

Meteorologisk institutt met.no

Forecasting the Drift of Things in the Ocean

Bruce Hackett, Øyvind Breivik, Cecilie Wettre, met.no

Presented at GODAE Summer School, Agelonde, 2004-09-21

Outline

- The task
- Drift models for
 - Oil
 - Ships
 - Search and Rescue (smaller drifting objects)
- Operational services
 - Geophysical forcing data
 - User interfacing
 - Examples
 - Model evaluation (validation)
- Concluding remarks

The task

Accidents happen at sea - people fall overboard, ships lose power, oil is spilled, etc.

These are examples of *things drifting in the sea* with potentially serious consequences - loss of life, maritime safety, environmental damage.

Most nations have services for emergency situations:

- Search-and-rescue (S&R) services are ubiquitous (Coast Guards)
- Oil spill combatment services in some countries
- Drifting ships and other large objects tied to S&R services and Vessel Traffic Services (VTS)

Operational services

- Emergency response services depend on quick and reliable access to drift prognoses
 - response time <30 min</p>
 - 24/7 availability (people & computers)
- Critical component for drift forecasting is access to real-time prognostic forcing data.
 - hence the close link to operational oceanatmosphere forecasting centers

The met.no operational forecast model suite

- •Atmospheric models run 4x daily to +48h and +60 h
- •Wave models run 4x daily to +60 h
- •Ocean models run daily to +60 h
- •7 day archive of selected variables

Ocean

- tides
- atmospheric forcing
- ice
- river runoff

Surface drifting objects

- Forces acting on a drifting object:
 - Surface current
 - Wind
 - Waves (excitation and damping)
- Wind and wave effects are calculated relative to the current:

$$V_{drift} = V_{curr} + V_{rel}$$

 Wave forces only significant for objects ~50 m or more

Oil drift

• Oil spill fate models tend to be complicated due to complex chemical interactions with the environment - *weathering*.

Chocolate mousse à la Prestige an emulsion

Oil spill processes - weathering

- Evaporation removes volatile components
 - For some oil types (crudes) mass loss can be considerable, for other types insignificant
 - Density increases
- *Emulsification* forms water-in-oil mixture
- Natural dispersion forms oil-in-water mixture
 - Removes oil from the slick (under threshold concentration)

Emulsification vs natural dispersion Oil spill fate

Daling et al. 2003

Oil spill processes - spreading and advection

- Advection is governed by geophysical forces (currents, wind).
- Spreading is important in the initial phase of the spill, but after some hours *weathering* tends to inhibit the fluid behavior and advective processes take over.

 Effects of weathering on a spreading / advecting spill

Algorithms for oil spill processes

- Oil spill processes are generally modeled by a blend of chemical principles and experimental data.
- Laboratory and field experiments have focused on the individual processes, but there is growing awareness of the complex interplay between all processes.
- Complexity is also due to the wide range of properties in different oil types.

Oil spill modelling

- Common types of model:
 - Simple trajectory models (center of mass)
 - Particle cloud models *currently most* popular (our approach)
 - Polygon slick models under development
- Example:

Particle type model at met.no, developed with SINTEF Applied Chemistry

Oil spill modelling - OD3D

- Particles seeded continuously according to specified flow rate and duration.
- Fixed mass per particle mass loss effected by removing particles
- Transport and weathering processes applied on particle-by-particle basis.
- Special seeding module for deep source (bottom blowout)

Prestige spill simulation

Ship drift

Wave forces significant for objects ~50 m or more, hence wind and wave forces must balance,

$$F_{wind} + F_{wave} + f_{form} + f_{wave} = 0$$

Ship drift

 F_{wind} and f_{form} are commonly formulated as

 $F_{wind} = \frac{1}{2} \rho_a (A_h + A_s) C_d |W_{10}| W_{10}$ $F_{form} = \frac{1}{2} \rho_w A_w C_d |V_{rel}| V_{rel}$

- Box shapes are a fair approximation to a tanker hull, "box-ship" simulations tuned to full scale experimental data yield a lookup table.
- 2D wave spectra from a wave model are used to estimate the wave excitation and damping

Leeway

- Objects drift at an angle to the wind (divergence angle), and at a fraction of the wind speed
- The divergence angle depends on the object shape, draft, freeboard, etc
- Difficult to model, relatively simple to parameterize, hence empirical methods are used

Empirical leeway data

 US Coast Guard has compiled data for 63 classes of S&R objects through extensive field campaigns, generously made available to our operational service

Leeway bimodality

- Experiments produce two stable drift directions, left and right of downwind
- In practice, we cannot know which side will be "selected" by the object.
- Leeway model must account for both possibilities

Leeway model - assumptions

- Monte Carlo ensemble approach:
 - S&R object represented by O(500) *particles*, each with the characteristics of the object
 - Uncertainties in the model, initial conditions and forcing are accounted for by seeding strategy and perturbations to the forcing
 - The changing cloud of particles represents a probability density for the object location
- The leeway of the object is related linearly to the wind speed and direction
- Wave excitaion and damping is ignored as S&R objects are small
- Stokes drift is assumed included in the empirical leeway data from USCG

Monte Carlo modelling

- Initial particle cloud represents
 uncertainty in Last
 Known Position
 (LKP)
- Search area grows with time (error growth) due to uncertainties in
 - •Wind field
 - •Leeway properties
- Split search area due to bimodal leeway divergence

Operational services - user interface

- Input of initial conditions and reception of results.
- Intuitively understood and used response teams are in a hurry and have many things on their minds.

