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Abstract A main objective of applying data assimilation methods to marine ecosys-
tem models is the optimisation of often poorly known model parameters
or even of the model’s functional form. Recent efforts in this direction
are reviewed. Results obtained so far indicate that presently available
data sets can constrain not more 10 to 15 different ecological parame-
ters. This raises questions about the use of more complex models. On
the other hand, none of the optimised models yields a satisfactory fit to
the observations, suggesting that present ecosystem models are overly
simplistic. Implications of these apparently contradictory findings are
discussed and a data assimilative strategy for future improvement of
marine ecosystem models is suggested.
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1. Introduction

Interest in prognostic models of marine biogeochemical cycles arises
to a large extent from our need to better understand, quantify, and
eventually predict the ocean’s role in the global carbon cycle. This in-
cludes cycles of related elements, such as nitrogen, phosphorus or iron,
that can act as limiting nutrients for phytoplankton growth. Other as-
pects addressed by biogeochemical and ecological modelling include the
prediction of harmful algal blooms [Schofield et al., 1999], and a quan-
titative understanding of oceanic food webs up to fish [Loukos et al.,

2003], birds, and humans, as well as the possible impact of marine sulfur
emissions on the formation of cloud condensation nuclei [Gabric et al.,

2004]. In this chapter, I will focus on the carbon issue.



526 ANDREAS OSCHLIES

Carbon fluxes in the ocean are often described in terms of solubility
pump and biological pump. The abiotic solubility pump is caused by
increasing solubility of CO2 (as of other gases) with decreasing tempera-
ture. For present climate conditions, deep water forms at high latitudes
and average ocean temperatures are colder than average sea surface tem-
peratures. The solubility pump then ensures that the volume averaged
carbon concentration is larger than the surface averaged one, yielding a
vertical CO2 (or, more precisely, dissolved inorganic carbon, DIC) gra-
dient with higher concentrations at depth than at the surface (Figure 1).
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Figure 1. Schematic representation of the solubility pump (top) and the biological
pump (bottom), both acting to maintain the vertical gradient in total dissolved in-
organic carbon (ΣCO2) in the ocean. Q is the surface heat flux, with oceanic heat
uptake corresponding to outgassing and cooling to CO2 uptake, z(euph.zone) is the
depth of the euphotic zone which describes the surface region with light levels suffi-
cient to allow for photosynthesis (typically about 100 m).

The term “pump” reflects that carbon is transported against the mean
vertical gradient. Closer analysis reveals that of the presently observed
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vertical DIC gradient, only about a quarter can be explained by the
solubility pump [Sarmiento et al., 1995] with the remaining three quar-
ters being attributed to the “biological” carbon pump [Volk and Hoffert,

1985]. The driving agent of the biological pump is photosynthesis that
generates organic carbon and thereby reduces DIC concentrations, and
accordingly the partial pressure of CO2, in the surface ocean. Respira-
tion of organic carbon by metabolic processes in bacteria, higher trophic
levels, and in the photosynthetically active phytoplankton itself reverses
this process. As a result of mixing and advection along the vertical light
gradient and because of the formation of biogenic particles that sink
through the water instead of moving with it, respiration occurs gener-
ally deeper in the water column than photosynthesis. This decoupling of
photosynthesis and respiration generates vertical gradients of DIC. To
make things more complicated, some organisms form calcium carbonate
“hard parts” which, on formation, sinking, and dissolution also affect
the carbonate chemistry of sea water and result in an alkalinity pump.
Because the formation of calcium carbonate in surface water increases
surface pCO2, this constitutes a counter pump in terms of CO2 which
partly compensates the pCO2 effect of the organic carbon pump. A ro-
bust mechanistic understanding of the formation and biotically aided
dissolution of calcium carbonate shells is not yet available, and many
models so far assume that a fixed fraction of all biogenic particulate car-
bon sinking out of the light-lit euphotic zone (roughly the upper 100 m)
is associated with calcium carbonate formation.

A close interaction of biology and physics arises not only from the
interplay of physical and biological transport mechanisms on the ver-
tical DIC gradient, but also from the fact that phytoplankton growth
requires the presence of both light and nutrients, which usually have
opposite vertical gradients. Accordingly, light and nutrient levels expe-
rienced by a phytoplankton cell are very sensitive to physical transport
processes that may upwell or entrain deeper and nutrient-rich waters,
or may mix or advect phytoplankton cells down into the dark ocean in-
terior. This physical control on biological production has to be taken
into account when attempting to simulate the marine carbon cycle. A
standard strategy is to couple marine ecosystem models into circulation
models. Validation of such coupled models is not straightforward. For
example, the strong sensitivity of the marine biota to physical transport
processes makes it difficult to separately evaluate the individual model
components. For many applications one can at least safely neglect the
biological impact on the physics via changes in the absorption profile
of solar radiation [Oschlies, 2004]. While this allows to evaluate the
physical model component individually, the reverse is not true for the
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impact of the physics on the marine biogeochemistry. Here, a potential
mapping of errors of the physical model onto the predicted ecosystem
fields makes the separate evaluation of the ecosystem model component
difficult. This is not necessarily a disadvantage: Because of the ma-
rine biology’s strong sensitivity and fast response time of the order of
days to changes in the light or nutrient supply, coupling ecosystem and
circulation models may actually help to identify deficiencies of physi-
cal transport processes, particularly in the upper ocean [e.g., Oschlies,

1999].
The following section will give a brief overview over the field of biogeo-

chemical models and presently used marine ecosystem models. Section 3
discusses some aspects of observations that are relevant for data assim-
ilation, and section 4 addresses the potential use of combining data and
biogeochemical models. Data assimilation methods are presented in sec-
tion 5, and this article ends with a discussion of some achievements and
perspectives of data assimilation in the field of biogeochemical modelling.

