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Presentation

S

* Introduction: impact of observations
on forecast performance

* Data selection, information content,
and error tuning

* Towards an adaptive system






N4

Synop

s and ships
7| =

< Data coverage <&

»#09-15UTC

5_September 2003

e




lllustration of the impact of
observations:
ERA-40 (www.ecmwf.int/research/era)

* A re-analysis from Sep57 to August 2002

* Based on cycle 23r4 of ECMWEF forecasting system -
operational from June 2001 to January 2002

* Six-hourly 3D-Var analysis
- operations uses 12-hourly 4D-Var

*T159 horizontal resolution (~125km grid)
- operations uses T511 (~39km grid)

Simmons (2003)



Use of SYNOP surface pressure observations
¥ over the extratropical southern hemisphere in ERA-40
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Impact of observations: how?

-

* Large increase in number and quality
of observations

* New approaches: direct use of
radiance observations in data
assimilation 1n variational systems



Radiative transfer problem

S

*Radiance: energy at a given wavenumber
*R,=(19), 7,(20) + I, By(T(2)) K(2)dz
K, (z)= dt,(z)/dz 1s a weighting function, depends

on absorption and emission of various gases.

B(T) 1s the Planck function (emission of a black-

body at temperature T)



[1lustration of
weighting
functions

Various channels
(wavenumbers)
provide
information at
various levels 1n
the vertical
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|ASI example

Fig. 3: Correlation Letween the CO, abscpticon =pectrum and the atmos=pheric temperature profile
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How can radiances be used?

—

* Data assimilation in some way or another converts
radiance measurements in temperature/moisture/winds,...

* Different possibilities
— Use of externally generated retrievals
— Use of interactive retrievals (e. g. 1D-Var retrievals)
— Direct use of radiances (e.g. 3D-Var or 4D-Var)

* In NWP at least, the direct assimilation of satellite raw
radiances has progressively replaced the assimilation of
retrievals

Thépaut (2003)



&" The direct assimilation of radiances has
several advantages over that of retrievals:

 avoid the contamination by external background
information for which error characteristics are
poorly known and correlated

* 3D and 4D-Var allow for some (weak) non
linearities in the observation operator

 Increments further constrained by many other
observations/information

* In particular, less correlated errors allows
to use denser observations



¥~ Problems encountered with a
N\ complex H

—

*Bias removal: H 1s inaccurate , and
introduces biases often larger than the
signal.

* Contamination: measures can be affected
by clouds (infra-red) and precipitation
(micro-wave). Good quality control needed



Data Assimilation

wh Solution in the linear Xa=X, +K(y—-HX,)

y N\ case

——

K=BH ' '(HBH ' +R)'

With the gain matrix

And Analysis error Covariance A = (1 — KH )B

This is the Optimal least-squares estimator
minimum variance for the analysis error

Or BLUE= Best Linear Unbiased Estimator

If all errors are Gaussian, then it is also the
maximum likelihood estimate

Use of raw data: more effort on H, less on R



¥ Evaluating the optimal resolution of
the observations

S

* 1D circle: Length=8000km
* Ax=100km.

* Background and obs error o=1.

* Background error correlation length-scale:
200km

* Observation spacing Ay.

* Analysis Covariance matrix:
A=(1-KH)B(I-KH) +KRKT

Liu and Rabier (2002)
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B3 Correlated observation errors

—

* For uncorrelated obs errors, increasing the density
improves the analysis

* For correlated obs errors,

— Increasing the obs density beyond a threshold can be
harmful in a sub-optimal scheme for which no
correlations are included in R (current systems)

— An optimal thinning can extract most of the information
contained in the data

* More general solutions
— Thinning or averaging?
— Modelling the correlations?
— Inflating the obs error?
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Information content

S

* A pure data count can be misleading

* There are various ways of estimating the information
content of data types

* Example: DFS =Degrees of Freedom for Signal

DFS = tr(l — AB_I) B Background error covariance matrix

or
H Observation operator

DFS =n-— A

-1 R Observation error covariance matrix
Aec|AB

where

A=B'+HRHJ

A Analysis error covariance matrix



Why estlmate Tr (HK) ?

Hx_ =(I-HK)x, +

Sensitivity of the Yo

analysis to the ayona=(H K)T
observations

DFS=Tr(o,,Hx_,)=TR(HK) Characterizes how the

assimilation system uses the observations to pull the signal
from the background

»In the optimal case (i.e K., =K .), This is also the
relative reduction of variance (Tr (KH)=Tr ((B-A)*B-!). It is

only an upper bound in non-optimal cases.

» Says what the system does. Need other information to give
insight about what 1t should do to get the best analysis.



How to estimate Tr (HK) ?

I ——— e —

1) Cardinali et al (2003)

Computes the estimate using the singular vectors of the
hessian of the cost function provided by the
anczos/Conjugate gradient minimizer.



How to estimate Tr (HK) ?