 \Rightarrow tailored graphical rendition of results essential

- Robust, rapid communications.

- User is JRCC (Joint Rescue Coordination Center Norway).
- <u>JRCC goal</u>: to reduce the time and resources necessary to find the lost object
- <u>Goal of drift forecasting</u>: to help JRCC reduce the size of the search area as much as possible (but no more).

Search maths

$POS = POD \times POC$

- *POS*: Probability of success (do we find what we are looking for?)
- *POS*: Probability of success (do we find what we are looking for?)
- *POC*: Probability of containment (are we searching in the right place?), our business

- Service consists of 2 parts:
 - Leeway forecast model run at met.no
 - SARA graphical analysis tool run at JRCC
- Procedure:
 - 1. JRCC requests *Leeway* forecast using web order form
 - 2. Model is run automatically at met.no, data file returned via email
 - 3. Results fed into SARA

Sted Fill unbright annumbri	cgi=biiragg.pi		
Leeway order form			
If neccessary, contact meteorologist on duty at 55 23 66 00			
Start position/time			
Latitude	Longitude	Radius	Date (YYYY-MM-DD HH) [UTC]
58 • 15.00 · N •	6 ° 30.00 ∙ E ▼	00.00 km 🔻	2002 06 06 11
End position/time			
Latitude	Longitude	Radius	Date (YYYY-MM-DD HH) [UTC]
58 • 15.00 · N •	6 • 30.00 · E ▼	00.00 km 🔻	2002 06 06 11
Object class Email results			
Choose object class			
STARTNEWCOPYRELOADSave parameters to file and let the computation begin.Empty parameters and use today's date.Copy start position to end position.Ignore changes and reread parameters from file.			
Handbook and request form			
Handbook for the DNMI maritime drift models Manual request form			

- 1. Leeway request by the JRCC:
 - LKP and its uncertainty entered as 2 time/position data
 - Object class: Uncertainty of the object type is tackled by making several requests for similar objects.

Seeded area

PIW-1: PIW, unknown state (mean values) PIW-2: PIW, vertical PIW-3: PIW, sitting PIW-4: PIW, horisontal, survival suit PIW-5: PIW, horisontal, scuba suit PIW-6: PIW, horisontal, deceased

Life raft with no ballast system (NB):

LIFE-RAFT-NB1: Life-raft, no ballast system, general (mean values) LIFE-RAFT-NB2: Life-raft, no ballast system, no canopy, no drogue LIFE-RAFT-NB3: Life-raft, no ballast system, no canopy, with drogu LIFE-RAFT-NB4: Life-raft, no ballast system, with canopy, no drogu LIFE-RAFT-NB5: Life-raft, no ballast system, with canopy, with drogu

Life raft with shallow ballast system (SB):

LIFE-RAFT-SB6: Life-raft, shallow ballast system AND canopy, genera LIFE-RAFT-SB7: Life-raft, shallow ballast system AND canopy, no dr LIFE-RAFT-SB8: Life-raft, shallow ballast system AND canopy, with LIFE-RAFT-SB9: Life-raft, shallow ballast system AND canopy, capsi

Life raft with deep ballast system (DB):

LIFE-RAFT-DB10: general, unknown capacity and loading (mean values) LIFE-RAFT-DB11: 4-6 person capacity, general (mean values)

- 2. Return data file
- 3. Feed into SARA
 - Display on map layers – digital navigation charts
 - Animation
 - Add search areas manually

Simulation start - life raft

- 2. Return data file
- 3. Feed into SARA
 - Display on map layers – digital navigation charts
 - Animation
 - Add search areas manually

Simulation start - life raft

- 2. Return data file
- 3. Feed into SARA
 - Display on map layers – digital navigation charts
 - Animation
 - Add search areas manually

Simulation stop - life raft

- 2. Return data file
- 3. Feed into SARA
 - Display on map layers – digital navigation charts
 - Animation
 - Add search areas manually

Simulation stop - life raft & sailboat

Example: A liferaft in Skagerrak during six days

Norwegian Meteorological Institute met.no

- Alfred-Wegener-Institut, Germany, lost a benthic lander on 2002-03-14 when it surfaced due to malfunctioning.
- Its drift was tracked by the Argos satellites (white outs)

17-0101

16-1448

 The *Leeway*-model simulated its drift (as a PIW) over the following four days (red line line is average position).

Concluding remarks

- Emergency drift services are very demanding applications for an operational ocean forecasting system (cf. GMES) challenge is cool
- Operational current, wind, and wave prognoses are the backbone of drift forecasting
- Evaulation of the drift models is a constant requirement, although both the S&R and oil spill services have shown skill in assisting emergency operations and exercises
- "Taxonomy" field/lab work:
 - The drift of objects and ships is based on empirical data and the "taxonomy" of S&R objects and ship classes must be continuously updated and expanded
 - Oil fate models are also dependent on empirical (laboratory) data for different oil types, long-term weathering effects are not well understood (cf. Prestige tar balls).
- Our three classes of drifting things (people, ship, and oil) are often related ("crew abandons ruptured tanker...").
- Particle-based drift models are also applicable to other "things" (e.g. plankton).
- User interface: Good forecast services need good interfacing to the users. Speed and reliability of delivery are essential.