2. Biogeochemical modelling

Compared to numerical modelling of the ocean circulation, the field
of biogeochemical modelling is much less mature. In particular, there is
no known equivalent to the Navier-Stokes equations. In principle, these
describe the motion of sea water exactly, but an exact solution does not
(yet?) exist. The rules are thus clear for physical models, and different
numerical models basically attempt to find different approximations to
the unknown exact solution.

The situation is different in the field of biogeochemical modelling.
Although there are some reliable, albeit mainly empirical, laws that de-
scribe transformations among various inorganic compounds dissolved in
sea water, things become relatively shaky once life, and thereby transfor-
mations among organic and inorganic chemical compounds, comes into
play. In practice, biogeochemical models are generally composed of an
inorganic chemistry component and an ecosystem component, of which
the latter is the by far more complex, expensive, and problematic part.
In the following I will focus on this ecosystem model component and
often use the term ecosystem model as synonym for the entire biogeo-
chemical model.

Marine ecosystem models usually attempt to describe life’s action
on marine biogeochemical tracers by partitioning the marine ecosystem
into a handful of boxes, often called compartments, such as phytoplank-
ton (plants), zooplankton (animals), or detritus (dead organic matter).
Sometimes, a further distinction is made between particular and dis-
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solved dead organic matter which does not sink but moves passively
with the water. Besides the different transport properties, the distinc-
tion among dissolved and particulate organic matter is also useful in
terms of elemental ratios: while the elemental composition of partic-
ulate organic matter is, on average, found to be close to the Redfield
ratio [Redfield, 1934; Redfield et al., 1963], dissolved organic matter of-
ten contains several times more carbon than the Redfield ratio would
predict [Williams, 1995; Kähler and Koeve, 2001].

Using mass conservation as underlying concept, the compartments
simulate stocks of atoms of the relevant element, and fluxes such as pri-
mary production, grazing, or mortality all describe the transfer of atoms
among the different compartments. Often only a single element (usu-
ally one associated with a potentially limiting nutrient, e.g., nitrogen
for nitrate, phosphorus for phophate) is modelled explictly, and its con-
centration in each of the compartments becomes a prognostic variable.
Concentrations and fluxes of other elements (in particular, carbon) are
usually diagnosed via the Redfield ratio. While this seems to be con-
sistent with the analysis of average inorganic remineralisation products
[e.g., Anderson and Sarmiento, 1995], more detailed investigations re-
veal local and temporal systematic deviations [Körtzinger et al., 2001;
Sterner and Elser, 2002; Klausmeier et al., 2004]. A few recent models
have therefore begun to explicitly resolve the cycling of different elements
[Moore et al., 2002].

For each marine ecosystem model, the particular choice of its compart-
ments and of the parameterisation of fluxes between the compartments
contains subjective elements, which may for example be influenced by
operational measurement protocols, historical paradigms, or taxonomic
nomenclature. Such an approach is, of course, valid and probably neces-
sary in a field in which a strong theoretical framework is not yet available
(and in which key species may not even be discovered yet). Progress will
be made by trying to construct models that can explain the observations
and at the same time tell a plausible story, and by more or less steadily
changing the story as new observations add new information. In this
process it is important to keep in mind that the underlying rules that
make up a particular ecosystem model are generally assumed rather than
demonstrated and hence are subject to change.

After these cautionary remarks about the theoretical foundations of
marine ecoystem models, it is time to point out that these very models
may greatly help to improve our understanding of marine ecosystems by
allowing us to test the assumed hypothetical rules against observations
in a quantitative way. In the following I will try to present my subjective
view of how this can be achieved in practice.
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2.1 Ecosystem model types

Today, a large variety of marine ecosystem models exist, probably
similar in number to the number of researchers in the field. Although
strict categories do not exist, present models roughly fall into three main
groups (Figure 2):
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Figure 2. Schematic representation of various ecosystem model concepts: (a) Restor-
ing of nutrients to observed or zero surface concentrations and immediate export and
remineralisation according to a prescribed vertical remineralisation profile (e.g., Ba-

castow and Maier-Reimer [1990]). (b) Nutrient-Phytoplankton-Zooplankton-Detritus
(NPZD) model (e.g., Oschlies and Garçon [1999]). (c) Multi-element multi-functional
group model (after Moore et al. [2002]). Each biological compartment is composed
of sub-compartments for each of the prognostic elements and chemical compounds
indicated. For clarity of the illustration, the O(100) fluxes among the various (sub)-
compartments are not shown.

