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unusual methods

• simulated annealing
• genetic algorithms
• micro-genetic algorithm
• neural networks
• particle filter
• sequential importance resampling filter
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usual problems

• breakdown of ensemble

in sequential importance resampling filter
in ensemble methods (error subspace)
EnKF, SEEK, SEIK

too much confidence in error of model
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usual problems
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replacing of variables

nudging
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fitting a straight line through data

of the form

with the cost function j
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of the form txxy 21 +=
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fitting a straight line through data
The minimum of j can be found by setting the
derivative  of  j  to zero:
.
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fitting a straight line through data
the error covariance of the solution is:
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fitting a straight line through data

the solution is:
.
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if the inverse of the Hessian 
does not exist, 
there is no reasonable solution for x
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the Hessian matrix describes the curvature of j
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the Hessian matrix describes the curvature of j



A singular value decomposition
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solving a linear least squares system
The minimum of j can be found by setting the
derivative  of  j  to zero:
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solving a linear least squares system
simple algebra leads to:
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solving a linear least squares system
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the solution x is the sum of the singular 
vectors V, weighted by the inverse of the 
eigenvalues si times the projection of the 
observations via the singular vectors UT
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resolution
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the resolution matrix is non diagonal for 
rank deficient solutions
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resolution
.

the error given by the inverse Hessian 
matrix for rank deficient solutions does not 
describe the whole picture.

there is a null space remaining!

truesolution xx TVV=
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tapered least sqares
.
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has full  resolution but is a kind of cheating

stabilized solution:
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use of prior information
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use of prior information
the best estimate for our prior information is 
expressed by the ‘background’ or weighting 
matrix B
we weight by the inverse of the error covariance  
matrix
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B
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Example
Describe the stationary barotropic flow of a 
global ocean circulation model with
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And assimilate SSH                 (altimetry)

and prior streamfunction ψ
ζ
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Example
the cost function j is 
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And solve by a SVD decomposition
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Normalized error of solution

full line altimetry

dotted line streamfunction
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Normalized error of solution

full line altimetry
dotted line streamfunction

scaling depth 5000m

scaling depth 300m
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spectra of inverted matrix
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dotted: model matrix  A

dashed: A + altimetry

full: A + altimetry + prior on streamfunction
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with the cost function j
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)ybxa(jL −++= λ

fitting a straight line through data

construct the Lagrangian function

solve for a stationary point 
and of  L
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FEOM model equations

• equation of state
• steady state primitive equations

dynamical part
strong constraint

advection-diffusion equation for density

weak constraint

),,( PSTρρ =

),(),,,( τρζ Ψ=wvu

ρρρ Fu =∇⋅∇−⋅∇ )K()(r
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Difference in density
(optimized minus climatology)

density is the only control parameter
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adjoint equations

solution of a constrained optimization problem 
by transforming it to an unconstrained problem
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provided E=0 the L and j coincide identically

and we get for the gradient of the (implicit) costfunction:
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Example for u = initial conditions
we get for the gradient of the (implicit) costfunction:
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Example
shallow water equations with a passive tracer
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Example
setup of Lagrange function
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Example
partial integration of Lagrange function:
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Example
partial integration of Lagrange function

yields the adjoint equations
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Example
the adjoint equations integrated backwards in 
time yield any gradient information we can 
think of. 

(however only for one specific cost function.
A model forward integration perturbed in one 
component of u yields the sensitivity of any 
model variable and any cost function 
for this specific disturbance)
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inverting a tracer field for velocities



use of control variables 

other than initial conditions
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use of control variables 

other than initial conditions
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use of control variables 

other than initial conditions
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TASK:  Ocean state during the 1993-2001

• Model: mass conserving  (2° x 2°, 23 layers)

• Nine years (1993-2001) T/P altimeter referenced to GRACE
+ Reynolds surface temperatures + oceanic measurements
are assimilated into the model

• Method:  4D VAR data assimilation

• As control parameters we use  the model initial state and the 
model forcing (the first guess taken from NCEP) 
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cost function for global model
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cost function for global model
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cost function for global model
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cost function for global model

atlatlhmvhmvSSHSSH

bogusboguscyclecyclemisfit

JWJWJW

JWJWJJ

+++

++=

data are SST, SSH, T,S  
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Mean sea level
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local sea level changes due to:
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SLA correlation
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Sea level trends
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Correlation between Reynolds and model 
SST 



Temperature Difference - Atlantic Section (24.5 °N)  
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After assimilation

Before assimilation



OPT vs. WOCE- Pacific Section (179 °W)  
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Temperature (OPT vs. TAO Data )
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Heat flux
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Freshwater flux
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Heat and freshwater transport
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Observed sea level trend
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modelled sea level trend
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modelled sea level trend
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Global Mean
Sea Level 

sea level rise is
explained by 
thermal expansion

interannual variability
and seasonal cycle 
are mostly eustatic



Global Mean Sea Level
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Mean Sea Level North Atlantic
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MSL difference (no assimilation)
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19.3 cm



MSL difference (with GRACE)
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10.8 cm



SLA difference (no assimilation)
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39 mm



SLA difference (with GRACE)
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28 mm



Global Ocean Mass
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THE END
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