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Presentation

Introduction: impact of observations 
on forecast performance 

Data selection, information content, 
and error tuning

Towards an adaptive system



Available satellites



Data coverage
09 – 15 UTC
5 September 2003
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A re-analysis from September 1957 to August 2002

Based on cycle 23r4 of ECMWF forecasting system    -
operational from June 2001 to January 2002

Six-hourly 3D-Var analysis
- operations uses 12-hourly 4D-Var                      

T159 horizontal resolution (~125km grid) 
- operations uses T511 (~39km grid)

Simmons (2003)

Illustration of the impact of 
observations:

ERA-40 (www.ecmwf.int/research/era)



R.m.s background and analysis fits (hPa)

Number of observations used per day

OB-BG    OB-AN

Use of SYNOP surface pressure observations 
over the extratropical southern hemisphere in ERA-40
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Impact of observations: how?

Large increase in number and quality
of observations

New approaches: direct use of 
radiance observations in data 
assimilation in variational systems



Radiative transfer problem

Radiance: energy at a given wavenumber
Rυ =( I0)υ τυ(z0) + ∫z0 Bυ(T(z)) Kυ(z)dz

Kυ(z)= dτυ(z)/dz is a weighting function, depends
on absorption and emission of various gases. 

B(T) is the Planck function (emission of a black-
body at temperature T)



AMSU-A

• Illustration of 
weighting 
functions

•Various channels 
(wavenumbers) 
provide 
information at 
various levels in 
the vertical



IASI example



How can radiances be used? 

Data assimilation in some way or another converts 
radiance measurements in temperature/moisture/winds,…

Different possibilities
– Use of externally generated retrievals
– Use of interactive retrievals (e. g. 1D-Var retrievals)
– Direct use of radiances (e.g. 3D-Var or 4D-Var)

In NWP at least, the direct assimilation of satellite raw 
radiances has progressively replaced the assimilation of 
retrievals

Thépaut (2003)



The direct assimilation of radiances has 
several advantages over that of retrievals:

• avoid the contamination by external background 
information for which error characteristics are 
poorly known and correlated

• 3D and 4D-Var allow for some (weak) non 
linearities in the observation operator 

• Increments further constrained by many other 
observations/information 

In particular, less correlated errors allows 
to use denser observations



Problems encountered with a 
complex H

Bias removal: H is inaccurate , and
introduces biases often larger than the
signal. 
Contamination: measures can be affected
by clouds (infra-red) and precipitation
(micro-wave). Good quality control needed



Solution in the linear
case

With the gain matrix

)( bb HxyKxx −+=a

1)( −+= RHBHBHK TT

• This is the Optimal least-squares estimator
minimum variance for the analysis error

• Or BLUE= Best Linear Unbiased Estimator
• If all errors are Gaussian, then it is also the

maximum likelihood estimate

•Use of raw data: more effort on H, less on R

BKHIA )( −=And Analysis error Covariance

Data Assimilation



Evaluating the optimal resolution of 
the observations
1D circle:  Length=8000km
∆x=100km. 
Background and obs error σ=1.
Background error correlation length-scale: 
200km
Observation spacing ∆y. 
Analysis Covariance matrix:

Liu and Rabier (2002)

KKRKH)(IKH)B(IA TT +−−=



Optimal thinning of observations 

Tests with various 
Observation  intervals

Correlation 0.15



Correlated observation errors

For uncorrelated obs errors, increasing the density
improves the analysis
For correlated obs errors, 
– Increasing the obs density beyond a threshold can be

harmful in a sub-optimal scheme for which no 
correlations are included in R (current systems) 

– An optimal thinning can extract most of the information 
contained in the data

More general solutions
– Thinning or averaging?
– Modelling the correlations?
– Inflating the obs error? 



Inflating the obs error 

σo=4σo
t

σo=2σo
t

σo=1.5σo
t



Information content

A pure data count can be misleading
There are various ways of estimating the information 
content of data types 
Example: DFS =Degrees of Freedom for Signal  
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where

nDFS

or
trDFS

σλ

λ

B Background error covariance matrix

H Observation operator

R Observation error covariance matrix

A Analysis error covariance matrix



HxHxaa=(I=(I--HK)xHK)xbb + + 
HKyHKyoo
∂yoHxxaa=(HK)=(HK)TT

Why estimate Tr (HK) ?

Sensitivity of the Sensitivity of the 
analysis to the analysis to the 
observationsobservations

DFS=DFS=Tr(∂Tr(∂yoyoHxHxaa)=TR(HK) )=TR(HK) Characterizes how the Characterizes how the 
assimilation system uses the observations to pull the signal assimilation system uses the observations to pull the signal 

from the backgroundfrom the background

In the  optimal case (i.e In the  optimal case (i.e KKoperoper = K= K true true ),  This is also the ),  This is also the 
relative reduction of variance (relative reduction of variance (TrTr (KH)=(KH)=TrTr ((B((B--A)*BA)*B--11). It is ). It is 
only an upper bound in nononly an upper bound in non--optimal cases.optimal cases.

Says what the system does. Need other information to give Says what the system does. Need other information to give 
insight about what it should do to get the best analysis. insight about what it should do to get the best analysis. 



How to estimate Tr (HK) ?

1)1) CardinaliCardinali et al (2003) et al (2003) 

Computes the estimate using the singular vectors of the Computes the estimate using the singular vectors of the 
hessianhessian of the cost function provided by the of the cost function provided by the 

LanczosLanczos/Conjugate gradient /Conjugate gradient minimizerminimizer..