Nutrient-restoring models. These models do not explicitly resolve
ecosystem components other than a (usually) single nutrient. Bi-
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ological production is simulated by restoring to either zero or ob-
served nutrient concentrations in the light-lit surface layer, and
instant sinking and remineralisation are accounted for by a pre-
scribed remineralisation profile. Examples are the models of Ba-

castow and Maier-Reimer [1990], Najjar et al. [1992] and the mod-
els used during phases 1 and 2 of the Ocean Carbon Model Inter-
comparison Project (OCMIP, [Orr, 1999]). Depending on whether
or not dissolved organic matter is explicitly resolved, these bio-
geochemical/ecosystem models typically have 2 to 4 parameters.
They are most widely used in models that address time scales
much longer than a year, and applications to seasonal or shorter
time scales will be problematic because of the absence of any par-
ticulate organic-matter storage pools.

NPZD-type models. Although NPZD stands for Nutrient, Phy-
toplankton, Zooplankton, and Detritus, such models may contain
a few more prognostic variables like bacteria or dissolved organic
matter. Most of these models are descendants of a configuration
proposed by Fasham et al. [1990] and they explicitly simulate
the cycling of either nitrogen or phosphorus. They have been ap-
plied to general ocean circulation models ranging from coarse res-
olution [Sarmiento et al., 1993; Fasham et al., 1993; Chai et al.,

1996; McCreary et al., 1996; Six and Maier-Reimer, 1996] to eddy-
permitting [Oschlies and Garçon, 1998, 1999] and eddy-resolving
resolution [Oschlies, 2002]. Typically, these ecosystem models have
10 to 30 parameters.

Functional-group type models. Going beyond the NPZD-type struc-
ture, these recently emerging models attempt to resolve different
species or groups of phytoplankton and zooplankton. According
to their special ecological function (e.g., nitrogen fixation, calci-
fication) these are often called functional groups. These differ-
ent groups require (and allow) to explicitly resolve the cycling
of different biogeochemical elements. Examples are the models
described by Moore et al. [2002] and Aumont et al. [2004], as
well as the European Regional Seas Ecosystem Model (ERSEM,
Ebenhöh et al. [1997]) and the evolving Dynamic Green Ocean
Model [LeQuéré et al., Ecosystem dynamics based on plankton
functional types for global ocean biogeochemistry models, submit-
ted to Global Change]. They typically have far more than hundred
parameters.
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3. Observations

A trivial statement is that the ocean is severly undersampled and that
we need more data to better understand what is going on out there. We
also have data of very different quality. There is a large number of
data which are difficult to interpret in terms of ecological variables or
processes resolved by dynamical models. Examples include wet zoo-
plankton weight, satellite ocean colour data (which contain information
on water-leaving radiance at a few wavelengths, but not immediately
on surface chlorophyll or even primary production), or uptake of carbon
isotopes into particulate matter (which is related but not identical to
primary production, e.g., Dring and Jewson [1982]). Particular care has
to be taken when different measurement methods that attempt –and
often claim– to measure the same quantity (e.g., chlorophyll concentra-
tion, primary production) in fact measure different things . In contrast to
more straightforward measurements of concentrations of standing stocks
of organic or inorganic matter, direct observations of processes or rates
(e.g., growth, grazing, sinking, exudation, mortality) are usually difficult
to carry out without perturbing the system under investigation and, ac-
cordingly, are very limited in number and often have large random and
systematic errors.

Available observations are also often biased towards the spring and
summer season, with generally very few ship-based winter or autumn
observations, particularly in mid and high latitudes. The same sampling
bias holds for measurements of physical variables, but may be more
critical for ecological properties for which the amplitude of the local
seasonal cycle can be as large as the global range of the respective annual
mean property.

Valuable observational information can also be taken from laboratory
studies. Investigations using cultured species may, for example, help to
reveal physiological information on the impact of environmental condi-
tions like nutrient concentrations, light intensity, turbulence levels, or
temperature on growth rates. A caveat to be kept in mind is that those
species that have been cultured so far are not necessarily representative
of the open-ocean plankton community. Considering that the number
of generations separating our domestic plants and animals from their
wild ancestors is reached by phytoplankton in only a few years, culture
species may also be affected by selection and mutation.

It appears that information on the loss side (e.g., grazing, mortality)
is more difficult to obtain than on the production side (growth). There is
a (perhaps related?) tendency of marine ecosystem modellers to increase
model complexity preferentially on the production side rather than on



DATA ASSIMILATION IN BIOGEOCHEMICAL MODELLING 533

the loss side. The net impact of marine biology on biogeochemical cycles
is, however, controlled by the balance of production and loss processes.
Because marine phytoplankton seems to invest relatively more into de-
fence structures (mineral cell walls, spines, chains and colonies) than do
land plants, which seem to compete more for fastest growth, one might
even argue that marine ecosystems are more sensitive to loss processes
than are terrestrial ecosystems [Smetacek, 2001].

