Principles of data assimilation part II

From linear regression to 4DVAR

Examples of inverse modelling and state estimation

unusual methods

- simulated annealing
- genetic algorithms
- micro-genetic algorithm
- neural networks
- particle filter
- sequential importance resampling filter

usual problems

• breakdown of ensemble

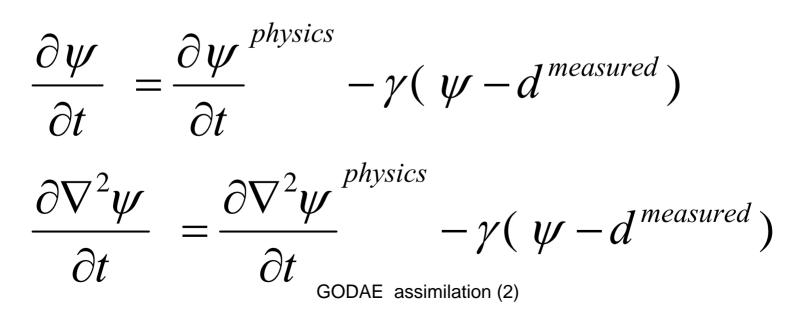
in sequential importance resampling filter in ensemble methods (error subspace) EnKF, SEEK, SEIK

too much confidence in error of model

usual problems

replacing of variables

 $\psi^{\text{mod}el} = \psi^{\text{measured}}$ nudging

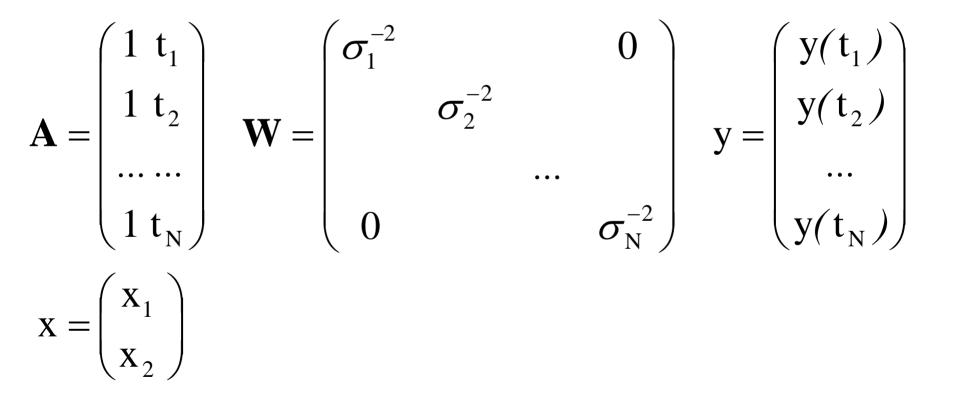


fitting a straight line through data of the form $y = x_1 + x_2 t$

with the cost function j

$$j = 0.5 \sum_{i=1}^{N} \frac{(y_i - y)^2}{\sigma_i^2} = 0.5 \sum_{i=1}^{N} \frac{(y_i - x_1 - x_2 t_i)^2}{\sigma_i^2}$$
$$= 0.5 (\mathbf{A}x - y)^T \mathbf{W} (\mathbf{A}x - y)$$

fitting a straight line through data of the form $y = x_1 + x_2 t$



fitting a straight line through data

The minimum of j can be found by setting the derivative of j to zero:

$$j = 0.5(\mathbf{A}\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{W}(\mathbf{A}\mathbf{x} - \mathbf{y})$$
$$\frac{\mathrm{d}j}{\mathrm{d}x} = \mathbf{A}^{\mathrm{T}} \mathbf{W}(\mathbf{A}\mathbf{x} - \mathbf{y}) = 0$$

$$(\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{A})\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{y}$$

 $\mathbf{x} = (\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{W}\mathbf{y}$

fitting a straight line through data

the error covariance of the solution is:

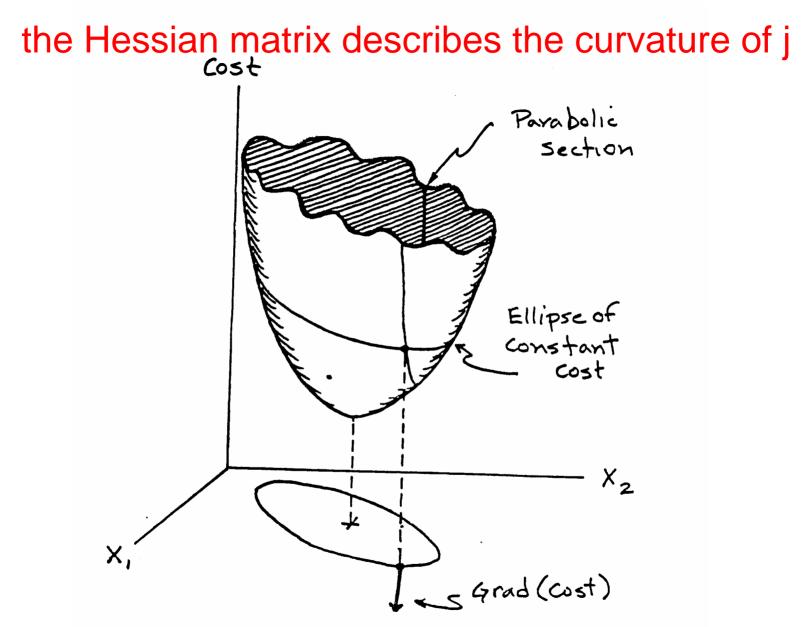
$$= \operatorname{cov}\langle (\mathbf{x} - \hat{\mathbf{x}}), (\mathbf{x} - \hat{\mathbf{x}})^{\mathrm{T}} \rangle = \mathbf{H}^{-1}$$
$$\mathbf{H} = \frac{\partial^{2} j}{\partial x^{2}}$$
$$= \frac{\partial}{\partial \mathbf{x}} \mathbf{A}^{\mathrm{T}} \mathbf{W} (\mathbf{A} \mathbf{x} - \mathbf{y})$$
$$= (\mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A})$$

