directions. At the top and bottom of the grid cell9

tracer mass entering cell bottom face =

∫∫

s=sk

dxdy ρ (w(s) C + F (s)) (61)

tracer mass leaving cell top face = −

∫∫

s=sk−1

dxdy ρ (w(s) C + F (s)). (62)

To reach this result, we used a result from Section 2.5 to write the volume
flux passing through the top face of the grid cell

dA(n̂) n̂ · (v − vref) = w(s) dxdy, (63)

with w(s) = z,s ds/dt the dia-surface velocity component. A similar
relation holds for the bottom face of the cell. The form of the SGS flux
passing across the top and bottom is correspondingly given by

dA(n̂) n̂ · J = J (s) dxdy. (64)

Since the model is using the generalized coordinate s for the vertical,
it is convenient to do the vertical integrals over s instead of z. For this

8We use generalized horizontal coordinates, such as those discussed in Griffies, 2004. Hence,
the directions east, west, north, and south may not correspond to the usual geographic
directions. Nonetheless, this terminology is useful for establishing the budgets, whose validity
is general.
9As seen in Section 6, for pressure-like vertical coordinates, s increases with depth. For
depth-like vertical coordinates, s decreases with depth. It is important to keep this sign
difference in mind when formulating the budgets in the various coordinates. Notably, the
specific thickness z,s carries the sign.
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purpose, recall that with z,s single signed, the vertical thickness of a grid
cell is

dz = z,s ds. (65)

Bringing these results together, and taking the limit as the volume of
the cell in (x, y, s) space goes to zero (i.e., dxdy ds → 0) leads to

∂t(z,s ρC) = z,s ρS(C)−∇s · [z,s ρ (uC +F)]−∂s [ ρ (w(s) C+F (s))] (66)

Notably, the horizontal gradient operator ∇s is computed on surfaces of
constant s, and so it is distinct generally from the horizontal gradient ∇z

taken on surfaces of constant z. Instead of taking the limit as dxdy ds →
0, it convenient for discretization purposes to take the limit as the time
independent horizontal area dxdy goes to zero, thus maintaining the
time dependent thickness dz = z,s ds inside the derivative operators. In
this case, the thickness weighted tracer mass budget takes the form

∂t(dz ρC) = dz ρS(C) −∇s · [dz ρ (uC + F)]

− [ρ (w(s) C + F (s))]s=sk−1
+ [ρ (w(s) C + F (s))]s=sk

.

(67)
Similarly, the thickness weighted mass budget is

∂t(dz ρ) = dz ρS(M) −∇s · (dz ρu)

− (ρw(s))s=sk−1
+ (ρw(s))s=sk

.
(68)

where S(M) is a mass source with units of inverse time that is related to
the tracer source via

S(M) = S(C)(C = 1), (69)

and the SGS flux vanishes with a uniform tracer

F(C = 1) = 0. (70)

3.3 Budgets without dia-surface fluxes

To garner some experience with these budgets, it is useful to consider
the special case of zero dia-surface transport, either via advection or
SGS fluxes, and zero tracer/mass sources. In this case, the thickness
weighted mass and tracer mass budgets take the simplified form

∂t(dz ρ) = −∇s · (dz ρu) (71)

∂t(dz ρC) = −∇s · [dz ρ (uC + F)]. (72)

The first equation says that the time tendency of the thickness weighted
density (mass per area) at a point between two surfaces of constant
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generalized vertical coordinate is given by the horizontal convergence of
mass per area onto that point. The transport is quasi-two-dimensional in
the sense that it is only a two-dimensional convergence that determines
the evolution. The tracer equation has an analogous interpretation. We
illustrate this situation in Figure 7. As emphasized in our discussion
of the material time derivative (56), this simplification of the transport
equation does not mean that fluid parcels are strictly horizontal. Indeed,
such is distinctly not the case when the surfaces are moving.

A further simplification of the mass and tracer mass budgets ensues
when considering adiabatic and Boussinesq flow in isopycnal coordinates.
We consider ρ now to represent the constant potential density of the
finitely thick fluid layer. In this case, the mass and tracer budgets reduce
to

∂t(dz) = −∇ρ · (dz u) (73)

∂t(dz C) = −∇ρ · [dz (uC + F)]. (74)

Equation (73) provides a relation for the thickness of the density layers,
and equation (74) is the analogous relation for the tracer within the layer.
These expressions are commonly used in the construction of adiabatic
isopycnal models, which are often used in the study of geophysical fluid
mechanics of the ocean.

k−1
diverge

converge converge

s=sk

s=s

Figure 7. Schematic of the horizontal convergence of mass between two surfaces of
constant generalized vertical coordinates. As indicated by equation (71), when there
is zero dia-surface transport, it is just the horizontal convergence that determines the
time evolution of mass between the layers. Evolution of thickness weighted tracer
concentration in between the layers is likewise evolved just by the horizontal conver-
gence of the thickness weighted advective and diffusive tracer fluxes (equation (72)).
In this way, the transport is quasi-two-dimensional when the dia-surface transports
vanish. A common example of this special system is an adiabatic ocean where the
generalized surfaces are defined by isopycnals.

3.4 Cells adjacent to the ocean bottom

For a grid cell adjacent to the ocean bottom (Figure 8), we assume
that just the bottom face of this cell abuts the solid earth boundary.
The outward normal n̂H to the bottom is given by equation (7), and the
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z=−H

x,y

z

s=s
kbot−1

Grid cell k=kbot

bots=s

Figure 8. Schematic of an ocean grid cell next to the ocean bottom labeled by k =
kbot. Its top face is a surface of constant generalized vertical coordinate s = skbot−1,
and the bottom face is determined by the ocean bottom topography at z = −H where
sbot(x, y, t) = s(x, y, z = −H, t).

area element along the bottom is

dAH = |∇(z + H)|dxdy. (75)

Hence, the transport across the solid earth boundary is

−

∫∫

dAH n̂H · (v ρC + J) =

∫∫

dxdy (∇H + ẑ) · (v ρC + J). (76)

We assume that there is zero mass flux across the bottom, in which
case the advective flux drops out since v · (∇H + ẑ) = 0 (equation
(9)). However, the possibility of a nonzero geothermal tracer transport
warrants a nonzero SGS tracer flux at the bottom, in which case the
bottom tracer flux is written