4. Motivation for data assimilation

In a situation in which our understanding of marine ecosystem dynam-
ics is still relatively poor and in which observations and data types are
distributed unevenly, data assimilation may be seen as promising tool
to interpolate in time and space as well as among different data types.
Dynamical, albeit hypothetical, rules, e.g. in form of model equations,
help to go beyond purely statistical interpolation and to link the observa-
tional information according to these rules. As such models have various
poorly known parameters and functional relationships, data assimilation
can at the same time provide a vehicle to estimate these parameters and
parameterisations. This is conceptually different from state estimation
that attempts to find a model state that agrees best with the observa-
tions and possibly a previous model forecast.

State estimation is used frequently in the field of meteorology to ini-
tialise new forecast simulations. For marine biogeochemistry, this aspect
is generally less relevant, although it has already been applied for oper-
ational planning of research cruises [Popova et al., 2002]. Forecast times
are typically limited to a few weeks. The dissipative character of the
dynamics that we believe to hold for marine ecosystems and that we use
in our models [Popova et al., 1997] and the strong seasonal and intrasea-
sonal forcing in form of light, temperature, and mixing regimes lead to
a quick memory loss of the initial conditions in typically much less than
a year.

With respect to improving longer term forecasts, e.g. for climate pre-
diction purposes, it seems to be more promising to rely on parameter
estimation (and “parameterisation estimation”) to improve our quanti-
tative understanding of marine ecosystem dynamics. Data assimilation
then provides a tool to test various hypothetical model dynamics against
the available observations in an organised and quantitative way. The fol-
lowing sections attempt to give some overview over recent activities in
this area.
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5. Data assimilation methods used in marine
biogeochemical modelling

5.1 Sequential methods

Sequential assimilation methods are constructed to accumulate infor-
mation gathered from both observations and model predictions in time
with the aim to generate an optimal state estimate. This approach is
widely used in operational systems for which fast and robust delivery
of information is a crucial aspect, ranging from instrument-guided air-
craft landing, and related less peaceful applications, to atmospheric and
oceanic weather forecasting. Most methods are approximations to, or
descendants of, the Kalman Filter [Kalman, 1960]. Its basic principle is
that of optimal interpolation between an observation and its simulated
counterpart.

To illustrate its concept, we start by considering a model with a single
state variable, x, for which observational counterparts are available. For
Gaussian errors of the observation, xobs, and model forecast, xf , the best
linear unbiased estimate (BLUE) of the true state vector is then given
by:

xa =

xf

σf
+ xobs

σobs

1

σf
+ 1

σobs

(24.1)

where σf and σobs are expected rms errors of model forecast and obser-
vation, respectively. The expected rms error of the analysed state, xa,
is

σa =
1

1

σf
+ 1

σobs

. (24.2)

The fact that σa is smaller than both σf and σobs is consistent with
xa containing more information about the true state vector than any of
the model forecast and observation alone. The analysed state, xa, can
then be used as initial condition to integrate the model until the next
observation becomes available and the above process is repeated. Note,
however, that the model forecast error will, in general, not be constant
in time. For example, it may be large during particulate phases of the
annual cycle (e.g., during the spring bloom), or it may be smaller when a
lot of observations have been assimilated in the recent past. Computing
the evolution of the model forecast error is the main contribution of the
Kalman Filter. For a linear model, this is achieved in the following way:

σ2
n+1 = Aσ2

nA
t + e2

n (24.3)

where A is the matrix that computes the evolution of the state vector x,
composed of the individual prognostic model variables, from time step
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n to n + 1 via xn+1 = Axn, At is its transpose, and e is some intrinsic
uncertainty of the model that at each time step increases the forecast
error. This equation is written in vector form to point out the main
computational burden of the Kalman Filter: for an N -dimensional state
vector x, σ2 is a N × N matrix. This means that the computation of
σ2

n+1 is as expensive as stepping forward the state vector 2N times. In
many applications, updating the covariance matrix will dominate the
computational effort and often render it impractical.

Note, that, in addition to computational constraints, the above ap-
proach will provide optimal solutions only for linear systems and for
Gaussian error distributions. Both conditions are not generally met for
marine biogeochemical systems, and a number of adaptations to the
original Kalman Filter approach have been developed. To cope with
nonlinear systems, the so-called Extended Kalman Filter (EKF) steps
forward the error covariance equation by the tangent linear operator
(Jacobian) of the full model operator [Evensen, 1992]. While this works
well for weakly nonlinear systems, the Ensemble Kalman Filter (EnKF)
approach [Evensen, 2003] can also be applied to strongly nonlinear sys-
tems. It uses Monte-Carlo generated state vectors to initialise an en-
semble of model forecast runs from which the error distribution of the
model forecast is estimated. More recent developments include the Sin-
gular Evolutive Extended Kalman (SEEK) filter that has been applied
to assimilate ocean colour data by Carmillet et al. [2001]. A sequential
method that is not directly related to the Kalman Filter is the Sequential
Importance Resampling (SIR) filter [Bertino et al., 2003].

