Models of the ocean: which ocean?

Anne Marie Treguier, CNRS,

Laboratoire de Physique des Océans, Brest, France

- Part 1: Some general statements
 - ocean models
 - convergence of solution
 - diffusion equation
 - internal/external processes

Part 2: Quick survey of parameterizations

Ocean currents (1)

Conveyor belt

Ocean currents in models

ORCA2 global ocean model (Madec et al)

Ocean currents in models(2)

-10 -20 -30 Latitude -40 -50 -60 -70 -50 20 -60 -40 -30 -20 -10 0 10 Longitude

Sea surface height, POP 1/10

POP 1/10° global ocean model (Maltrud et al, 2004)

ORCA2

Deep western boundary current (1)

DWBC: Lagrangian view

Choice of ocean

- Choice of resolved scales
- Choice of parameterizations for the unresolved scales

PARAMETERIZATIONS MATTER

- Convergence of ocean model solutions
- Diffusion equation

Convergence of solutions

 $\partial T / \partial t + V.\nabla T + S(T) = 0$

Resolved scales:

 $\partial T_{R} / \partial t + V_{R} \cdot \nabla T_{R} + S_{R} (T_{R}) =$

- ((V.
$$\nabla$$
T) _R - V_R. ∇ T_R) –(S(T) _R - S_R (T_R))

Numerical convergence / numerical error = lhs RHS = parameterisations = choice of ocean

Numerical convergence

 $\partial T_{R} / \partial t + V_{R} \cdot \nabla T_{R} + S_{R} (T_{R}) = \dots$

Solve the equations for the resolved variables using a finite difference scheme, with time step δt and grid spacing δx .

The solution converges as δt , δx tend to zero.

Do our present ocean model converge numerically?

Numerical convergence

Z-coordinate model with staircase topography. Representation of a topographic wave (Gerdes, 1993)

Convergence of solutions

 $\partial T / \partial t + V.\nabla T + S(T) = 0$

Resolved scales:

 $\partial T_{R} / \partial t + V_{R} \cdot \nabla T_{R} + S_{R} (T_{R}) =$ - ((V.\nabla T) R - V_{R} \cdot \nabla T_{R}) - (S(T) R - S_{R} (T_{R}))

Numerical convergence / numerical error = lhs Physical convergence / parameterization error = rhs

Subgrid scale effects: physical processes

Isotropic turbulence: cm scale

Internal wave breaking (gravity+ stratification)

Double diffusion

Convection

Mesocale eddies/topography

-10 -20 -30 Latitude -40 -50 -60 -70 -50 20 -60 -40 -30 -20 -10 0 10 Longitude

Sea surface height, POP 1/10

POP 1/10° global ocean model (Maltrud et al, 2004)

ORCA2

Convergence of solutions

 $\partial T / \partial t + V.\nabla T + S(T) = 0$

Resolved scales:

 $\partial T_{R} / \partial t + V_{R} \cdot \nabla T_{R} + S_{R} (T_{R}) =$ - ((V.\nabla T) R - V_{R} \cdot \nabla T_{R}) - (S(T) R - S_{R} (T_{R}))

Numerical convergence / numerical error = lhs Physical convergence / parameterization error = rhs

Convergence of solutions

Physical convergence: in a range of scales where physical processes remain the same

Example from the atmosphere: convergence of the dynamical core of an atmospheric model, simple setting (aquaplanet, no humidity, simple forcing....)

Atmospheric dynamical model converges at T63 ? (Boer and Denis, 1997)

H.E. Hurlburt, P.J. Hogan / Dynamics of Atmospheres and Oceans 32 (2000) 283-329

8. Mean SSH (color) in the Gulf Stream region from (a) $1/16^{\circ}$ simulation 16H, (b) $1/32^{\circ}$ simulation and (c) $1/64^{\circ}$ simulation 64H. Superior calls a simulation for the simu

Layered ocean model (1)

Hurlburt and Hogan, 2000 From 7 km to 3.5 to 1.7km : still changes

Model ssh (color) and observed dynamic height

Layered ocean model (2)

Fig. 12. Whole domain abyssal EKE from Atlantic subtropical gyre simulations with horizontal grid resolution of (a) $1/8^{\circ}$ (simulation 8H), (b) $1/16^{\circ}$ (simulation 16H), (c) $1/32^{\circ}$ (simulation 32H), and (d) $1/64^{\circ}$ (simulation 64H). The contour interval for EKE is 0.125 Log₁₀ (m⁻² s⁻²).

PV flux convergence

Siegel et al, 2001,

Basin QG model

From 3 km to 1.5 km the PV flux still increases but more slowly.