Q
(C)
(bot) = (∇H + ẑ) · J. (77)

The corresponding thickness weighted budget is given by

∂t (dz ρC) = dz ρS(C) −∇s · [dz ρ (uC + F)]

−
[

ρ (w(s) C + z,s ∇s · F)
]

s=skbot−1

+ Q
(C)
(bot),

(78)

and the corresponding mass budget is

∂t (dz ρ) = dz ρS(M) −∇s · (dz ρu) − (ρws))s=skbot−1
. (79)
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3.5 Cells adjacent to the ocean surface

Grid cell k=1

x,y

z

z=−H

s=sk=1

s=stop z=η

Figure 9. Schematic of an ocean grid cell next to the ocean surface labeled by k = 1.
Its top face is at z = η, and the bottom is a surface of constant generalized vertical
coordinate s = sk=1.

For a grid cell adjacent to the ocean surface (Figure 9), we assume
that just the upper face of this cell abuts the boundary between the
ocean and the atmosphere or sea ice. The ocean surface is a time de-
pendent boundary with z = η(x, y, t). The outward normal n̂η is given
by equation (25), and its area element dAη is given by equation (26).

As the surface can move, we must measure the advective transport
with respect to the moving surface. Just as in the dia-surface transport
discussed in Section 2.5, we consider the velocity of a reference point on
the surface

vref = uref + ẑwref. (80)

Since z = η represents the vertical position of the reference point, the
vertical component of the velocity for this point is given by

wref = (∂t + uref · ∇) η (81)

which then leads to
vref · ∇ (z − η) = η,t. (82)

Hence, the advective transport leaving the ocean surface is
∫∫

z=η

dA(n̂) n̂ · (v − vref) ρC =

∫∫

z=η

dxdy (−η,t + w − u · ∇η) ρC

= −

∫∫

z=η

dxdy ρw qw C,

(83)
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where the surface kinematic boundary condition (33) was used. The
negative sign on the right hand side arises from our convention that
qw > 0 represents an input of water to the ocean domain. In summary,
the tracer flux leaving the ocean free surface is given by

∫∫

z=η

dA(n̂) n̂ · [(v − vref) ρC + J] =

∫∫

z=η

dxdy (−ρw qw C + ∇ (z − η) · J).

(84)
In the above, we formally require the tracer concentration precisely

at the ocean surface z = η. However, as mentioned at the start of
Section 2.4, it is actually a fiction that the ocean surface is a smooth
mathematical function. Furthermore, seawater properties precisely at
the ocean surface, known generally as skin properties, are generally not
what an ocean model carries as its prognostic variable in its top grid cell.
Instead, the model carries a bulk property averaged over roughly the
upper few tens of centimeters. The lectures at this school by Professor
Ian Robinson discuss these important points in the context of measuring
sea surface temperature from a satellite, where the satellite measures the
skin temperature, not the foundational or bulk temperature carried by
large-scale ocean models.

To proceed in formulating the boundary condition for an ocean climate
model, whose grid cells we assume to be at least a meter in thickness,
we consider there to be a boundary layer model that provides us with
the total tracer flux passing through the ocean surface. Developing such
a model is a nontrivial problem in air-sea and ice-sea interaction theory
and phenomenology. For present purposes, we do not focus on these
details, and instead just introduce this flux in the form

Q(C) = −ρw qw Cw + Q
(C)
(turb) (85)

where Cw is the tracer concentration in fresh water. The first term repre-
sents the advective transport of tracer through the surface with the fresh

water (i.e., ice melt, rivers, precipitation, evaporation). The term Q
(C)
(turb)

arises from parameterized turbulence and/or radiative fluxes, such as
sensible, latent, shortwave, and longwave heating appropriate for the

temperature equation. A positive value for Q
(C)
(turb) signals tracer leaving

the ocean through its surface. In the special case of zero fresh water
flux, then

∇ (z − η) · J = Q
(C)
(turb) if qw = 0. (86)
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In general, it is not possible to make this identification. Instead, we
must settle for the general expression
∫∫

z=η

dA(n̂) n̂ · [(v−vref) ρC +J] =

∫∫

z=η

dxdy (−ρw qw Cw +Q
(C)
(turb)). (87)

The above results lead to the thickness weighted tracer budget for the
ocean surface grid cell

∂t (dz ρC) = dz ρS(C) −∇s · [dz ρ (uC + F)]

+
[

ρ (w(s) C + z,s ∇s ·F)
]

s=sk=1

+ (ρw qw Cw − Q
(turb)
(C)

),

(88)

and the corresponding mass budget

∂t (dz ρ) = dz ρS(M) −∇s · (dz ρu) + (ρw(s))s=sk=1
+ ρw qw. (89)

3.6 Surface boundary condition for salt

We close this section by mentioning the free ocean surface boundary
condition for salt and other material tracers. Salt is transferred into
the ocean with brackish river water and ice melt of nonzero salinity.
Yet evaporation and precipitation generally leave the salt content of the
ocean unchanged. In these latter cases, the boundary layer tracer flux
(85) vanishes

Q(salt) = 0. (90)

This trivial boundary condition is also appropriate for many other ma-
terial tracers, such as those encountered with ocean biogeochemical pro-
cesses. In these cases, the tracer concentration is not altered via the
passage of tracer across the surface. Instead, it is altered via the trans-
port of fresh water across the ocean free surface which acts to dilute or
concentrate the tracer.

The boundary condition (90) is often replaced in ocean models by a
virtual tracer flux condition, whereby tracer is transferred into the model
in lieu of altering the ocean water mass via the transport of fresh wa-
ter. Virtual tracer flux boundary conditions are required for rigid lid
models (Bryan, 1969) that maintain a constant volume and so cannot
incorporate surface fresh water fluxes. However, there remain few rigid
lid models in use today, and there is no reason to maintain the virtual
tracer flux in the more commonly used free surface models. The dif-
ferences in solution may be minor for many purposes, especially short



SOME OCEAN MODEL FUNDAMENTALS 51

integrations (e.g., less than a year). However, the feedbacks related to
climate and climate change may be nontrivial. Furthermore, the changes
in model formulation are minor once a free surface algorithm has been
implemented. Thus, it is prudent and straightforward to jettison the vir-
tual tracer flux in favor of the physically motivated boundary condition
(90) (Huang, 1993 and Griffies et al., 2001).