A common feature of all sequential methods is the generation of a
model trajectory that is “only” piecewise self-consistent. Whenever ob-
servations become available, merging the respective model forecast and
observation into a new analysed state generates unsteady “jumps” in
the state vector trajectory. Special care has to be taken if one wants,
for example, to ensure mass conservation across these jumps. Similarly,
any analysis of output from an assimilation experiment has to account
for fluxes or perturbations associated with the assimilation steps.

5.2 Variational methods

While sequential assimilation methods attempt to estimate a “best”
state vector at each instant observations become available, variational
methods attempt to find a “best” model trajectory. The strong-constraint
variational method ensures that over the entire time interval considered,
the “best” model trajectory exactly obeys the model dynamics. Min-
imising a model-data misfit thereby becomes a constrained optimisa-
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tion problem, with the constraint being the model dynamics. Weak-
constraint variational methods, on the other hand, allow for some un-
certainty in the model dynamics and do not require that the “best”
trajectory is an exact solution of the model equations [Losa et al., 2004].
In principle, the uncertainty in the model dynamics can also be ac-
counted for by the strong-constraint method: by explicitly introducing
error terms that can be turned on or off by adjustable parameters to be
optimised during the optimisation process, a strong-constraint method
can also account for (and quantify) model errors. For this reason, only
strong-constraint variational methods will be discussed here.

The clue to solving constrained optimisation problems is to identify
the so-called control parameters on which the solution, or trajectory, of
the dynamical model depends. Such parameters may be initial condi-
tions, boundary conditions (e.g., nutrient supply from outside the model
domain), or internal model parameters (e.g., maximum growth rates,
mortality rates). Together, they form a control parameter vector p,
and any particular choice of p will, for the model under consideration,
uniquely determine the temporal evolution of the model trajectory. The
total model data misfit over the considered time interval is then a func-
tion of p only. This function is often called cost function. Assuming a
total of M observations dj , j = 1, . . . ,M , and model counterparts mj,
one simple choice for the cost function is:

J(p) =
M∑

j=1

[dj − mj(p)]2 (24.4)

Any prior information about the parameter values (e.g., physiological
constraints, positiveness) or the model trajectory (e.g., possible devia-
tions from a stationary seasonal cycle, smoothness) should enter the cost
function in form of additional terms. Constructing appropriate terms
should always be possible, and any information we cannot measure in
this way is probably useless anyway.

In principle, things are easy now: finding the “best” model trajectory
is equivalent to finding the parameter vector popt that minimises the cost
function J(p) . At closer inspection, however, things are a little more
complicated. In general, we will have different kinds of measurements,
i.e., for different j the corresponding observations dj (and model coun-
terparts mj) may have different units as well as different error statistics.
This is usually dealt with by introducing a scale factor Sj and replacing
[dj − mj ] by [dj − mj]/Sj . Various choices of Sj have been used so far,
e.g., Sj = σ(dj), Sj = dj , Sj = mj, Sj = dave, Sj = dmax, and little
emphasis is usually put on investigating the implications of the actual
choise made [Evans, 2003].
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Another issue is the functional form of the terms entering the cost
function. The most common approach of using sums of squares in the
cost function gives the same weight to positive and negative misfits, and
minimising least squares corresponds to a maximum-likelihood estimate
only as long as the error distributions are Gaussian. In most cases
this will not be correct. For example, there is strictly zero probability
that nutrient concentrations are negative. This could, for example, be
reflected in the cost functions by terms that go to infinity as simulated
nutrient concentrations approach zero (e.g., by a high negative power of
the nutrient concentration). A further aspect to consider is a possible
correlation of different observations in space and in time. Sometimes it is
attempted to take these into account by weighting different observations
by the number of measurements taken. More frequent observations are
then assumed to be correlated and accordingly downweighted in the cost
function, whereas rare observations get relatively more weight. If prior
information on the parameter values is available, the respective cost-
function terms have to be weighted against the model data misfit terms
as well.

When all information is accounted for by appropriately weighted cost
function terms, the resulting cost function defines the metrics that mea-
sures the qualitiy of any parameter set. Construction of the cost function
will always involve some subjective elements regarding the functional
forms or weights of the individual terms. This basically reflect that,
as usual in life, different people have different views on what is “best”.
The optimisation results will always depend on the quality of the cost
function which therefore should be crafted as carefully as possible.

5.3 Minimisation methods

In principle, one could just explore the cost function “landscape” in
parameter space by explicitly evaluating J(p) for a large number of dif-
ferent choices of the parameter vector p . In practice, however, this will
usually not be possible. Even for a simple NPZD-type ecosystem model
with, say, 15 parameters, a very coarse sampling of only 10 possible val-
ues per parameter would require 1015 evaluations of the cost function.
As soon as models have more than a handful parameters, more efficient
minimisation methods are needed.

A large variety of such minimisation methods exist, most of which
have been developed outside oceanography. They can be devided into
methods that make use of the cost function’s gradient, i.e., information
about the downhill direction in the cost-function landscape, and into
methods that do not use this information and therefore do not require
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the often expensive computation of the gradient. In the following, a
brief overview will be given of methods that have so far been applied to
marine ecosystem models.