fitting a straight line through data

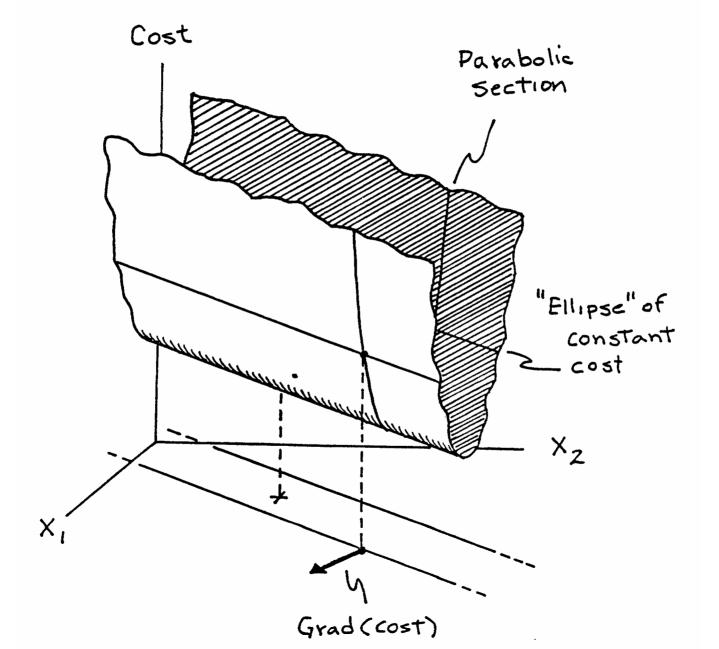
the solution is:

$$x = (\mathbf{A}^T \mathbf{W} \mathbf{A})^{-1} \mathbf{A}^T \mathbf{W} y$$
$$x = \mathbf{H}^{-1} \mathbf{A}^T \mathbf{W} y = \mathbf{H}^{-1} \widetilde{y}$$

if the inverse of the Hessian does not exist, there is no reasonable solution for x



the Hessian matrix describes the curvature of j



11

A singular value decomposition

 $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$ $\mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}$ $\mathbf{V}^{\mathrm{T}}\mathbf{V} = \mathbf{I}$ $\mathbf{U} \mathbf{U}^{\mathbf{T}} \neq \mathbf{I}$ $\mathbf{V} \mathbf{V}^{\mathrm{T}} \neq \mathbf{I}$ $\mathbf{A}^{-1} = \mathbf{U}\mathbf{S}^{-1}\mathbf{V}^{\mathrm{T}}$

where U and V contain the singular vectors and the diagonal matrix S the singular values

solving a linear least squares system The minimum of j can be found by setting the derivative of j to zero:

$$j = 0.5(\mathbf{A}\mathbf{x} - \mathbf{y})^{\mathrm{T}}(\mathbf{A}\mathbf{x} - \mathbf{y})$$
$$j = 0.5(\mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}\mathbf{x} - \mathbf{y})^{\mathrm{T}}(\mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}\mathbf{x} - \mathbf{y})$$
$$\frac{\mathrm{d}j}{\mathrm{d}x} = (\mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}})^{\mathrm{T}}(\mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}\mathbf{x} - \mathbf{y}) = 0$$

solving a linear least squares system simple algebra leads to: $(\mathbf{V}\mathbf{S}\mathbf{U}^{\mathrm{T}}\mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}})x = \mathbf{V}\mathbf{S}\mathbf{U}^{\mathrm{T}}y$ $\mathbf{V} \mathbf{S}^2 \mathbf{V}^{\mathrm{T}} \mathbf{X} = \mathbf{V} \mathbf{S} \mathbf{U}^{\mathrm{T}} \mathbf{V}$ $x = \mathbf{V} \, \mathbf{S}^{-2} \, \mathbf{V}^{\mathrm{T}} \mathbf{V} \, \mathbf{S} \, \mathbf{U}^{\mathrm{T}} \, \mathbf{v}$ $x = \mathbf{V} \mathbf{S}^{-1} \mathbf{U}^{T} \mathbf{v}$

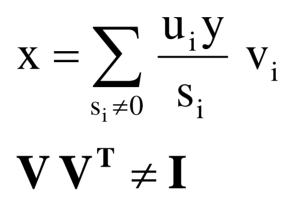
solving a linear least squares system

$$x = \mathbf{V} \mathbf{S}^{-1} \mathbf{U}^{\mathbf{T}} \mathbf{y}$$

$$x = \sum_{s_i \neq 0} \frac{u_i y}{s_i} v_i$$

the solution x is the sum of the singular vectors V, weighted by the inverse of the eigenvalues si times the projection of the observations via the singular vectors UT

resolution



.

the resolution matrix is non diagonal for rank deficient solutions

resolution

the error given by the inverse Hessian matrix for rank deficient solutions does not describe the whole picture.

 $\boldsymbol{x}^{\text{solution}} = \boldsymbol{V} \boldsymbol{V}^{T} \boldsymbol{x}^{\text{true}}$

there is a null space remaining!