4. Linear momentum budget

The purpose of this section is to formulate the budget for linear mo-
mentum over a finite region of the ocean, with specific application to
ocean model grid cells. The material here requires many of the same
elements as in Section 3, but with added complexity arising from the
vector nature of momentum, and the additional considerations of forces
from pressure, friction, gravity, and planetary rotation.

4.1 General formulation

The budget of linear momentum for a finite region of fluid is given by
the following relation based on Newton’s second and third laws

∂t

(∫∫∫

dV ρv

)

= −

∫∫

dA(n̂) [ n̂ · (v − vref)] ρv

+

∫∫

dA(n̂) (n̂ · τ − n̂ p)

−

∫∫∫

dV ρ [ g ẑ + (f + M) ẑ ∧ v].

(91)

The left hand side is the time tendency of the region’s linear momentum.
The first term on the right hand side is the advective transport of linear
momentum across the boundary of the region, with recognition that the
region’s boundaries are generally moving with velocity vref. The second
term is the integral of the contact stresses due to friction and pressure.
These stresses act on the boundary of the fluid domain. The stress tensor
τ is a symmetric second order tensor that parameterizes subgrid scale
transport of momentum. The final term on the right hand side is the
volume integral of body forces due to gravity and the Coriolis force.10 In
addition, there is a body force arising from the nonzero curvature of the
spherical space. This curvature leads to the advection metric frequency
(see equation (4.49) of Griffies, 2004) M = v ∂x ln dy − u∂y ln dx. The

10The wedge symbol ∧ represents a vector cross product, also commonly written as ×. The
wedge is typically used in the physics literature, and is preferred here to avoid confusion with
the horizontal coordinate x.
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advection metric frequency arises since linear momentum is not con-
served on the sphere.11 Hence, the linear momentum budget picks up
this extra term that is a function of the chosen lateral coordinates. The
advection metric frequency is analogous to, but far smaller than, the
Coriolis frequency.

Unlike the case of the tracer and mass balances considered in Section
3, we do not consider momentum sources interior to the fluid domain.
Such may be of interest and can be introduced without difficulty. The
goal of the remainder of this section is to consider the linear momentum
balance for finite grid cells in an ocean model.

4.2 An interior grid cell

At the west side of a grid cell, n̂ = −x̂ whereas n̂ = x̂ on the east side.
Hence, the advective transport of linear momentum entering through the
west side of the grid cell and that which is leaving through the east side
are given by

transport entering from west =

∫∫

x=x1

dy ds z,s u (ρv) (92)

transport leaving through east = −

∫∫

x=x2

dy ds z,s u (ρv). (93)

Similar results hold for momentum crossing the cell boundaries in the
north and south directions. Momentum crossing the top and bottom
surfaces of an interior cell is given by

transport entering from the bottom =

∫∫

s=s2

dxdy w(s) (ρv) (94)

transport leaving from the top = −

∫∫

s=s1

dxdy w(s) (ρv). (95)

11Angular momentum is conserved for frictionless flow on the sphere in the absence of hori-
zontal boundaries (see Section 4.11.2 of Griffies, 2004).
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Forces due to the contact stresses at the west and east sides are given
by

contact force on west side = −

∫∫

x=x1

dy ds z,s (x̂ · τ − x̂ p) (96)

contact force on east side =

∫∫

x=x2

dy ds z,s (x̂ · τ − x̂ p) (97)

with similar results at the north and south sides. At the top of the
cell, dA(n̂) n̂ = ∇s dxdy whereas dA(n̂) n̂ = −∇s dxdy at the bottom.
Hence,

contact force on cell top =

∫∫

s=sk−1

dxdy z,s (∇s · τ − p∇s) (98)

contact force on cell bottom = −

∫∫

s=sk

dy ds z,s (∇s · τ − p∇s). (99)

Bringing these results together, and taking limit as the time independent
horizontal area dxdy → 0, leads to the thickness weighted budget for
the momentum per horizontal area of an interior grid cell

∂t (dz ρv) = −∇s · [ dz u (ρv)]

+ (w(s) ρv)s=sk
− (w(s) ρv)s=sk−1

+ ∂x [ dz (x̂ · τ − x̂ p)]

+ ∂y [ dz (ŷ · τ − ŷ p)]

+ [z,s (∇s · τ − p∇s)]s=sk−1

− [z,s (∇s · τ − p∇s)]s=sk

− ρdz [ g ẑ + (f + M) ẑ ∧ v].

(100)

Note that both the time and horizontal partial derivatives are for po-
sitions fixed on a constant generalized vertical coordinate surface. Ad-
ditionally, we have yet to take the hydrostatic approximation, so these
equations are written for the three components of the vertical velocity.

The first term on the right hand side of the thickness weighted mo-
mentum budget (100) is the convergence of advective momentum fluxes
occurring within the layer. We discussed the analogous flux conver-
gence for the tracer and mass budgets in Section 3.3. The second and
third terms arise from the transport of momentum across the upper and
lower constant s interfaces. The fourth and fifth terms arise from the
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horizontal convergence of pressure and viscous stresses. The sixth and
seventh terms arise from the frictional and pressure stresses acting on
the constant generalized surfaces. These forces provide an interfacial
stress between layers of constant s. Note that even in the absence of
frictional stresses, interfacial stresses from pressure acting on the gener-
ally curved s surface can transmit momentum between vertically stacked
layers. The final term arises from the gravitational force, the Coriolis
force, and the advective frequency.