Convergence of solutions

Atmospheric dynamical model converges at T63

 $= 1.87^{\circ} = 150 \text{ km} = 18\%$ of Rossby radius (800 km).

The equivalent resolution for an ocean model is

7 km in the subtropics (Rossby radius 40 km)

2 km in subpolar gyre (Rossby radius 12 km)

Simplest parameterization: local flux-gradient relationship

Reynolds decomposition: $(V.\nabla T)_{R} - V_{R}.\nabla T_{R} = (V' \nabla T')_{R} = \nabla (V'T')_{R}$

With $T' = T - T_R$

Fickian diffusion:

(w'T') $_{R} = - \kappa \partial T_{R} / \partial z$

Vertical mixing: the diffusion equation

Exemple: temperature in the surface mixed layer.

Local and nonlocal parameterizations

For local parameterizations,

(w'T') _R = -
$$\kappa \partial T_R / \partial z$$

 $\partial T / \partial t = \partial (\kappa \partial T / \partial z) / \partial z$

The trick is to specify $\kappa(x,y,z,t)$

Vertical mixing: constant κ

Vertical mixing: spatially variable κ

$$\begin{split} \partial T/\partial t &= \partial \left(\kappa(z) \; \partial T/ \; \partial z \;\right) / \; \partial z \\ &= \kappa_z \partial T/ \; \partial z \; + \kappa \; \partial^2 T/ \; \partial z^2 \end{split}$$

 $\kappa = 0.01*(1+\cos(\pi z/H) (m^2/s);$

More spatially variable κ

$$\kappa = 0.005*(tanh(\alpha(z-H/3)+1) (m^2/s);$$

 $\alpha = 1/(0.05H)$

More spatially variable κ

$$\kappa = 0.005*(tanh(\alpha(z-H/3)+1) (m^2/s);$$

 $\alpha = 1/(0.05H)$

Growth of gradients with a spatially variable diffusion coefficient

Equation for the evolution of the gradient (P. Klein)

$$\frac{\partial T_z}{\partial t} = \kappa \frac{\partial^2 T_z}{\partial z^2} + 2 \kappa_z \frac{\partial T_z}{\partial z} + \frac{\partial^2 \kappa}{\partial z^2} T_z$$

diffusion advection ?

Vertical mixing: nonlinear κ

$\gamma = \max(\partial T_0 / \partial z) = 0.5 * \pi / H$ $\kappa = 0.01 * \exp(-(\partial T / \partial z / \gamma)^2) (m^2/s);$

Vertical mixing: nonlinear κ

In the ocean, vertical mixing decreases when the vertical stratification increases (consequenses pointed out by Phillips 1972).

The dependency is strongly nonlinear.

```
(MY model, TKE model ...)
```

Warning:

-The diffusion equation is not what it seems to be;

-Ocean model tend to develop discontinuities both in the vertical and the horizontal: numerics come into play.

Subgrid scale processes : internal/ external

Internal : processes resulting from the nonlinearity of the equations (turbulence, instabilities)

Processes not represented due to approximations in the equations (convection)

External: Topographic effects, coastline Air-sea fluxes...

Subgrid scale effects: physical processes

Isotropic turbulence: cm scale

Internal wave breaking (gravity+ stratification)

Double diffusion

Convection

Subgrid scale processes : internal/ external

Internal : processes resulting from the nonlinearity of the equations (turbulence, instabilities)

Processes not represented due to approximations in the equations (convection)

External: Topographic effects, coastline Air-sea fluxes...

Subgrid scale effects: topography

Should Gibraltar Strait be a subgrid scale effect in ORCA2?

Simulations: G. Roullet's PhD thesis, 2000.

Subgrid scale topography (2)

Rapid decrease of the overturning (50 years)

Slow increase up to 200 years

Subgrid scale topography (3)

Roullet, 2000.

Subgrid scale topography

Is « resolved » resolved enough?

The overflow problem...

Subgridscale topography: CGFZ

Charlie-Gibbs Fracture Zone, etopo2

4x cruise, Alvarez et al.

Subgridscale topography: CGFZ

60 59 58 57 56 55 54 53 52 51 -28 -38 -36 -34 -32 -30 -26 -4500 -4000 -3500 -3000 -2500 -2000

Charlie-Gibbs Fracture Zone, ATL6 model

Choice to dig a channel,

No deep water component,

Mean flow is the wrong way.

Subgrid scale effects: forcings

Heat fluxes over Agulhas rings

Part 1: generalities

- •Choosing an ocean to model
- •Convergence of solutions
- •Diffusion does not necessarily diffuse
- •Parameterizations of « external » effects: subgrid scale forcing and topography.