.

tapered least sqares

$$\mathbf{x} = \sum_{\mathbf{s}_i \neq 0} \frac{\mathbf{s}_i}{\mathbf{s}_i^2 + \varepsilon} \mathbf{u}_i \mathbf{y} \mathbf{v}_i$$

.

has full resolution but is a kind of cheating

stabilized solution:
$$x = \sum_{s_i \neq 0} \frac{1}{s_i + \varepsilon} \begin{array}{c} u_i y & v_i \end{array}$$

use of prior information

$$j = 0.5(\mathbf{A}\mathbf{x} - \mathbf{y})^{\mathrm{T}}(\mathbf{A}\mathbf{x} - \mathbf{y}) + (\mathbf{x} - \hat{\mathbf{x}})^{\mathrm{T}}\mathbf{B}(\mathbf{x} - \hat{\mathbf{x}})$$

 $\frac{\mathrm{d}j}{\mathrm{d}x} = \mathbf{A}^{\mathrm{T}}\mathbf{A}(\mathbf{x} - \mathbf{y}) + \mathbf{B}(\mathbf{x} - \hat{\mathbf{x}}) = 0$
 $(\mathbf{A}^{\mathrm{T}}\mathbf{A} + \mathbf{B})\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{y} + \mathbf{B}\hat{\mathbf{x}}$
 $\mathbf{x} = (\mathbf{A}^{\mathrm{T}}\mathbf{A} + \mathbf{B})^{-1}(\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{y} + \mathbf{B}\hat{\mathbf{x}})$

Gauss Markov solution $\mathbf{B} = \varepsilon \mathbf{I}$

use of prior information

the best estimate for our *prior* information is expressed by the 'background' or weighting matrix B we weight by the inverse of the error covariance matrix

$$cov\langle (x - \hat{x}), (x - \hat{x})^T \rangle = \mathbf{B}^{-1}$$

 $\mathbf{B} = \mathbf{H}$

Describe the stationary barotropic flow of a global ocean circulation model with

$$\mathbf{A}\begin{pmatrix}\boldsymbol{\psi}\\\boldsymbol{\zeta}\end{pmatrix} - \mathbf{r} = \mathbf{0}$$

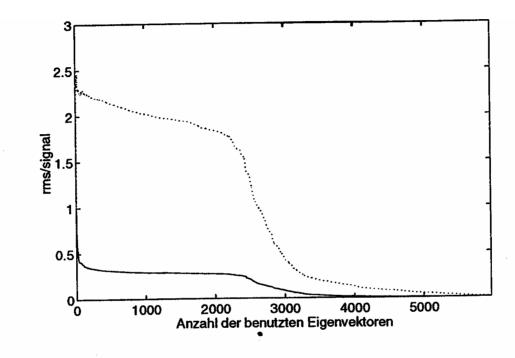
And assimilate SSH ζ (altimetry) and *prior* streamfunction Ψ

the cost function j is

$$j = (\mathbf{A} \begin{pmatrix} \psi \\ \zeta \end{pmatrix} - \mathbf{r})^{\mathrm{T}} \mathbf{W}_{1} (\mathbf{A} \begin{pmatrix} \psi \\ \zeta \end{pmatrix} - \mathbf{r})$$
$$+ (\psi - \psi^{\mathrm{prior}})^{\mathrm{T}} \mathbf{B} (\psi - \psi^{\mathrm{prior}})$$
$$+ (\zeta - \zeta^{\mathrm{altimeter}})^{\mathrm{T}} \mathbf{W}_{2} (\zeta - \zeta^{\mathrm{altimeter}})$$

And solve by a SVD decomposition

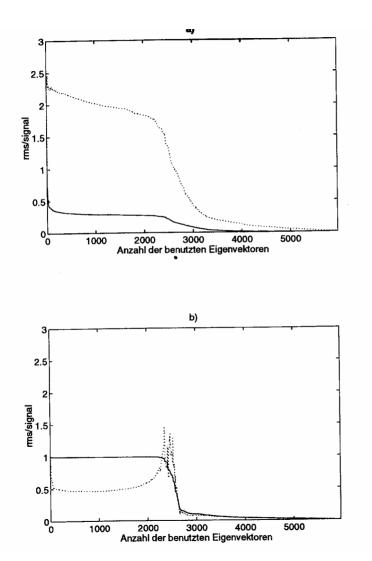
Normalized error of solution



full line altimetry

dotted line streamfunction

Normalized error of solution



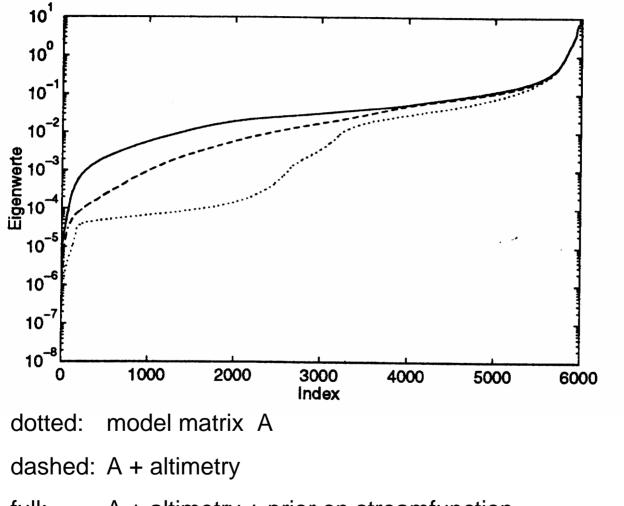
full line dotted line

altimetry streamfunction

scaling depth 5000m

scaling depth 300m

spectra of inverted matrix



full: A + altimetry + prior on streamfunction GODAE assimilation (2) fitting a straight line through data of the form y = a + bx

with the cost function j

$$j = 0.5 \sum_{i=1}^{N} \frac{(y_i - y_i)^2}{\sigma_i^2}$$

$$\mathbf{a} + \mathbf{b}\mathbf{x} - \mathbf{y} = \mathbf{0}$$

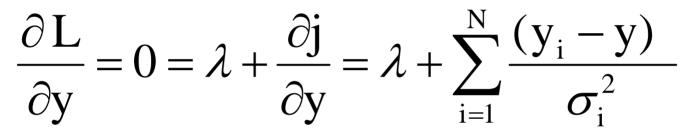
fitting a straight line through data construct the Lagrangian function

$$\mathbf{L} = \mathbf{j} + \lambda(\mathbf{a} + \mathbf{b}\mathbf{x} - \mathbf{y})$$

solve for a stationary point and of L

using a Lagrangian function

$$\frac{\partial \mathbf{L}}{\partial \lambda} = \mathbf{0} = (\mathbf{a} + \mathbf{b}\mathbf{x} - \mathbf{y})$$