4.3 Cell adjacent to the ocean bottom

As for the tracer and mass budgets, we assume zero mass flux through
the ocean bottom at z = −H(x, y). However, there is generally a nonzero
stress at the bottom due to both the pressure between the fluid and the
bottom, and unresolved features in the flow which can correlate or anti-
correlate with bottom topographic features (Holloway, 1999). The area
integral of the stresses lead to a force on the fluid at the bottom

Fbottom = −

∫∫

z=−H

dxdy [∇(z + H) · τ − p∇(z + H)]. (101)

Details of the stress term requires fine scale information that is generally
unavailable. For present purposes we assume that some boundary layer
model provides information that is schematically written

τ
bot = ∇(z + H) · τ (102)

where τ
bot is a vector bottom stress. Taking the limit as the horizontal

area vanishes leads to the thickness weighted budget for momentum per
horizontal area of a grid cell next to the ocean bottom

∂t (dz ρv) = −∇s · [ dz u (ρv)] − (w(s) ρv)s=skbot−1

+ ∂x [ dz (x̂ · τ − x̂ p)]

+ ∂y [ dz (ŷ · τ − ŷ p)]

+ [z,s (∇s · τ − p∇s)]s=skbot−1

− τ
bot + pb ∇(z + H)

− ρdz [ g ẑ + (f + M) ẑ ∧ v].

(103)

4.4 Cell adjacent to the ocean surface

There is a nonzero mass and momentum flux through the upper ocean
surface at z = η(x, y, t), and contact stresses are applied from resolved
and unresolved processes involving interactions with the atmosphere and
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sea ice. Following the discussion of the tracer budget at the ocean surface
in Section 3.5 leads to the expression for the transport of momentum into
the ocean due to mass transport at the surface

−

∫∫

dA(n̂) n̂ · [(v − vref) ρv =

∫∫

z=η

dxdy ρw qw v. (104)

The force arising from the contact stresses at the surface is written

Fcontact =

∫∫

z=η

dxdy [∇ (z − η) · τ − p∇ (z − η)]. (105)

Bringing these results together leads to the force acting at the ocean
surface

Fsurface =

∫∫

z=η

dxdy [∇ (z − η) · τ − p∇ (z − η) + ρw qw v]. (106)

Details of the various terms in this force are generally unknown. There-
fore, just as for the tracer at z = η in Section 3.5, we assume that a
boundary layer model provides information about the total force, and
that this force is written

Fsurface =

∫∫

z=η

dxdy [ τ top − pa ∇ (z − η) + ρw qw vw], (107)

where vw is the velocity of the fresh water. This velocity is typically
taken to be equal to the velocity of the ocean currents in the top cells
of the ocean model, but such is not necessarily the case when consid-
ering the different velocities of, say, river water and precipitation. The
stress τ

top is that arising from the wind, as well as interactions between
the ocean and sea ice. Letting the horizontal area vanish leads to the
thickness weighted budget for a grid cell next to the ocean surface

∂t (dz ρv) = −∇s · [ dz u (ρv)] + (w(s) ρv)s=sk=1

+ ∂x [ dz (x̂ · τ − x̂ p)]

+ ∂y [ dz (ŷ · τ − ŷ p)]

− [z,s (∇s · τ − p∇s)]s=sk=1

+ [ τ top − pa ∇ (z − η) + ρw qw vw]

− ρdz [ g ẑ + (f + M) ẑ ∧ v].

(108)
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5. The pressure force

A hydrostatic fluid maintains the balance p,z = −ρ g. This balance
means that the pressure at a point in a hydrostatic fluid is determined
by the weight of fluid above this point. This relation is maintained quite
well in the ocean on spatial scales larger than roughly 1km. Precisely,
when the squared ratio of the vertical to horizontal scales of motion is
small, then the hydrostatic approximation is well maintained. In this
case, the vertical momentum budget reduces to the hydrostatic balance,
in which case vertical acceleration and friction are neglected. If we are
interested in explicitly representing such motions as Kelvin-Helmholtz
billows and flow within a convective chimney, vertical accelerations are
nontrivial and so the non-hydrostatic momentum budget must be used.

The hydrostatic balance greatly affects the algorithms used to numer-
ically solve the equations of motion. The paper by Marshall et al., 1997
highlights these points in the context of developing an algorithm suited
for both hydrostatic and non-hydrostatic simulations. However, so far in
ocean modelling, no global simulations have been run at resolutions suf-
ficiently refined to require the non-hydrostatic equations. Additionally,
many regional and coastal models, even some with resolutions refined
smaller than 1km, still maintain the hydrostatic approximation, and thus
they must parameterize the unrepresented non-hydrostatic motions.

At a point in the continuum, the horizontal pressure gradient force
for the hydrostatic and non-Boussinesq set of equations can be written12

ρ−1 ∇zp = ρ−1 (∇s −∇s z ∂z) p

= ρ−1 ∇s p + g∇s z,

= ∇s (p/ρ + g z) − p∇sρ
−1

(109)

where the hydrostatic relation p,z = −ρ g was used to reach the second
equality. The term p/ρ+g z is known as the Montgomery potential. For
cases where the density term ∇sρ vanishes (such as when s is propor-
tional to density), the pressure gradient force takes the form of a total
gradient, and so it has a zero curl thus facilitating the formulation of
vorticity budgets.

In general, the difficulty of numerically realizing the pressure gradi-
ent force arises when there are contributions from both the Montgomery
potential and the density gradient terms in equation (109). Naive dis-
cretizations result in both terms being large and of opposite sign in

12For a Boussinesq fluid, equation (109) is modified by a factor of ρ/ρo. Hence, the same issues
arise when numerically implementing the pressure gradient force with generalized vertical
coordinates in either the Boussinesq or non-Boussinesq fluids.
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many regions. Hence, they expose the calculation to nontrivial numeri-
cal truncation errors which can lead to spurious pressure gradients that
spin up an unforced fluid with initially flat isopycnals. Significant effort
has gone into reducing such pressure gradient errors, especially in ter-
rain following models where undulations of the coordinate surfaces can
be large with realistic bottom topography (e.g., see Figure 12). Some
of these issues are summarized, with references, in Section 2 of Griffies
et al., 2000a. Perhaps the most promising approach is that proposed
by Shchepetkin and McWilliams, 2002. It is notable that difficulties
with pressure gradient errors have largely been responsible for the near
absence of sigma models being used for long term global ocean climate
simulations.13

6. Elements of vertical coordinates

As discussed in Griffies et al., 2000a, there are broadly three regimes
of the ocean germane to the considerations of a vertical coordinate.