Gradient descent methods. A standard conjugate gradient
method, that alters search directions in consecutive iterations, has been
applied by Fasham and Evans [1995] to optimise a model at the site
of the North Atlantic Bloom Experiment (47◦N, 20◦W). The cost func-
tion’s gradient was approximated by varying the individual parameters
by a finite amount and computing the corresponding difference quotient.
A finite-difference approximation of the cost function gradient was also
used by Prunet et al. [1996a,b]. It is generally and without detailed
investigation assumed that the cost function is smooth enough so that
the estimated gradient (times −1) points at least downward in the cost
function topography and that errors in its exact direction and size will
only slow, but not hinder, convergence of the descent algorithm. Prunet

et al. [1996a,b] in addition made the probably more critical assumption
of a locally parabolic shape of the cost function at each iteration of a
gradient descent method. Their sensitivity analysis indicated that this
method did not generally yield robust parameter estimates, and that
posterior error estimates were too small compared to the results of their
sensitivity experiments.

In order to improve the quality of the gradient computation, the ad-
joint method has received considerable attention. It was first used in
the context of marine ecosystem models by Lawson et al. [1995]. The
adjoint method computes the exact gradient of the cost function J(p)
by resorting to the method of Langrangian multipliers. This method has
been widely used in statistical mechanics to derive the Euler-Lagrange
equations. In essence, a Lagrange function L is defined as the cost func-
tion augmented by a additional terms that contain the model equations
Ej multiplied by a corresponding (and a priori unknown!) Lagrangian
parameter λj:

L(p, λ,x) = J(p) +
jmax∑

j

λjEj(x) . (24.5)

At first sight, things now look much more complicated than for the min-
imisation of the cost function J(p) only: The Lagrange function depends
not only on the parameter vector p but also on a vector of Lagrangian
multipliers λ and on the model state vector x . However, because the
function contains all the information we have, i.e., the cost function
and the model dynamics, there are no further constraints to be consid-
ered, and the minimisation of the Lagrange function becomes an uncon-
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strained problem. Accordingly, the minimum of L(p, λ,x) can “simply”
be found by setting all its partial derivatives to zero. It turns out that
the derivatives with respect to the components of the Lagrangian multi-
pliers return the model dynamics, whereas the derivatives with respect
to the components of the state vector will, after repeated application
of the chain rule, return what is called the “adjoint model”. The ad-
joint model can be understood as a model that runs the dynamics of the
original “forward” model backward in time while being forced by the
model-data misfits. A single backward run of the adjoint model, which
uses the final state of a run of the forward model as initial condition,
returns the full gradient of the cost function, ∇pJ(p), at the position of
the actual parameter vector p . A gradient descent algorithm will then
be needed to find a new parameter vector to start the next iteration of
forward model run and adjoint model run.

The main advantage of the adjoint technique is its very efficient com-
putation of a complete gradient in N -dimensional parameter space: Only
a single forward and a single backward model integration are needed,
whereas the other methods mentioned above require order N model in-
tegrations to compute an approximate version of the gradient. There
is, of course, nothing like a free lunch: construction of the backward,
or so-called adjoint model is a major effort. (Semi-)automatic compilers
exist than can help turning the computer code of a forward model into
its adjoint counterpart (e.g., described by Marotzke et al., [1999]).

Applications of the adjoint method to parameter estimation for marine
ecosystem models have shown some success [Spitz et al., 1998, 2001;
Friedrichs, 2002; Gunson et al., 1999]. However, Schartau et al. [2001]
reported that the likely existence of local minima in the cost function
may require restarting the gradient search from a large variety of initial
estimates of the parameter vector. This is a problem any gradient-
descent minimisation method will have. So far, however, it has not
been conclusively demonstrated that local minima of the cost function
do indeed exist. They are very difficult to identify in N -dimensional
parameter space. Visualisations of two-dimensional sections through
the N -dimensional cost function topography often show local minima
[Athias et al., 2000; Vallino, 2000; Schartau et al., 2001], but it is by no
means clear whether these are also minima in the other N −2 directions.