 $\frac{\partial L}{\partial a} = 0 = \lambda$

 $\frac{\partial L}{\partial b} = 0 = \lambda x$

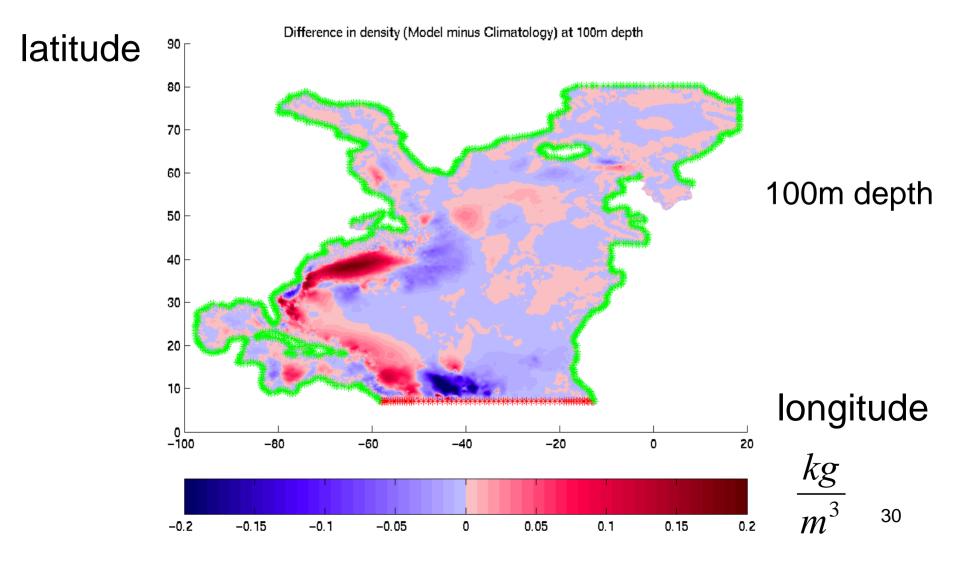
FEOM model equations

- equation of state $\rho = \rho(T, S, P)$
- steady state primitive equations dynamical part $(u, v, w, \zeta) = \Psi(\rho, \tau)$ strong constraint

advection-diffusion equation for density

$$\nabla \cdot (\vec{u}\rho) - \nabla \cdot (\mathbf{K} \nabla \rho) = F_{\rho}$$
 weak constraint

Difference in density (optimized minus climatology) density is the only control parameter



adjoint equations

solution of a constrained optimization problem by transforming it to an unconstrained problem

> min j, subject to E(u, s, x, t) $L(u, s, \lambda) = j + \int_X \int_{t_0}^{t_1} \lambda(x, t) E(u, s, x, t) dx dt$ $\frac{\partial L}{\partial \lambda} = 0$ $\frac{\partial L}{\partial s} = 0$ $\frac{\partial L}{\partial s} = 0$

provided E=0 the L and j coincide identically

and we get for the gradient of the (implicit) costfunction:

$$\nabla_{u} j = \frac{dj}{du}$$
$$= \frac{dL}{du}$$
$$= \frac{\partial L}{\partial u} + \frac{\partial L}{\frac{\partial \lambda}{\partial u}} \frac{\partial \lambda}{\partial u} + \frac{\partial L}{\frac{\partial s}{\partial u}} \frac{\partial s}{\partial u} = 0$$

Example for u = initial conditions

we get for the gradient of the (implicit) costfunction:

$$\nabla_{u} j = \frac{\partial j}{\partial u} + \int_{X} \int_{t_{0}}^{t_{1}} \lambda(x,t) \frac{\partial E(u,s,x,t)}{\partial u} dx dt$$
$$\nabla_{u} j = \frac{\partial j}{\partial u} \Big|_{t_{0}} + \lambda(t_{0}) \quad \text{for initial conditions}$$

shallow water equations with a passive tracer

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v}\frac{\partial \mathbf{v}}{\partial x} - \mathbf{A}_{\mathrm{M}}\frac{\partial^{2}\mathbf{v}}{\partial x^{2}} + \Phi\frac{\partial \phi}{\partial x} = 0$$
$$\frac{\partial \phi}{\partial t} + \frac{\partial (\mathbf{v}\phi)}{\partial x} = 0$$
$$\frac{\partial \mathbf{T}}{\partial t} + \mathbf{v}\frac{\partial \mathbf{T}}{\partial x} - \mathbf{A}_{\mathrm{T}}\frac{\partial^{2}\mathbf{T}}{\partial x^{2}} + \varepsilon\mathbf{T} = 0$$