Upper ocean mixed layer: This is a generally turbulent region
dominated by transfers of momentum, heat, freshwater, and trac-
ers with the overlying atmosphere, sea ice, rivers, etc. It is of prime
importance for climate system modelling and operational oceanog-
raphy. It is typically very well mixed in the vertical through three-
dimensional convective/turbulent processes. These processes in-
volve non-hydrostatic physics which requires very high horizontal
and vertical resolution (i.e., a vertical to horizontal grid aspect ra-
tio near unity) to explicitly represent. A parameterization of these
processes is therefore necessary in primitive equation ocean mod-
els. In this region, it is essential to employ a vertical coordinate
that facilitates the representation and parameterization of these
highly turbulent processes. Geopotential and pressure coordinates,
or their relatives, are the most commonly used coordinates as they
facilitate the use of very refined vertical grid spacing, which can
be essential to simulate the strong exchanges between the ocean
and atmosphere, rivers, and ice.

Ocean interior: Tracer transport processes in the ocean interior
predominantly occur along neutral directions (McDougall, 1987).
The transport is dominated by large scale currents and mesoscale
eddy fluctuations. Water mass properties in the interior thus tend

13The work of Diansky et al., 2002 is the only case known by the author of a global sigma
model used for climate purposes.
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to be preserved over large space and time scales (e.g., basin and
decade scales). This property of the ocean interior is critical to rep-
resent in a numerical simulation of ocean climate. An isopycnal
coordinate framework is well suited to this task, whereas geopo-
tential and sigma models have problems associated with numerical
truncation errors. As discussed by Griffies et al., 2000b, the prob-
lem becomes more egregious as the model resolution is refined, due
to the enhanced levels of eddy activity that pumps tracer variance
to the grid scale. Quasi-adiabatic dissipation of this variance is
difficult to maintain in non-isopycnal models.

Ocean bottom: The solid earth bottom topography directly influ-
ences the overlying currents. In an unstratified ocean, the balanced
flow generally follows lines of constant f/H, where f is the Corio-
lis parameter and H ocean depth. Additionally, there are several
regions where density driven currents (overflows) and turbulent
bottom boundary layer (BBL) processes act as a strong determi-
nant of water mass characteristics. Many such processes are crucial
for the formation of deep water properties in the World Ocean, and
for representing coastal processes in regional models. It is for this
reason that sigma models have been developed over the past few
decades, with their dominant application focused on the coastal
and estuarine problem.

These three regimes impact on the design of vertical coordinates for
ocean models. In this section, we detail some vertical coordinates and
summarize their strengths and weaknesses, keeping in mind the above
physical considerations.

6.1 Depth based vertical coordinates

We use depth based vertical coordinates in this section to discretize
the Boussinesq equations.14 Depth based coordinates are also known as
volume based coordinates, since for a Boussinesq model which uses depth
as the vertical coordinate, the volume of interior grid cells is constant
in the absence of sources. Correspondingly, depth based coordinates are
naturally suited for Boussinesq fluids.

14Greatbatch and McDougall, 2003 discuss an algorithm for non-Boussinesq dynamics in a
z-model. Their methods are implemented in the MOM4 code of Griffies et al., 2004. This
approach may be of special use for non-Boussinesq non-hydrostatic z-models. However, when
focusing on hydrostatic models as we do here, pressure based vertical coordinates discussed
in Section 6.2 are more convenient.
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The equations describing a Boussinesq fluid are derived from the non-
Boussinesq set derived in Sections 3 and 4 by replacing all appearances
of in situ density ρ by a constant density ρo, except when density is used
to compute the buoyancy forces arising from gravity. The density ρo is
a representative density of the ocean fluid, such as ρo = 1035 kg m−3.
For much of the ocean, the in situ density varies less than 2% from this
value (see page 47 of Gill, 1982).

Depth coordinate. With a free surface, the vertical domain over
which the z-coordinate s = z ranges is given by the time dependent
interval −H ≤ z ≤ η. Consequently, the sum of the vertical grid cell
increments equals to the total depth of the column

∑

k dz = H +η. The
trivial specific thickness z,s = 1 simplifies the Boussinesq budgets.

The depth coordinate is useful for many purposes in global climate
modelling, and models based on depth are the most popular ocean cli-
mate models. Their advantages include the following.

Simple numerical methods have been successfully used in this frame-
work.

The horizontal pressure gradient can be easily represented in an
accurate manner.

The equation of state for ocean water can be accurately represented
in a straightforward manner (e.g., McDougall et al., 2003).

The upper ocean mixed layer is well parameterized using a z-
coordinate.

Unfortunately, these models have some well known disadvantages, which
include the following.

Representation of tracer transport within the quasi-adiabatic in-
terior is cumbersome, with problems becoming more egregious as
mesoscale eddies are admitted (Griffies et al., 2000b).

Representation and parameterization of bottom boundary layer
processes and flow are unnatural.

Grid cells have static vertical increments ds = dz when s = z, except
for the top. At the top, ∂t (dz) = η,t. The time dependent vertical
range of the coordinate slightly complicates a numerical treatment of the
surface cell in z-models (see Griffies et al., 2001 for details of one such
treatment). More problematic, however, is the possibility of a vanishing
top grid cell. That is, the surface cell can be lost (i.e., can become
dry) if the free surface depresses below the depth of the top grid cell’s
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bottom face. This is a very inconvenient feature that limits the use
of z-coordinates.15 In particular, the following studies may require very
refined vertical resolution and/or large undulations of the surface height,
and so would not be accessible with a conventional free surface z-model.

Process studies of surface mixing and biological cycling may war-
rant very refined upper ocean grid cell thickness, some as refined
as 1m.

Realistic tidal fluctuations in some parts of the World Ocean can
reach 10m-20m.

Coastal models tend to require refined vertical resolution to rep-
resent shallow coastal processes along the continental shelves and
near-shore.

When coupled to a sea ice model, the weight of the ice will depress
the ocean free surface.

