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Why care about marine biogeochemical cycles?

Vostok, Antarctica Ice Core Atmospheric CO2 Record

(Barnola et al., 1999)

(It‘s not only fish!)
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The Biological Pump

Sea surface

Z(mix)

CO2, O2

organic matterinorganic nutrients
nutrients, ΣCO2

z

``relatively constant´´ C:N:P:-O2



4

``Potential´´ of today´s biological pump

Present-day sea-surface nitrate concentrations
mmol/m3

Mean profile

(Conkright et al., 1994)

Controls are not well understood
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Why care about data assimilation?

Ideal world:

• Have perfect model that correctly reproduces perfect data.

• Model generates a fully consistent 4D picture of the real 
ocean/atmosphere.

Real world: Have to cope with

• Imperfect models (in particular systematic deficiencies!)

• Imperfect data (measurement errors, methodological uncertainties, 

sampling problems,...)

• Often poor data coverage (e.g., mainly surface data (satellites!), few 

winter data, more data of production than of remineralisation,...)
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Why care about data assimilation?

Real world is a particularly difficult subject for biogeochemical
modellers:

• Apart from mass conservation, theoretical fundations are weak.     

- no bgc analog to the Navier-Stokes equations

- many (most?) species + their function probably still unknown

- limited lab/culture studies (“zoo“ species)

• Large number of data that are difficult to interpret, few data that

are easy to interpret.                                                               

- ocean colour data

- “historical“ measurement protocols (e.g. 14C incubation)             

- mostly stock measurements, few rate measurements
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Why care about data assimilation?

State estimation

• Improves hindcast or forecast.

• In bgc modelling only of value for short-term forecasts (memory of 
initial conditions much shorter than annual cycle)

• Usually assumes zero model bias.

Parameter estimation

• Treats model dynamics as falsifiable hypothesis.

• May improve long-term forecast
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Why care about data assimilation?

Observationalist´s view:

• Interpolate between isolated data points and different data types. 

(Often: large number of data that are difficult to interpret, few data

that are easy to interpret.)

• Identify most valuable data (Observing System Simulation 

Experiments).
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Example: Phytoplankton spring bloom
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Example: Phytoplankton spring bloom
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4th order polynomial
6th order polynomial

Polynomial-fit trajectory has no dynamical/mechanistic significance
(e.g., negative values).
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Why care about data assimilation?

Modeller´s view:

• Don´t know the governing equations (ecological modeling!). 

(Have some understanding of (belief in?) some ecological principles.) 

• Data assimilation as hypothesis (i.e., model) testing.

• Correct for model deficiencies and improve model results.

• Allow for systematic evaluation of model errors and suggest model 
improvements.
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Example: Phytoplankton spring bloom
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model 1
model 2
model 3

How can we combine models and data in a useful way?
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Ecosystem Model Types: (i) Nutrient-Restoring

Sea surface

Z(euph/mix)

CO2, -O2

Export & remineralisation
= Redistribution of    
inorganic nutrients

inorganic nutrients

2 - 4 Parameters:
nutrient uptake rate
remineralisation profile

Examples:
Bacastow & Maier-Reimer (1990,91)
Najjar et al. (1992)
OCMIP 1 & 2
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Ecosystem Model Types: (ii) NPZD-type

NPZD = Nutrient-Phytoplankton-
Zooplankton-Detritus

10-30 Parameters:
uptake, loss rates
remineralisation profile

Examples:
Basin scale
(Sarmiento et al., 1993; Fasham et al. ,1993; Chai et 
al., 1996; McCreary et al., 1996)

Global Ocean                                   
(Six & Maier-Reimer, 1996)

eddy-permitting basin scale
(Oschlies and Garcon, 1998, 1999)

eddy-resolving basin scale
(Oschlies, 2002)

NO3 PHY DON

DET ZOO BAC

NH4

(Fasham et al., 1990)

NO3 PHY

DET ZOO
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Ecosystem Model Types: (iii) “functional-group“ type

O(100) Parameters:
uptake, loss rates
remineralisation profiles
multiple elements (N,P,C,Si,Fe)

Examples:
Moore et al. (2002)
Aumont et al. (2004)
“Dynamic Green Ocean Model“ consortium
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Dimension of parameter space

Ecosystem model Number of adjustable 
parameters

Multiple functional groups, 
multiple elemental cycles 100-300

Restoring 2-4

NPZD-type 10-30

OGCMs > 100 000

Most parameters will have natural bounds 
(e.g., positiveness, physiological constraints)!
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What is data assimilation?