setup of Lagrange function

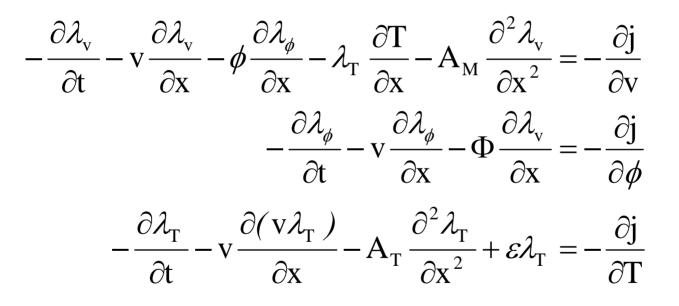
$$\begin{split} \mathbf{L} &= \lambda_{v} \iint_{\mathbf{X}}^{\mathbf{t}_{0}} (\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \frac{\partial \mathbf{v}}{\partial x} - \mathbf{A}_{M} \frac{\partial^{2} \mathbf{v}}{\partial x^{2}} + \Phi \frac{\partial \phi}{\partial x}) dx \, dt \\ &+ \lambda_{\phi} \iint_{\mathbf{X}}^{\mathbf{t}_{0}} (\frac{\partial \phi}{\partial t} + \frac{\partial (\mathbf{v}\phi)}{\partial x}) dx \, dt \\ &+ \lambda_{T} \iint_{\mathbf{X}}^{\mathbf{t}_{0}} (\frac{\partial T}{\partial t} + \mathbf{v} \frac{\partial T}{\partial x} - \mathbf{A}_{T} \frac{\partial^{2} T}{\partial x^{2}} + \varepsilon T) dx \, dt \\ &+ j \end{split}$$

partial integration of Lagrange function:

$$\frac{\partial L}{\partial s} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial s_t} \right) - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial s_x} \right) + \frac{\partial^2}{\partial x^2} \left(\frac{\partial L}{\partial s_{xx}} \right) = 0$$

Example

partial integration of Lagrange function yields the adjoint equations

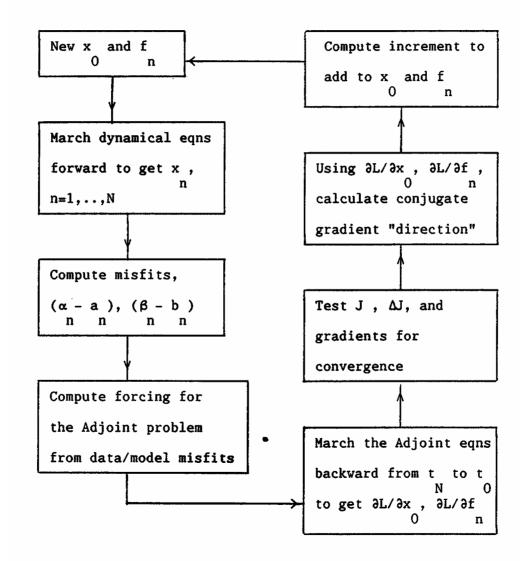


Example

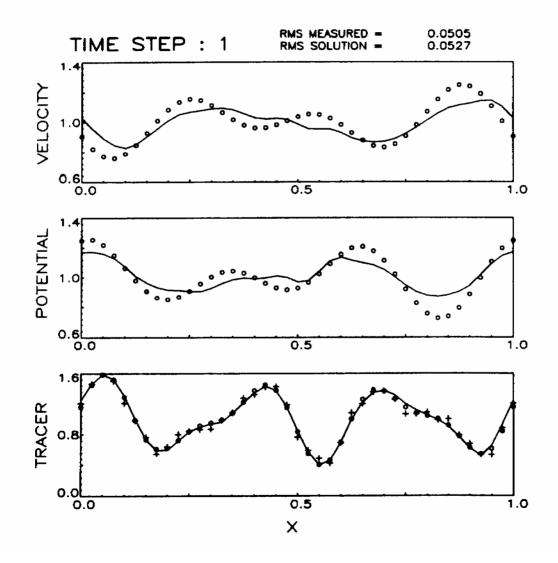
the adjoint equations integrated backwards in time yield any gradient information we can think of.

(however only for one specific cost function. A model forward integration perturbed in one component of u yields the sensitivity of any model variable and any cost function for this specific disturbance)

Schematic:



inverting a tracer field for velocities



40

use of control variables

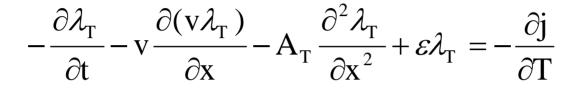
other than initial conditions

$$-\frac{\partial \lambda_{\mathrm{T}}}{\partial t} - v \frac{\partial (v \lambda_{\mathrm{T}})}{\partial x} - A_{\mathrm{T}} \frac{\partial^2 \lambda_{\mathrm{T}}}{\partial x^2} + \varepsilon \lambda_{\mathrm{T}} = -\frac{\partial j}{\partial \mathrm{T}}$$

$$\nabla_{u} j = \frac{\partial j}{\partial u} + \int_{X} \int_{t_{0}}^{t_{1}} \lambda(x, t) \frac{\partial E(u, s, x, t)}{\partial u} dx dt$$
$$= - \int_{X} \int_{t_{0}}^{t_{1}} \lambda_{T} \frac{\partial^{2} T}{\partial x^{2}} dx dt \quad \text{for } u = A_{T}$$

use of control variables

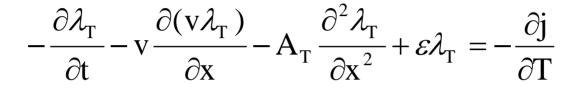
other than initial conditions



$$\nabla_{u} j = \frac{\partial j}{\partial u} + \int_{X} \int_{t_0}^{t_1} \lambda(x, t) \frac{\partial E(u, s, x, t)}{\partial u} dx dt$$
$$= - \int_{X} \int_{t_0}^{t_1} \lambda_T T dx dt \quad \text{for } u = \varepsilon$$