Stochastic minimisation methods. In order to avoid the expen-
sive and often cumbersome computation of the cost function’s gradient
and also to cope with possibly existing local minima without having to
fully scan the complete parameter space in a “brute force” mode, search
algorithms have been developed that contain stochastic elements. These
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can explore large regions of the parameter space and reduce the chance
of getting trapped in a local minimum early on. An example is the
Markov Chain Monte Carlo method [Harmon and Challenor, 1997], that
also addresses estimating the posterior error distribution of the optimal
parameter values. Construction of other stochastic minimisation meth-
ods was guided by attempts to understand the emergence of apparently
optimal structures in nature. One of these is the concept of simulated
annealing that was used by Matear [1995] to optimise parameters of a
suite of ecosystem models to observations at Station P in the subpolar
North Pacific. The simulated annealing technique is analogous to the
thermodynamics that describe cooling and cristallisation of liquids. It
consists of an iterative random selection of state vectors within a slowly
narrowing probability distribution around the “best” parameter vector
of the previous iteration. The width of this probability distribution de-
creases with increasing iteration number as does the probability of new
parameter vectors being accepted with a higher cost function value than
the “best” one of the previous iteration. A finite probability of uphill
steps in the cost-function landscape is required to escape local minima.
The probability is formulated in terms of the Boltzman factor that de-
scribes energy fluctuations in statistical mechanics, where the probability
of transitions to more energetic states increases with temperature. If the
temperature is decreased slowly enough to avoid getting trapped in local
minima, this can eventually lead to a liquid cristallising into a perfect
lattice that represents the state with lowest possible potential energy.
Replacing potential energy by the cost function value, this behaviour is
mimicked by the minimisation algorithm with a “temperature” parame-
ter in the Boltzman factor decreasing with increasing iteration number.
For typical ecosystem-model applications, several tenthousand evalua-
tions of the cost function are needed to obtain a robust result. Still,
convergence to the global minimum cannot generally be proven.

Hurtt and Armstrong [1996] employed simulated annealing to min-
imise the model-data misfit for a new, implicitly size-structured ecosys-
tem model at Bermuda and later [Hurtt and Armstrong, 1999] extended
this approach to test simultaneous optimisation of a similar model at
the distinct sites of the Bermuda Atlantic Time series Study (BATS,
32◦N, 64◦W) and Ocean Weather Ship India (59◦N, 19◦W). While they
found that different ecological processes had to be considered at the two
locations to achieve a reasonable fit, Schartau and Oschlies [2003a,b] re-
ported that simultaneous optimisation of a NPZD model at three sites
(BATS, OWS India, and the site of the North Atlantic Bloom Experi-
ment at 47◦N, 20◦W) worked almost as well (or as badly!) as separate
optimisations at the individual locations. Their optimisation method
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of choice was a (micro-)genetic algorithm. Although this method also
requires several tenthousand evaluations of the cost function, a genetic
algorithm was found to be slightly more efficient than simulated an-
nealing in an idealised model study by Athias et al. [2000]. The genetic
algorithm basically looks after a population of parameter vectors pi that
are allowed to reproduce according to a fitness measured by their cost-
function value J(pi) . Gene crossover in the reproduction step can be
accounted for by exchanging various components of the parameter vec-
tor, and mutation can be included as a random perturbation of the
individual parameter values in the reproduction step (Figure 3). Both

2. crossover of genes

3. mutation

1. select parents based on their fitness

generation N of parameter vectors

generation N+1 of parameter vectors

Figure 3. Schematic representation of the genetic algorithm. Out of an initial gener-
ation of parameter vectors, the fittest ones are selected according to their cost function
value. In a second step, the selected parameter vectors can recombine (often the pa-
rameter vector is written as a binary string for this step), and in a third step there
is low probability random mutation for individual elements of the parameter vector.
For a micro-genetic algorithm, the fittest parameter vector of the parent generation
is inherited to the next generation without any alterations. This elitism principle
ensures that the lowest cost function value of each generation is at least as low as
that one of the previous generation.

processes imply that even remote areas of the parameter space can be
explored, whereas the gene-based reproduction concept ensures that in-
formation about good (i.e., “fit”) parameter vectors (or their sub-sets)
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is remembered by the algorithm. In many applications, the parameter
“gene” is defined as the sequence of the components of the parameter
vector written in binary notation, though a binary notation is not a nec-
essary element of the method. As is the case with simulated annealing,
convergence cannot generally be proven and will in practice depend on
tunable parameters of the algorithm (mutation rate, population size).

6. Achievements and perspectives

The above assimilation and minimisation methods have so far been
applied to ecosystem models that essentially all belong to the NPZD-
type category. At present, there is no clear consensus on which method
might be most efficient for this type of models. Sequential assimilation
methods seem to have largest prospects in operational or near real-time
applications that require good state estimates and that do not care that
much about occasional jumps in the model trajectory. Variational meth-
ods, on the other hand, seem to be better suited for research issues that
can take advantage of the dynamically self-consistent model trajectory.
In principle, it is possible to obain a smooth model trajectory from
sequential methods as well by applying a so-called smoother, which es-
sentially consists of an integration backward in time. For linear systems
it can be shown that sequential and variational algorithms can indeed
produce identical results [Bennett, 1989].

A main advantage of stochastic optimisation techniques is the easy ac-
cess to information about the posterior error of the parameter estimate.
The large number of cost-function evaluations gives a reasonable picture
of the cost function’s sensitivity to changes in the individual parameters
[e.g., Schartau and Oschlies, 2003a]. Particularly for strongly non-linear
systems this may be more informative than local evaluations of the cost
function’s curvature via the Hessian matrix [Fennel et al., 2001].