Basic idea: Combine the most useful bits of observations and models.

• Extract information particularly from “high-quality“ data.

• Use natural laws coded into the model to interpolate (extrapolate) 
between different observations and data types.  
(mass/energy/momentum conservation, ecological rules, ...)

Basic requirements:

• Need to have some idea about data qualitity/errors.

• Need to have some idea about model quality/errors.
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Sequential Methods

• Make use only of past observations along model trajectory.

• “Accumulate“ information along the model trajectory.

• Aim to improve present state vector.

• Kalman filter generates error covariance matrix of state vector (this is
the computationally expensive part!).

• Little emphasis on dynamically consistent model trajectory.

• Employed by many operational forecast systems.
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Data assimilation concepts
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Optimal Interpolation / Kalman filter

Computes error covariance of model state vector: Statistically optimal 
interpolation of full state vector whenever observations are available.
Model trajectory is only piecewise consistent.
Information accumulates with time (only past observations are exploited)

Sequential Method!
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Variational Methods

Search for “optimal“ model trajectory that fits the data and exactly
obeys model dynamics.

Clue:

Dynamical model solution depends on a set of control parameters
(initial conditions, biological parameters, physical parameters, 
forcing,...).

Control parameter vector p.

Define cost function of model-data misfits: J = J(p)

e.g.
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Particularly challenging for biogeochemical modelling!

How to define misfit?
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What about phase errors in underlying physical model?

How to define misfit?
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Variational Methods

Account for error covariance of model-data misfits. Introduce
weighting matrix W:

Optimal model solution for J(p) = J(popt) = min!

Have to determine set of optimal control parameters popt.

Problem of constrained optimisation
(constraints are model dynamics in mi(p) ).
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Cost function

• Quantifies model-data misfit. 

• J(p) is a function of control parameters p !

Difficult to visualise for more than 2 parameters!

Predator-Prey model, 
6 parameters

(Lawson et al., 1995)

Prey self 
crowding
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Cost function

• May have complicated form (particularly for strongly non-linear 
models!).

NPZD-type, 
36 parameters

(Vallino, 2000)

half saturation constant for 
DOCL uptake by Bacteria

DOCL (t=0)



26

On local minima

• What looks like a local minimum in one dimension...

• ...is not necessarily a local minimum in a higher dimensional space!
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Theme: Vary control parameters to minimise model-data misfit!

Brief review of the different methods
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How to find the cost function minimum?

• Elegant & thoughtful: Gradient descent methods.                           
Utilise  J(p) and gradpJ(p) .                                                  
Example: Adjoint method.

Three main types of minimisation algorithms:

• Brute force: Scanning of parameter space.                                              
Utilise only J(p) .                                                             

Method of choice will depend on number of parameters and cost function shape!

very few parameters
(10 trials, n parameters => 10n)

many parameters, no local minima

• Brute force + memory: Stochastic methods.                             
Utilise  J(p) and information from previous iterations.                                
Examples: Simulated annealing, genetic algorithms,...

few parameters,
local minima
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Method Selection

Ecosystem model Number of adjustable 
parameters

Multiple functional groups, 
multiple elemental cycles 100-300

Restoring 2-4

NPZD-type 10-30

OGCMs > 100 000 adjoint method

brute force & others

stochastic methods, 
adjoint method

stochastic(?), 
adjoint method(?)
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Stochastic Methods: Simulated Annealing

From solid state physics: slow cooling of metals, alloys,...  
• to avoid errors in crystal lattice (local minima of potential energy) 
• to obtain perfect cristal (minimum energy state).
Boltzman factor: exp(-∆E/kT)  ~  Probability for up-hill ∆E being accepted)
Metropolis function (Metropolis et al., 1953) :

Algorithm: random walk with decreasing probability for up-hill steps.
1) pnew = generate(pold)
2) Accept or reject pnew according to Metropolis function.
3) Decrease “temperature“ T and goto 1) until convergence.
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Simulated Annealing
Example: 

Matear (1995): 0D models run at OWS Papa

1. NPZ model (Evans & Parslow, 1985) , 14 parameters

2. NPZ1Z2 model, 18 parameters

3. 7-compartment model (Fasham et al., 1990) , 25 parameters

Conclusions: 

• Available data do not justify complex models.                             
All models fit data about equally well!

• Can constrain < 10 parameters (using N, P, PP, (Z) observations).

• Simulated annealing superior to conjugate gradient method for 
models 2 and 3 (presumably because of local minima).
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Stochastic Methods: Genetic Algorithms (GA)

Concept: Survival of the fittest.