use of control variables

other than initial conditions



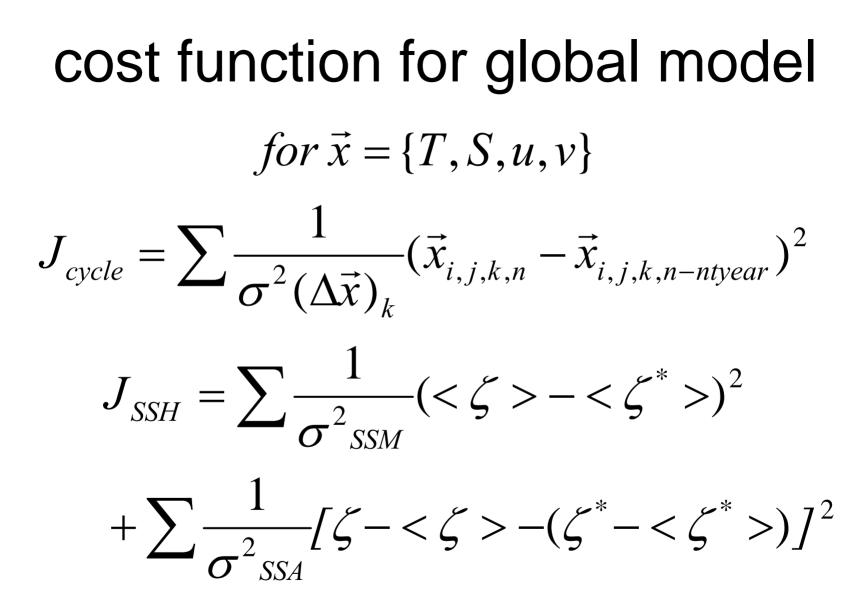
$$\nabla_{u} j = \frac{\partial j}{\partial u} + \int_{X} \int_{t_{0}}^{t_{1}} \lambda(x, t) \frac{\partial E(u, s, x, t)}{\partial u} dx dt$$
$$= - \int_{X} \int_{t_{0}}^{t_{1}} \lambda_{T} T dx dt \quad \text{for } u = \varepsilon$$

TASK: Ocean state during the 1993-2001

- Model: mass conserving (2° x 2°, 23 layers)
- Nine years (1993-2001) T/P altimeter referenced to GRACE
 + Reynolds surface temperatures + oceanic measurements
 are assimilated into the model
- Method: 4D VAR data assimilation
- As control parameters we use the model initial state and the model forcing (the first guess taken from NCEP)

cost function for global model

$$\begin{split} \mathbf{J} &= \mathbf{J}_{\text{misfit}} + \mathbf{W}_{\text{cycle}} \, \mathbf{J}_{\text{cycle}} + \mathbf{W}_{\text{bogus}} \, \mathbf{J}_{\text{bogus}} \\ &+ \mathbf{W}_{\text{SSH}} \, \mathbf{J}_{\text{SSH}} + \mathbf{W}_{\text{hmv}} \, \mathbf{J}_{\text{hmv}} + \mathbf{W}_{\text{atl}} \, \mathbf{J}_{\text{atl}} \\ \mathbf{J}_{\text{misfit}} &= \sum \frac{\mathbf{R}_{i,j,k}}{\sigma^2(\mathbf{T})_k} (\mathbf{T}_{i,j,k,n} - \mathbf{T}_{i,j,k,n}^*)^2 \\ &+ \sum \frac{\mathbf{R}_{i,j,k}}{\sigma^2(\mathbf{S})_k} (\mathbf{S}_{i,j,k,n} - \mathbf{S}_{i,j,k,n}^*)^2 \end{split}$$



cost function for global model

$$J_{hmw} = \sum_{sect} \frac{1}{\sigma^2(T)} (\langle T \rangle - T^*)^2$$

T denotes transports

$$\mathbf{J}_{\text{atl}} = \sum_{\text{sect}} \frac{1}{\sigma^2 (\text{atl})} (\Psi_{\text{m}} - \Psi_{\text{m}}^*)^2$$

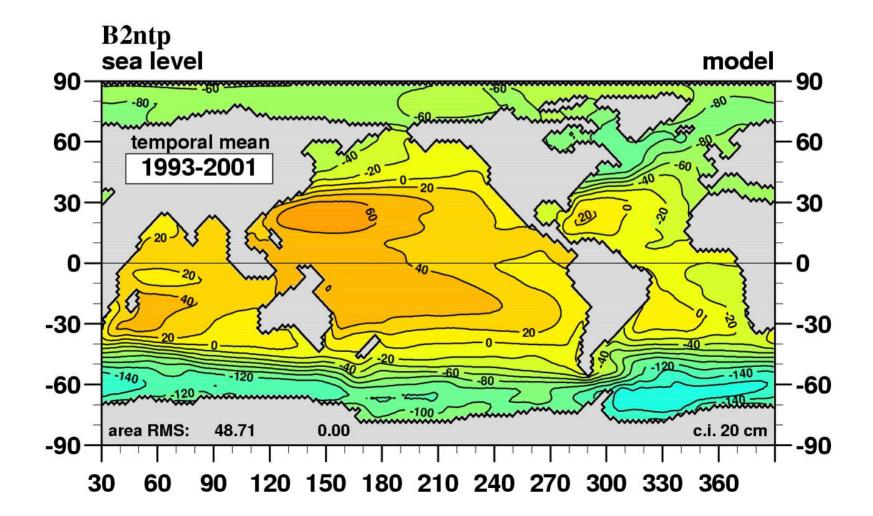
 $\Psi_{\rm m}$ denotes meridional streamfunction

$\begin{aligned} & \text{cost function for global model} \\ & J = J_{\text{misfit}} + W_{\text{cycle}} J_{\text{cycle}} + W_{\text{bogus}} J_{\text{bogus}} \\ & + W_{\text{SSH}} J_{\text{SSH}} + W_{\text{hmv}} J_{\text{hmv}} + W_{\text{atl}} J_{\text{atl}} \end{aligned}$