An example of depth coordinates. In some of the following
discussion, we illustrate aspects of vertical coordinates by diagnosing
values for the coordinates from a realistic z-model run with partial step
thicknesses. Partial steps have arbitrary thickness which are set to ac-
curately represent the bottom topography. The partial step technology
was introduced by Adcroft et al., 1997 in the C-grid MITgcm, and fur-
ther discussed by Pacanowski and Gnanadesikan, 1998 for the B-grid
Modular Ocean Model (MOM). Figure 10 compares the representation
of topography in a z-model using partial steps as realized in the MOM
code of Griffies et al., 2004. Many z-models have incorporated the par-
tial step technology as it provides an important facility to accurately
represent flow and waves near topography.

In the representation of bottom topography, there is an artificial dis-
tinction between a vertical face of a cell and its horizontal top and bot-
tom faces. There is no such distinction in the real ocean. As noted
in Anne Marie Treguier’s lectures at this school, the block structure of
topography in z-models has the potential to affect the level of bottom
friction. The effects on bottom friction come in by noting that for a
C-grid, it is straightforward to run with free-slip side walls as well as
bottom faces. In contrast, B-grids use a no-slip side wall and free slip

15Linearized free surfaces, in which the budgets for tracer and momentum are formulated
assuming a constant top cell thickness, avoid problems with vanishing top cells. However,
such models do not conserve total tracer or volume in the presence of a surface fresh water
flux (see Griffies et al., 2001, Campin et al., 2004 for discussion).
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bottom face. Hence, depending on the interior viscosity and bottom
stress parameterization, B-grid models will generally have more bottom
friction than C-grid models. With partial steps, the area of the side walls
are reduced, thus reducing the area of no-slip side walls in the B-grid.
The effective bottom friction in the B-grid is therefore less with partial
step topography.

Because of partial steps, the level next to the ocean bottom has grid
cell centers that are generally at different depths. That is, the bottom
cell in a partial step z-model is likened to a sigma-layer. All other cells,
including the surface, have grid cell centers that are at fixed depths.
Figure 11 illustrates the lines of constant partial step depth for this
model.

Figure 10. Comparison of the partial step versus full step representation of topog-
raphy along the equator as realized in the z-model discussed by Griffies et al., 2005.
The model horizontal grid has one degree latitudinal resolution. The main differ-
ences are in the deep ocean in regions where the topographic slope is gradual. Steep
sloped regions, and those in the upper ocean with refined vertical resolution, show
less distinctions.

Depth deviation coordinate. The depth deviation coordinate
s = z − η removes the restriction on upper ocean grid cell resolution
present with s = z. That is, s = 0 is the time independent coordinate
value of the ocean surface, no matter how much the free surface depresses
or grows. Hence, no surface cells vanish so long as η > −H. However,
−(H + η) ≤ s ≤ 0, and so the bottom of a column is a time dependent
surface. Consequently, by solving the problem at the ocean surface, the
deviation coordinate introduces a problem to the ocean bottom where
bottom cells can now vanish.
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Figure 11. Constant depth surfaces in a realistic ocean model. Deviations from
horizontal next to the bottom arise from the use of partial bottom cell thicknesses,
as illustrated in Figure 10. Shown here is a section along 150◦W .

Zstar coordinate. To overcome problems with vanishing surface
and/or bottom cells, we consider the zstar coordinate

z∗ = H (z − η)/(H + η). (110)

This coordinate is closely related to the “eta” coordinate used in many
atmospheric models (see Black, 1994 for a review). It was originally
used in ocean models by Stacey et al., 1995 for studies of tides next to
shelves, and it has been recently promoted by Adcroft and Campin, 2004
for global climate modelling.

The surfaces of constant z∗ are quasi-horizontal. Indeed, the z∗ co-
ordinate reduces to z when η is zero. In general, when noting the large
differences between undulations of the bottom topography versus un-
dulations in the surface height, it is clear that surfaces constant z∗ are
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very similar to the depth surfaces shown in Figure 11. These properties
greatly reduce difficulties of computing the horizontal pressure gradient
relative to terrain following sigma models discussed next. Additionally,
since z∗ = z when η = 0, no flow is spontaneously generated in an un-
forced ocean starting from rest, regardless the bottom topography. This
behavior is in contrast to the case with sigma models, where pressure
gradient errors in the presence of nontrivial topographic variations can
generate spontaneous flow from a resting state. The quasi-horizontal na-
ture of the coordinate surfaces also facilitates the implementation of neu-
tral physics parameterizations in z∗ models using the same techniques
as in z-models (see Chapters 13-16 of Griffies, 2004 for a discussion of
neutral physics in z-models).

The range over which z∗ varies is time independent −H ≤ z∗ ≤ 0.
Hence, all cells remain nonvanishing, so long as the surface height main-
tains η > −H. This is a minor constraint relative to that encountered
on the surface height when using s = z or s = z − η.

Because z∗ has a time independent range, all grid cells have static
increments ds, and the sum of the vertical increments yields the time
independent ocean depth

∑

k ds = H. The z∗ coordinate is therefore
invisible to undulations of the free surface, since it moves along with the
free surface. This property means that no spurious vertical transport
is induced across surfaces of constant z∗ by motion of external gravity
waves. Such spurious transport can be a problem in z-models, espe-
cially those with tidal forcing. Quite generally, the time independent
range for the z∗ coordinate is a very convenient property that allows
for a nearly arbitrary vertical resolution even in the presence of large
amplitude fluctuations of the surface height.

Depth sigma coordinate. The depth-sigma coordinate

σ = (z − η)/(H + η) (111)

is the canonical terrain following coordinate. Figure 12 illustrates this
coordinate in a realistic model. The sigma coordinate has a long history
of use in coastal modelling. For reviews, see Greatbatch and Mellor,
1999 and Ezer et al., 2002. Models based on the sigma coordinate have
also been successfully extended to basinwide studies, as well as recent
global work by Diansky et al., 2002.

Just as for z∗ = H σ, the range over which the sigma coordinate
varies is time independent and given by −1 ≤ σ ≤ 0. Hence, all cells
have static grid increments ds, and the sum of the vertical increments
yields unity

∑

k ds = 1. So long as the surface height is not depressed
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deeper than the ocean bottom (i.e., so long as η > −H), then all cells
remain nonvanishing.16

In addition to not worrying about vanishing grid cells, some key ad-
vantages of sigma models are the following.

They provide a natural framework to represent bottom influenced
flow and to parameterize bottom boundary layer processes.