Fitness of parameter set p is measured by the cost function J(p) .

• Chromosome: parameter vector p (typically in binary notation)

• Generation: suite of parameter vectors p

• Reproduction: Recombination and mutation of one p-generation.

• Selection: according to cost function J(p).

Sometimes (µGA):

• Elitism: fittest parameter vector always survives one generation.
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Stochastic Methods: Genetic Algorithms (GA)
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Genetic Algorithms (GA)

Example 1: 

• Athias et al. (2000): Identical twin experiments (model of 
oceanic particle cycling: dissolved, suspended, sinking),   
method intercomparison. 
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Genetic Algorithms (GA)

2D section of cost function (Athias et al., 2000)

aggregation rate disaggregation rate

global max.

local max.
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Simulated Annealing       versus       Genetic Algorithms (GA)
(Athias et al., 2000)

1000 parameter vectors 
black dots: best individuals of each of 200 generations.

21627 parameter vectors ,
black dots: best points at each of 156 annealing steps.
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Genetic Algorithms (GA)

Example 1: 

• Athias et al. (2000): Identical twin experiments, method 
intercomparison. 

Conclusion: 

• GA faster and more robust (in avoiding local minima) than 
simulated annealing.
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Genetic Algorithms (GA)
Example 2: 

• Schartau & Oschlies (2003): 1D NPZD model, simultaneous 
optimisation at BATS, NABE, OWS India.
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Genetic Algorithms (GA)

(Schartau & Oschlies, 2003)
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Genetic Algorithms (GA)

Example 2, Conclusions: 

• Can essentially constrain all of the 13 parameters. BUT...

• ...some optimal parameters at the prior limits!

• ...model-data misfit on average about 3 standard deviations!

• GA is robust, needs 26 000 iterations
(13 individuals per generation, 2000 generations).

• Weighting coefficients that enter the cost function are the tricky
and to some extent always subjective part (weighting of different 
observations at different stations, steady state constraints,...).
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Variational Methods: Adjoint Method

• Cost function:

• Minimize J(p)  with model dynamics Ej(x,p) = 0 as strong constraint!

• Introduce Lagrange multipliers λj => Lagrange function L :

Unconstrained minimisation of L(p,λ,x)  = constrained minimisation of J(p).
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Unconstrained minimisation of Lagrange function

• Same number of equations as unknowns!
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Adjoint Method

• Main advantage:

• Computes complete vector gradpJ(p) in a single run of           
forward + adjoint model.

• Very efficient for high-dimensional parameter space!

• Main disadvantage:

• Requires coding of the adjoint model ( automatic differentiation).

• Some problems with strong non-linearities (e.g., “if“ statements).

• Useful only together with efficient gradient descend algorithm!

• May have problems with local minima (if these exist...)
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Adjoint Method: Yields Gradient Information!

How to exploit this information?  (i) Steepest-descent algorithm

a priori parameter set optimal parameter set

iteration #1000
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Adjoint Method: Yields Gradient Information!

How to exploit this information?  (ii) Conjugate-gradient algorithm

a priori parameter set optimal parameter set

27 iterations

Exact knowledge of the gradient may not be that important!
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Adjoint Method: Example
Coupled biogeochemical-circulation model

(Schlitzer, 2000)

• 3D model, 26 vertical levels, steady state,
• mass & tracer conservation, close to geostrophy
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Coupled biogeochemical-circulation model

(Schlitzer, 2000)

• 102 306 parameters (80% physical, 20% biogeochemical), 
• GEOSECS, WOCE, JGOFS data (> 14 000 profiles), 
• steady state assumption
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Results

(Schlitzer, 2000)

• Good agreement of modeled tracer fields with observations
(although some processes like denitrification, N2-fixation are
not yet included!).  

• Some violation of physical laws.

• Steady state (e.g., no seasonal cycle)!
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Complexity of presently used ecosystem models

Ecosystem model stoichiometry Number of adjustable
parameters

Restoring usually Redfield O(1)

NPZD-type usually Redfield

prognostic

O(10)

Multiple functional groups, 
multiple elemental cycles O(100)

``Intuitively´´: More complex models are more realistic. 

What can data assimilation tell us about ecological models?
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What can data assimilation tell us about ecological models?
Parameter estimation studies (so far NPZD-type only)

(Fasham & Evans, 1995; Matear, 1995; Prunet et al., 1996; Hurtt & Armstrong, 1996/1999;             
Spitz et al., 1998/2001; Fennel et al., 2001; Schartau et al., 2001; Friedrichs, 2002;....)