2) Girard (1987) method2) Girard (1987) method

Based on Based on εTAAε ≈ Τr (Α), ε ∼ N(0,I)

Perform a normal analysisPerform a normal analysis
((xxbb,y,yoo)) xxaa

Perform a perturbed analysisPerform a perturbed analysis
((xxbb,y,yoo*)*) xxaa*,  *,  yyoo*=y*=yoo+R+R0.50.5 ε

Then

(yyoo**-- yyoo)TTR--11H(xa*H(xa*--xa)xa)≈Τr (ΗΚ).
(Chapnik et al, 2004)

How to estimate Tr (HK) ?



Average Influence and 
Information Content
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Suppose one can write:

Btrue= sb B

Rtrue=so R

so and sb : tuning coefficients
If J=Jb + Jo 
is the cost function used in a D.A system
(suboptimal),

Then Jo/so + Jb/sb
is the cost function using « true » matrices. 

Yielding the following condition for the 
tuning coefficients

so= 2Jo(xa)/ Tr (Ip –HK)
sb= 2Jb(xa)/ Tr (KH)

This is a fixed-point relation…

A A wayway to use  DFS to use  DFS relatedrelated quantitiesquantities to to improveimprove specifiedspecified
covariance matrices : covariance matrices : DesroziersDesroziers andand Ivanov (2001)Ivanov (2001)

Let xa be the minimizer of this cost 
function, then, following Talagrand

(1999)

E(2Jo(xa)/so)=Tr (Ip –HK)

E(2Jb(xa)/sb)=Tr (KH)



Channel Channel selectionselection (Rabier et al, 2002)(Rabier et al, 2002)

SelectionSelection of of individualindividual channelschannels
At each step, one channel is picked. It is the most
informative channel among those which have not been 
previously selected.
The analysis error covariance matrix is then updated

IterativeIterative MethodMethod (Rodgers, 1996) or (Rodgers, 1996) or EntropyEntropy ReductionReduction
(ER) (ER) methodmethod

This method is a step by step iterative selection
scheme, based on information content wrt the
background information. 

• The selection criterion is ER
ER=-1/2 log2det(AB-1)
Where B= background and A= analysis error
covariance



Extract maximum information content from 
hyperspectral sounders

•Channel selection
For IASI 

(CNES/EUMETSAT)



Mission Statement - Accelerating improvements in the 
accuracy of high-impact 1-14 day weather forecasts for 
the benefit of society and the economy

http://www.wmo.int/thorpex/
http://www.mmm.ucar.edu/uswrp/programs/thorpex.html



How is THORPEX organised?

THORPEX is part of the WMO 
– World Weather Research Programme (WWRP). 

Research objectives are developed under four Sub-
programmes:  
– Predictability and Dynamical Processes; 
– Observing Systems; 
– Data Assimilation and Observing-Strategies;
– Societal and Economic Impacts. 

International Science Plan available
– Mel Shapiro and Alan Thorpe



A few core objectives

Contribute to the design and demonstration of
interactive forecast systems

which include the new concept of targeted observations  

Perform THORPEX Observing-System Tests (TOSTs) 
and Regional field Campaigns (TReCs)
to test and evaluate experimental remote-sensing and
in-situ observing systems, 
and when feasible, demonstrate their impact on weather forecasts



Targeting

In the last decade, strategies were developed that identify locations 
where additional observations would provide maximal improvements
in the expected skill of forecasts. 

Targeting strategies are based on techniques that predict, prior to the
actual measurements, the influence of an observation (or set of 
observations) on the uncertainty of a subsequent forecast. 

Different targeting techniques: some involve the adjoint of the
linearized version of the forecast model or of the assimilation 
scheme, others manipulate ensembles of forecasts. 

Operational in the US: WSRP



Targeting

Illustration of the differences between the results arising from different targeting
algorithms.  Two cases from the NORPEX field experiment are shown; the
intent is to select the observation location that will minimize the expected 24-h 
forecast error in the box at right.  Colored regions indicate the sensitive 
regions as determined by an ensemble-based filtering approach; contours 
indicate region of increasing observation sensitivity as determined by an 
adjoint-based singular vector approach.  From Majumdar et al., QJRMS.



Targeting observing systems

Examples include the control of the sampling rate of 
satellite sensors or the timing and location of mobile 
upper-air soundings. 

Targeting can also be used to determine which
observations are to be discarded, i.e., to conduct effective 
thinning of the observations.  This capability will
become increasingly important, given the very large 
numbers of observations that will be available from next-
generation satellites.  



Diagnostics of data impact

Based on information content 

or 

targeting information
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Targeting: Quantifying impact 
of any obs

Sensitivity of a 
cyclone to 
dropsonde
wind profiles. 
FASTEX 
IOP17.
Doerenbecher
and Bergot, 
2001.



Targeting: Compute sensitivity to sounder channels

Sensitivity to 
observations

To see the
importance 
of MW
To select 
channels

Fourrié et al (2002)



Adaptive observation selection

•Estimation of background errors in 
observation space (HBHT) to perform First-
guess check (Andersson et al, 2000)

•Adaptive buddy check: flow-dependent
tolerances for outlier observations  (Dee et al, 
2001)



Conclusions

Satellite data have been very succesfully exploited by 
new data assimilation schemes (DA schemes are such 
that introducing additional well characterised satellite 

data improves the system)

The combined availability of new accurate satellite 
observations and improvement of models will allow 
an improved extraction of information content from 

these new data (parallel upgrades of B and Y)



Conclusions

In general, the system can only cope with a small
fraction of all observations

Efficient tools have been built to evaluate obs impact 
and perform tuning

In any case, we need to optimize their use, including
more flow-dependency
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