Thermodynamic effects associated with the equation of state are
well represented.

However, some of the disadvantages are the following:

As with the z-models, the representation of the quasi-adiabatic in-
terior is cumbersome due to numerical truncation errors inducing
unphysically large levels of spurious mixing, especially in the pres-
ence of vigorous mesoscale eddies. Parameterization of these pro-
cesses using neutral physics schemes may be more difficult numer-
ically than in the z-models. The reason is that neutral directions
generally have slopes less than 1/100 relative to the horizontal, but
can have order unity slopes relative to sigma surfaces. The larger
relative slopes precludes the small slope approximation commonly
made with z-model implementations of neutral physics. The small
slope approximation provides for simplification of the schemes, and
improves computational efficiency.

Sigma models have difficulty accurately representing the horizontal
pressure gradient in the presence of realistic topography, where
slopes are commonly larger than 1/100.

Although there are regional simulations using terrain following mod-
els, Griffies et al., 2000a notes that there are few examples of global
climate models running with this vertical coordinate. Diansky et al.,
2002 is the only exception known to the author. This situation is largely
due to problems representing realistic topography without incurring un-
acceptable pressure gradient errors, as well as difficulties implementing
parameterizations of neutral physical processes. There are notable ef-
forts to resolve these problems, such as the pressure gradient work of
Shchepetkin and McWilliams, 2002. Continued efforts along these lines
may soon facilitate the more common use of terrain following coordinates
for global ocean climate modelling.

16If η < −H, besides drying up a region of ocean, the specific thickness z,s = H + η changes
sign, which signals a singularity in the vertical grid definition. The same problem occurs for
the z∗ coordinate.
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Figure 12. Constant sigma surfaces as diagnosed in a z-model. Shown here is a
section along 150◦W , as in Figure 11. Note the strong variations in the contours, as
determined by changes in the bottom topography.

Summary of the depth based vertical coordinates. Depth
based vertical coordinates are naturally used for Boussinesq equations.
These coordinates and their specific thicknesses z,s are summarized in
Table 2.1. Notably, both the sigma and zstar coordinates have time in-
dependent ranges, but time dependent specific thicknesses. In contrast,
the depth and depth deviation coordinates have time dependent depth
ranges and time independent specific thicknesses. If plotted with the
same range as those given in Figure 11, surfaces of constant depth devi-
ation and constant zstar are indistinguishable from surfaces of constant
depth. This result follows since the surface height undulations are so
much smaller than undulations in the bottom topography, thus making
the depth deviation and zstar coordinates very close to horizontal in
most parts of the ocean.
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Coordinate Definition Range z,s

geopotential z −H ≤ z ≤ η 1

z-deviation z′ = z − η −(H + η) ≤ z′
≤ 0 1

z-star z∗ = H (z − η)/(H + η) −H ≤ z∗
≤ 0 1 + η/H

z-sigma σ = (z − η)/(H + η) −1 ≤ σ ≤ 0 H + η

Table 2.1. Table of vertical coordinates based on depth. These coordinates are nat-
urally used for discretizing the Boussinesq equations.

6.2 Pressure based coordinates

The second class of vertical coordinates that we discuss is based on
pressure. Pressure based coordinates provide a straightforward way to
generalize Boussinesq depth based models to non-Boussinesq pressure
models (Huang et al., 2001, DeSzoeke and Samelson, 2002, Marshall
et al., 2003, Losch et al., 2004). The reason is that there is an isomor-
phism between the Boussinesq equations written in depth based coor-
dinates and non-Boussinesq equations written in pressure based coordi-
nates.

Pressure based vertical coordinates of interest include the following:

s = p pressure (112)

s =

(

p − pa

pb − pa

)

pressure-sigma (113)

s = po
b

(

p − pa

pb − pa

)

pressure-star. (114)

In these equations, p is the hydrostatic pressure, pa is the pressure ap-
plied at the ocean surface from any media above the ocean, such as
the atmosphere and sea ice, pb is the hydrostatic pressure at the solid-
earth lower boundary, and po

b is a time independent reference pressure,
usually taken to be the bottom pressure in a resting ocean.17 Since
p,z = −ρ g < 0 is single signed for the hydrostatic fluid, pressure pro-
vides a well defined vertical coordinate. Strengths and weaknesses of the
corresponding depth based coordinates also hold for the pressure based
coordinates, with the main difference being that pressure based models
are non-Boussinesq.

A technical reason that the pressure based coordinates considered
here are so useful for non-Boussinesq hydrostatic modelling is that ρ z,s

17Note that equation (11.64) of Griffies, 2004 used the time dependent pb rather than the
time independent reference pressure po

b
. The former vertical coordinate has not been used in

practice, and so we focus here on that coordinate defined with the reference pressure po
b
.
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Coordinate Definition Range g ρ z,s

pressure p pa ≤ p ≤ pb −1

p-deviation p′ = p − pa 0 ≤ p′
≤ pb − pa −1

pstar p∗ = po
b (p − pa)/(pb − pa) 0 ≤ p∗

≤ po
b −(pb − pa)/po

b

p-sigma σ = (p − pa)/(pb − pa) 0 ≤ σ ≤ 1 −(pb − pa)

Table 2.2. Table of vertical coordinates based on pressure. These coordinates are
naturally used for non-Boussinesq dynamics.

is either a constant or a two-dimensional field. In contrast, for depth
based models ρ z,s is proportional to the three-dimensional in situ density
ρ, thus necessitating special algorithmic treatment for non-Boussinesq
z-models (see the discussions in Greatbatch and McDougall, 2003 and
Griffies, 2004). Table 2.2 summarizes some pressure based coordinates.

As Table 2.2 reveals, the specific thickness z,s is negative for the
pressure-based coordinates, whereas it is positive for the depth-based
coordinate (Table 2.1). The sign change arises since upward motion in
a fluid column increases the geopotential coordinate z yet decreases the
hydrostatic pressure p. To establish a convention, we assume that the
thickness of a grid cell in z space is always positive

dz = z,s ds > 0 (115)

as is the case in the conventional z-models. With z,s < 0 for the pressure-
based vertical coordinates, the thickness of grid cells in s space is nega-
tive

ds < 0 for pressure-based coordinates with z,s < 0. (116)

6.3 Isopycnal coordinates

Isopycnal models discretize the vertical into potential density classes.
Some key advantages of isopycnal models are the following:

Tracer transport in the ocean interior is well represented due to the
natural ability of these models to maintain water mass properties.