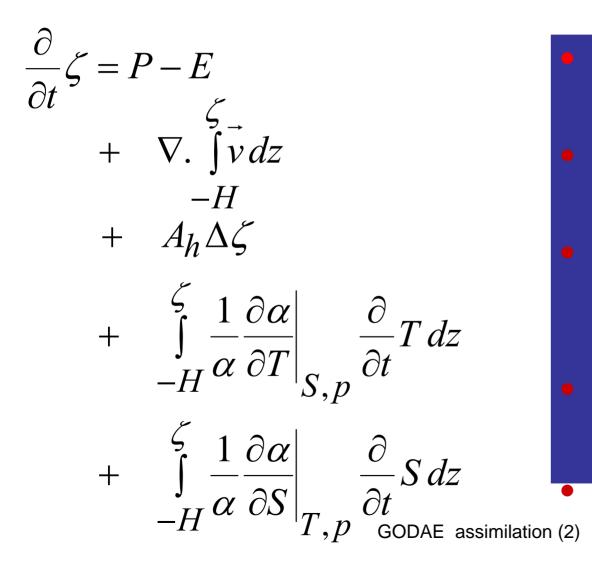
data are SST, SSH, T,S

section analysis, model free run

Mean sea level



local sea level changes due to:

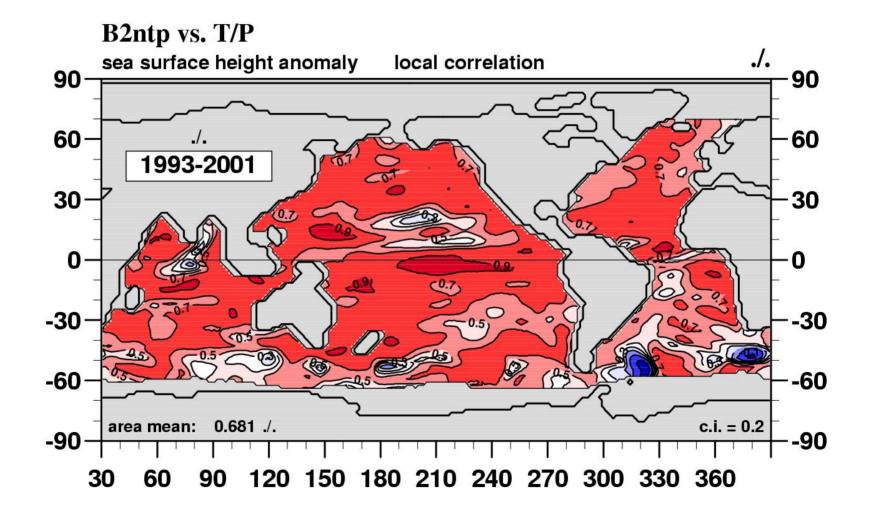


freshwater flux

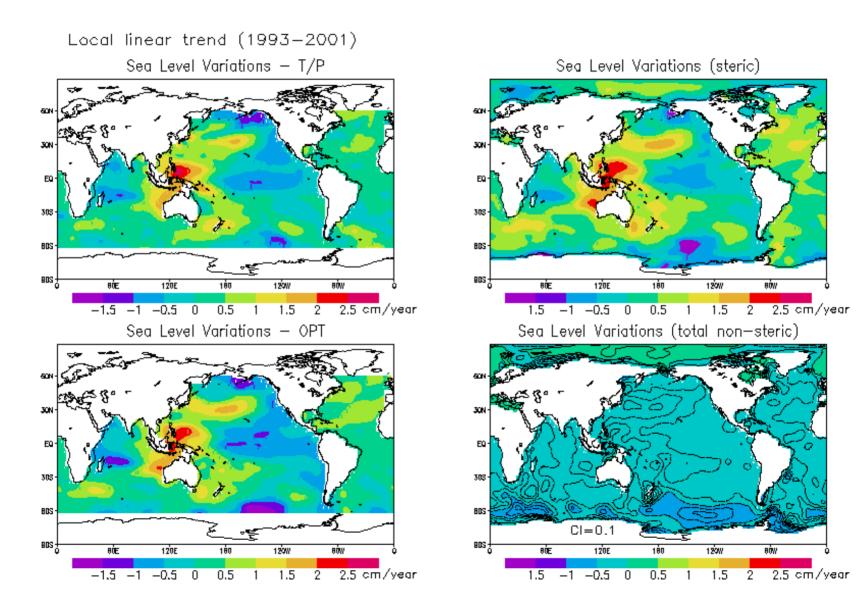
- divergence
- <u>sub grid gravity</u> <u>waves</u>