Only 10-15 parameters can be constrained.

• Lots of unconstrained degrees of freedom. Makes
extrapolation to different climate conditions
problematic.

• Are models too complex?

Model-data fits remain relatively poor.

• Errors in physical forcing.

• Are models not complex enough?

Do we yet have the right model structures?
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Ecological Modelling: How can we proceed?

Model development guided by data assimilation.
Identify and remove redundancies.                                               
Add complexity after analysis of residuals.

• Incubation experiments (sea & lab).

• Mesocosm experiments.

• JGOFS time-series sites, satellite data.

• Paleo data.

Do not disregard alternative model structures
(e.g., based on size, energy, membrane surfaces, ....)

Be ambituous! Search for “Kepler‘s Laws“ instead of 
“Ptolomaic Epicycles“.

Time & space
scale
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The End
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Simulated Annealing

Input:

• cost function, 

• a priori region in parameter space, 

• cooling algorithm.

Advantages: 

• robust (arbitrary J(p), model, time stepping, first guess p).

Disadvantages: 

• large number of iterations.
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Sequential Methods

Possible SOLAS-related applications:

• Fore-/hindcasting of surface pCO2 , phytoplankton etc.

• Make use only of past observations along model trajectory.

• “Accumulate“ information along the model trajectory.

• Aim to improve present state vector.

• Kalman filter generates error covariance matrix of state vector (this is 
computationally expensive part!).

• Little emphasis on dynamically consistent model trajectory.

• Dynamical interpretation of results often difficult.

• Employed by many operational forecast systems.
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Results

(Schlitzer, 2003)
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Data assimilation concepts
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Direct insertion (Ishizaka, 1990)

Only observed variable is updated, no consistent changes of other state 
variables!
No consistent model trajectory, violation of conservation equations (mass!)

Sequential Method!
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Data assimilation concepts
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Nudging / Newtonian Relaxation

Adds unrealistic forcing term to prognostic equations.
Only observed variable is nudged, no consistent changes of other state 
variables!
Perturbation of model dynamics, violation of conservation equations.

Sequential Method!
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On parameters and variables
(Geoff Evans, US JGOFS newsletter, 200x)

Variable:

• Product of all circumstances that created it (e.g., phytoplankton 

biomass).

• Will vary over time and space.

Parameter:

• Describes the rules of a process (e.g., maximum growth rate).

• Constant in time and space (although different games will be played 

according to the same rules). 
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Two distinct objectives

Find “best“ state estimate.

• Minimise expected rms error of 3D state (e.g., weather forecast).

• Tends to suppress variability on scales not observed                 
(smooth climatology has smaller rms error than “noisy“ model state).

Find “best“ model trajectory / dynamical solution.

• Allows for analysis of the underlying dynamics.

• Implies strong confidence in model dynamics.

• Adjust initial conditions, boundary conditions, internal parameters. 
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Inverse approach

(Schlitzer, 2000)
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Sequential Assimilation

Blending of new observation, xobs , with model forecast, xf .

BLUE (best linear unbiased estimate) xa :

Kalman filter computes temporal evolution of both state vector x and 
error covariance matrix σ :
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Adjoint Method

Example: 
linear spring bloom model

(simple but wrong!)

Model as differential equation:

discretized: mj+1 – 2mj + mj-1 = 0 , with time step index j .
⇒ jmax – 1 equations, jmax + 1 unknowns.
⇒ 2 independent variables (i.e., parameters!), e.g., m0 , m1 .



63

Adjoint Method

Example: 
linear spring bloom model
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Cost function:

constrained
minimisation,
2 equations, 
jmax+1 unknowns 

either make extensive use of chain rule or introduce Lagrangian multipliers!
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Adjoint Method: Example

Lagrange function:

1.) solve for mjmax+1

2.) solve for λjmax-1

3.) solve for λjmax-2

4.) solve for λ1

“forward“ model

“adjoint“ model

5.) solve for Lm1

6.) solve for Lm1

gradpJ
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How to define misfit?

• Different dimensions (rates, concentrations,…)                                
- normalise by scale factor Si: (di-mi)/Si

• Size of Si?  Standard deviation of observation error (if known…)?   
- often: Si=di , Si=mi , Si=<d> , Si=dmax ,… Implications?

• Asymmetry between positive and negative misfits?

• Different numbers of observations for different data types (e.g., 
surface chlorophyll, zooplankton grazing rate)                                 
- serial correlations (weight by 1/N)?                                                
- cross correlations ? 