The bottom topography is represented in a piecewise linear fash-
ion, hence avoiding the need to distinguish bottom from side as
traditionally done with z-models.

In some cases, flow near topographically critical regions, such as
overflows, can be well resolved by isopycnal models due to the
natural tendency of the coordinate surfaces to become refined in
these regions.
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For a fluid with a linear equation of state, the horizontal pressure
gradient can be easily represented.

For an adiabatic fluid, the volume (for a Boussinesq fluid) or mass
(for a non-Boussinesq fluid) between isopycnals is conserved.

Some of the disadvantages are the following:

Representing the effects of a realistic (nonlinear) equation of state
is cumbersome.

The thermal wind balance is based on in situ density, not potential
density. Hence, the further away from the reference pressure, the
less accurate the pressure gradient force can be represented solely
by the isopycnal gradient of the Montgomery.

An isopycnal coordinate is inappropriate for regions where den-
sity becomes unstratified, such as mixed layers or deep convection
regions.

Figure 13 illustrates isopycnal surfaces for a section in the model used
to generate Figures 11 and 12.

6.4 Two algorithms

Adcroft and Hallberg, 2004 distinguish two classes of algorithms used
to update the model state: quasi-Eulerian and quasi-Lagrangian. The
main distinguishing characteristic of these algorithms is how they com-
pute the dia-surface velocity component (Section 2.5). The two algo-
rithm classes have traditionally been associated with two classes of ver-
tical coordinates.

Quasi-Eulerian algorithms diagnose their vertical velocity compo-
nent from the continuity equation. Geopotential and sigma models
have traditionally employed this approach.

Quasi-Lagrangian algorithms set the vertical velocity component
based on specified constraints, and they update the thickness be-
twen layers via the continuity equation to prognostically move lay-
ers around. Isopycnal vertical coordinate models typically use this
approach. For example, adiabatic simulations with isopycnal co-
ordinates set the diapycnal velocity component to zero, thus ex-
actly preserving the integrity of the chosen density classes. For
non-adiabatic simulations, the diapycnal flux is based on param-
eterizations of diabatic processes such as arise from the nonlinear
equation of state or small scale mixing. A summary of these ideas
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Figure 13. Constant potential density surfaces (minus 1000) in units of kgm−3.
Potential density is here referenced to 2000db, which is the common reference for
isopycnal models based on the work of Sun et al., 1999. Shown here is a section along
150◦W , as in Figure 11. Note the weak stratification in the deep, which is spanned by
only one density layer. However, in a realistic isopycnal model, the choice of density
classes used to partition the ocean would be non-uniform, in contrast to that used
here. In that way, the model will have more layers in the deep and so will better
represent interactions with the bottom topography than suggested by this figure.

can be found in Chassignet and Bleck’s lectures in this volume, as
well as Bleck’s lectures in Chassignet and Verron, 1998.

Notably, it is possible to, say, design a z-coordinate model based on
quasi-Lagrangian methods, or isopycnal models based on quasi-Eulerian
methods. However, such has traditionally not been the case, with the
distinctions mentioned above the usual situation.

There is presently no general consensus in the ocean modelling com-
munity regarding the best choice of vertical coordinate or the best al-
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gorithm methodology. For example, those aiming to faithfully repre-
sent the ocean’s quasi-adiabatic interior generally prefer an isopycnal
layered model using quasi-Lagrangian methods over either terrain fol-
lowing or geopotential models using quasi-Eulerian methods. However,
there have been decades of experience with z-models for global climate
modelling, largely due to the simplicity of representing and parameter-
izing air-sea and ice-sea interactions as well as the ocean mixed layer.
Hence, these models remain the dominant tool for global climate mod-
elers, even given their well known problems with spurious mixing and
difficulties handling overflow processes (see the discussion in Griffies
et al., 2000a). Additionally, non-hydrostatic models, such as that from
Marshall et al., 1997, have traditionally used geopotential coordinates.
Indeed, there is presently no non-hydrostatic algorithm for use in the
ocean that is based on a quasi-Lagrangian algorithm. That is, all lay-
ered models for the ocean are hydrostatic. Finally, those focusing on
shallow ocean dynamics and estuaries have traditionally chosen terrain
following coordinates due to their fidelity with bottom boundary layer
processes. However, such models have only recently been employed for
global climate studies, largely due to difficulties with pressure gradient
errors (see Section 2 of Griffies et al., 2000a).

In summary, it is unlikely that modelers will arrive at one univer-
sally best vertical coordinate. Instead, vertical coordinates will remain
chosen for the particular model application in mind. Modelers may,
however, converge on an optimal algorithm methodology, especially if
quasi-Lagrangian methods can be extended to non-hydrostatic models.
In general, it is useful for model designs to evolve from being based on
a single vertical coordinate, to model environments mentioned in Sec-
tion 1.3 that are flexible enough to include many vertical coordinate
algorithms.

7. Closing remarks

It is incumbent on ocean model designers and developers to provide a
thorough and pedagogical rationalization of their codes, from the basic
equations that the model aims to integrate, to the limitations of their
subgrid scale (SGS) parameterizations. Likewise, it is essential that
model users understand elements of the model algorithms and SGS pa-
rameterizations. The sophisticated and productive use of ocean models
comes from a firm understanding of model fundamentals. It is hoped
that through more schools such as this one or those documented by
O’Brien, 1986, Chassignet and Verron, 1998, and others, as well as
books on the subject of geophysical fluid modelling such as Haltiner and



SOME OCEAN MODEL FUNDAMENTALS 71

Williams, 1980, Durran, 1999, Haidvogel and Beckmann, 1999, Kantha
and Clayson, 2000a, Kantha and Clayson, 2000b, and Griffies, 2004,
students aiming to use ocean models will readily learn to scrutinize the
simulation’s output in a scientifically sound and rational manner so as
to improve the models, and ultimately to better understand and predict
the ocean.
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