What is, to my knowledge, common to all of the assimilation studies
performed so far is that at most 10 to 15 ecological model parameters
could be constrained by the available observations. Although all these
studies have so far employed relatively simple NPZD-type models, there
were always a few parameters (or linear combinations of parameters)
that could not be constrained. This indicates that even NPZD-type
models have too many degrees of freedom and that models with fewer
parameters should be able to reproduce the observations similarly well.
Looking closer at how “well” the models can actually reproduce the
data, one finds that even the optimised models fit the data very poorly.
Usually, model-data misfits still amount to several standard deviations
of the estimated prior errors. Such poor fits indicate that models need
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more degrees of freedom to get closer to the observations. There are
thus two contradictory statements about the required model complex-
ity. This may to some extent result from errors in the physics used to
drive the ecosystem models, but the problem is persistent even when
physical observations are used to provide a physical environment as re-
alistic as possible in a one-dimensional framework. Another possible
explanation for the apparently contradictory statements about ecosys-
tem model complexity is that the NPZD-type models employed so far
may not have the right structures and hence are inherently inconsistent
with the yet unknown ecological rules of real marine ecosystems. It is
not clear whether more complex function-group type models would, in
this data assimilative respect, perform any better. Although their order-
of-magnitude larger number in adjustable parameters should allow for
a much better fit to the data, such a fit would be of little value (and
correspond to overfitting few data points by a high-order polynomial)
for applying such models to other climate conditions unless all of the
model parameters can be constrained by observations.

A possible strategy to clarify these issues is to undertake a systematic
search for a model of minimum complexity that fits the available obser-
vations. Such an effort should start from a very simple model, perhaps
similar to a nutrient-restoring one. Complexity should then be added
only after careful analysis of the residual model-data misfits and some
educated guess about the direction of complexity enhancement.

This approach for future model improvements should consider not
only applications to the open ocean, where biogeochemical measure-
ments are sparse and difficult to take, but also to controllable and ma-
nipulable field experiments, e.g., in artificial enclosures, and to phys-
iological studies on cultures in the lab. A promising example is the
application of ecosystem models and parameter optimisation methods
to mesocosm experiments [Vallino, 2000]. Mesocosms are enclosed and
generally gently mixed water volumes (typically several cubic meters in
size), either in sea-water filled tanks on land, or in large plastic bags
in the sea. They can be regarded as essentially homogeneous zero-
dimensional systems that, in contrast to typical liter-sized incubation
bottles, are large enough to keep boundary and enclosure effects small
for a few generation times, i.e., days. By allowing for manipulation of
environmental conditions and virtually unlimited access to observations,
combining such experiments with modelling studies via data assimilative
approaches may greatly help to better constrain our ecosystem models.
On longer time scales, the same models will also have to be validated
against open-ocean data collected within time-series programs and pro-
cess studies. Physical models run in data assimilation mode may pro-
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vide an optimal description of the physical environment for the marine
ecosystem models to be run at these sites. Covering much longer time
scales and more extreme climate states, even paleo information can help
to constrain marine ecosystem models. By combining these very differ-
ent time and space scales and the information provided by the different
observational data sets with numerical models in an data assimilative
approach, we will hopefully gain a better mechanistic understanding of
marine ecosystem dynamics and their effects on biogeochemical cycles
as well as their sensitivity to a changing climate.

Acknowledgments

I thank Eric Chassignet and Jacques Verron for allowing me to partic-
ipate in this very enjoyable Summer School. This work is a contribution
to the MERSEA Project. Partial support of the European Commission
under contract SIP3-CT-2003-502885 is gratefully acknowledged.

References

Anderson, L. A., and J. L. Sarmiento, 1995: Global ocean phosphate and oxygen
simulations. Global Biogeochem. Cycles, 9, 621–636.

Athias, V., P. Mazzega, and C. Jeandel, 2000: Selecting a global optimization method
to estimate the oceanic particle cycling rate constants. J. Mar. Res., 58, 675–707.

Aumont, O., E. Maier-Reimer, S. Blain, and P. Monfray, An ecosystem model of the
global ocean including Fe, Si, P co-limitations. Global Biogeochem. Cycles, 17(2),
doi:10.1029/2001GB001745, 2003.

Bacastow, R., and E. Maier–Reimer, 1990: Ocean–circulation model of the carbon
cycle. Climate Dynamics, 4, 95–125.

Bennett, A. F., 1989: The Kalman smoother for a linear quasi-geostrophic model of
ocean circulation. Dyn. Atmos. Oceans, 13, 219–267.

Bertino, L., G. Evensen, and H. Wackernagel, 2003: Sequential data assimilation tech-
niques in oceanography. Int. Stat. Rev., 71, 223–242.

Carmillet, V., J.-M. Brankart, P. Brasseur, H. Drange, G. Evensen, and J. Verron,
2001: A singular evolutive extended Kalman filter to assimilate ocean color data
in a coupled physical-biochemical model of the North Atlantic ocean. Ocean Mod-

elling, 3, 167–192.
Chai, F., R. T. Barber, and S. T. Lindley, 1996: Origin and maintenance of high

nutrient condition in the equatorial Pacific. Deep-Sea Res. II, 43, 1031–1064.
Dring, M. J., and D. H. Jewson, 1982: What does 14C uptake by phytoplankton really

measure? A theoretical modelling approach. Proc. R. Soc. Lond., B 214, 351–368.
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