—

2) Girard (1987) method
Based on eTAeg ~ Tr (A), € ~ N(O,I)

Perform a normal analysis
(Xb’yo)exa

Perform a perturbed analysis
(Xp:Yo )%™ Yo =Y tR% g

Then

(Y. *- Y,) TR IH(xa*-xa)~Tr (HK).
(Chapnik et al, 2004)



Average Influence and
Information Content

Partition 1n
obs types:
individual

data
]

Partition in
obs types:
globally

Cardinali

(2003)



Evaluation of DFS DFS of upper air
observations on
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2= :'ﬁ‘way to use DFS related quantities to improve specified
covariance matrices : Desroziers and lvanov (2001)

Suppose one can write:
Bue= Sy, B
=s, R

true

R

true

so and sb : tuning coefficients

If J=J, +1J,
1s the cost function used in a D.A system
(suboptimal),

Then  Jy/s, + J./s,

is the cost function using « true » matrices.

Let X, be the minimizer of this cost
function, then, following Talagrand
(1999)

E(2],(Xy)/s,)=Tr (1, -HK)
E(2J,(X,)/s,)=Tr (KH)

Yielding the following condition for the
tuning coefficients

s,= 2J(X2)/ Tr (1, ~HK)
s,= 2J,(X.)/ Tr (KH)

This is a fixed-point relation...



Channel selection (Rabier et al, 2002)

* Selection of individual channels

* At each step, one channel is picked. It is the most
informative channel among those which have not been
previously selected.

* The analysis error covariance matrix is then updated

¥ Iterative Method (Rodgers, 1996) or Entropy Reduction
(ER) method

v' This method is a step by step iterative selection
scheme, based on information content wrt the
background information.

- The selection criterion is ER
ER=-1/2 log,det(AB!)

Where B= background and A= analysis error
covariance




Extract maximum information content from
hyperspectral sounders

*Channel selection
For TIASI }
(CNES/EUMETSAT) I

%
sa

240 I

220 I

| IIIIIII )
200

| | Bl 1
£50.0 11500 1650 U 21600 2650.0



A GLOBAL ATMOSPHERIC RESEARCH PROGRAMME

Mission Statement - Accelerating improvements in the
accuracy of high-impact 1-14 day weather forecasts for
the benefit of society and the economy

http://www.wmo.int/thorpex/
http://www.mmm.ucar.edu/uswrp/programs/thorpex.html




How Is THORPEX organised?

* THORPEX 1s part of the WMO
— World Weather Research Programme (WWRP).

* Research objectives are developed under four Sub-
programmes:
— Predictability and Dynamical Processes;
— Observing Systems;
— Data Assimilation and Observing-Strategies;
— Societal and Economic Impacts.

* International Science Plan available
— Mel Shapiro and Alan Thorpe



A few core objectives

S

*  Contribute to the design and demonstration of

Interactive forecast systems
which include the new concept of targeted observations

* Perform THORPEX Observing-System Tests (TOSTSs)
and Regional field Campaigns (TReCs)
to test and evaluate experimental remote-sensing and
in-situ observing systems,
and when feasible, demonstrate their impact on weather forecasts



Targeting

S

* In the last decade, strategies were developed that identify locations
where additional observations would provide maximal improvements
in the expected skill of forecasts.

* Targeting strategies are based on techniques that predict, prior to the
actual measurements, the influence of an observation (or set of
observations) on the uncertainty of a subsequent forecast.

*  Different targeting techniques: some involve the adjoint of the
linearized version of the forecast model or of the assimilation
scheme, others manipulate ensembles of forecasts.

* Operational in the US: WSRP



Targeting

S

Illustration of the differences between the results arising from different targeting
algorithms. Two cases from the NORPEX field experiment are shown; the
intent is to select the observation location that will minimize the expected 24-h
forecast error in the box at right. Colored regions indicate the sensitive
regions as determined by an ensemble-based filtering approach; contours
indicate region of increasing observation sensitivity as determined by an
adjoint-based singular vector approach. From Majumdar et al., QJRMS.
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Targeting observing systems

e e —————

* Examples include the control of the sampling rate of
satellite sensors or the timing and location of mobile
upper-air soundings.

* Targeting can also be used to determine which
observations are to be discarded, 1.e., to conduct effective
thinning of the observations. This capability will
become increasingly important, given the very large
numbers of observations that will be available from next-
generation satellites.



Diagnostics of data impact

Based on information content

or

targeting information
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Targeting: Quantifying impact
of any obs

_—

* Sensitivity of a
cyclone to
dropsonde
wind profiles.
FASTEX
IOP17.

* Doerenbecher
and Bergot,
2001.
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Sensitivity to
. STRATOSPHERIC INFRARED
Ob Sewatlons E TROPOSPHERIC INFRARED

MICROWAVES

* To see the
importance
of MW

* To select
channels

FASTEX cases

Fourri¢ et al (2002)



Adaptive observation selection

*Estimation of background errors in
observation space (HBH') to perform First-
guess check (Andersson et al, 2000)

*Adaptive buddy check: flow-dependent
tolerances for outlier observations (Dee et al,
2001)



Conclusions

Satellite data have been very succesfully exploited by
new data assimilation schemes (DA schemes are such
that introducing additional well characterised satellite
data improves the system)

The combined availability of new accurate satellite

observations and improvement of models will allow

an improved extraction of information content from
these new data (parallel upgrades of B and Y)



Conclusions

—_— e —

In general, the system can only cope with a small
fraction of all observations

Efficient tools have been built to evaluate obs impact
and perform tuning

In any case, we need to optimize their use, including
more flow-dependency
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