hermosteric

SLA correlation

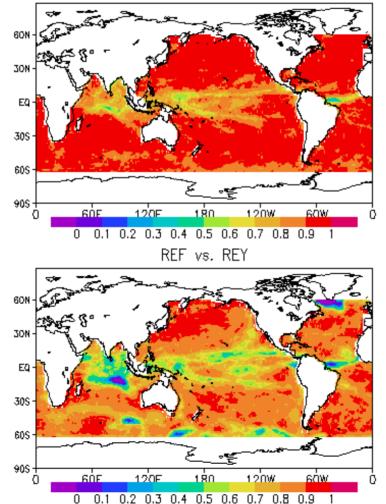


Sea level trends

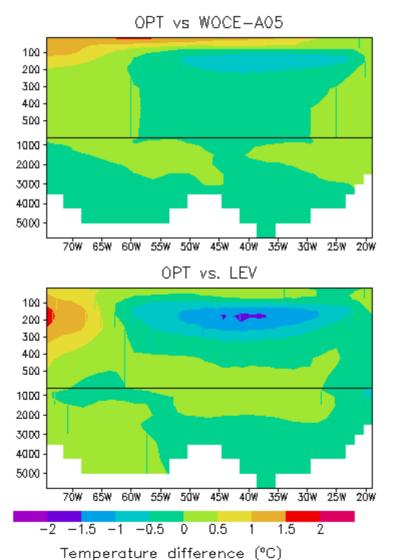


Correlation between Reynolds and model

OPT vs. REY



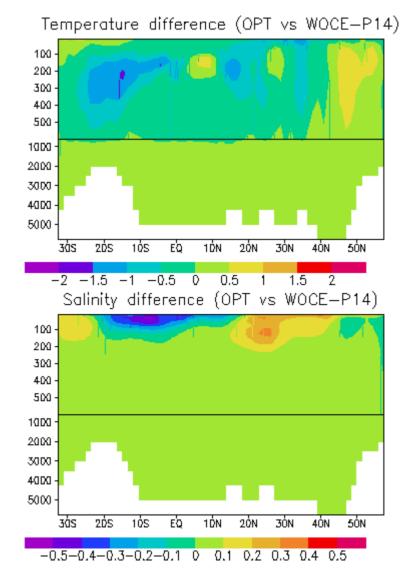
Temperature Difference - Atlantic Section (24.5 °N)



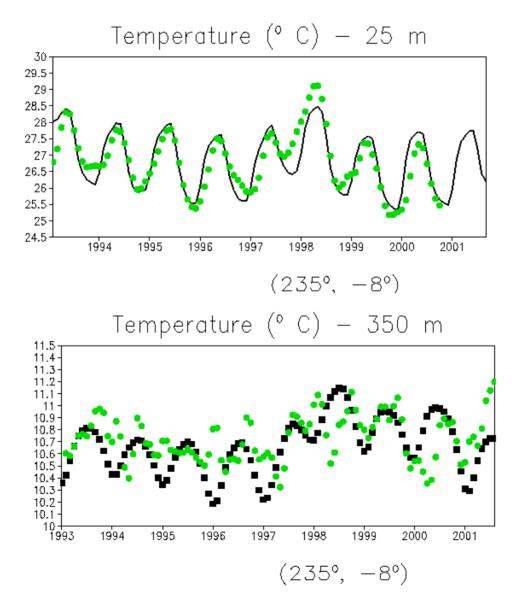
After assimilation

Before assimilation

OPT vs. WOCE- Pacific Section (179 °W)

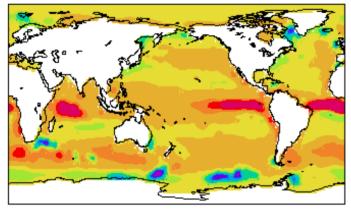


Temperature (OPT vs. TAO Data)

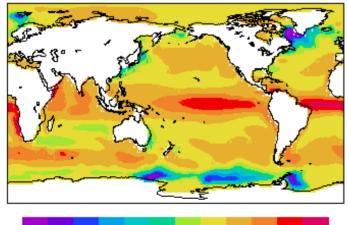


Heat flux

MEAN OPTIMIZED HEATFLUX (W/m²)

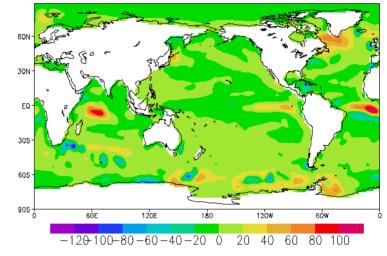


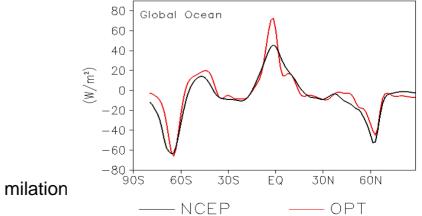
-175-150-125-100-75-50-25 0 25 50 75 MEAN HEATFLUX (W/m²)



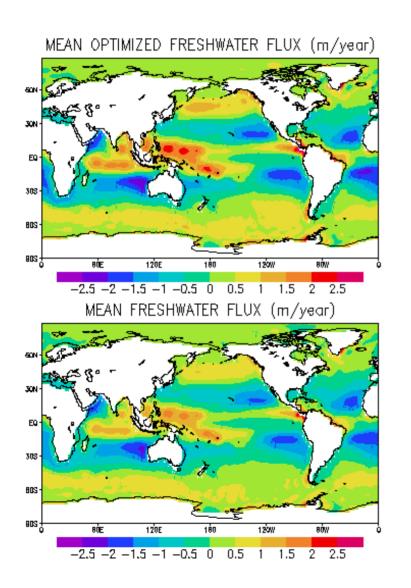
-175-150-125-100-75-50-25 0 25 50 75

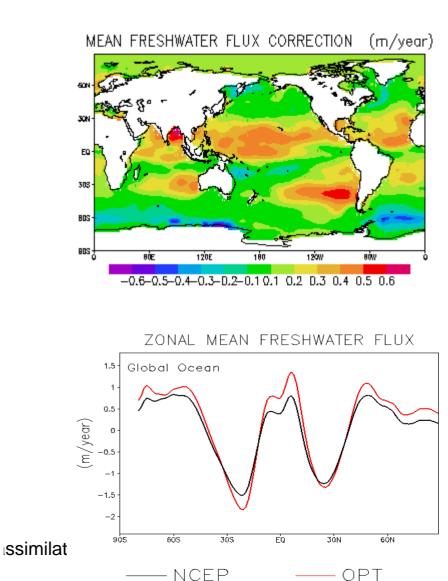
MEAN HEATFLUX CORRECTION (W/m²)



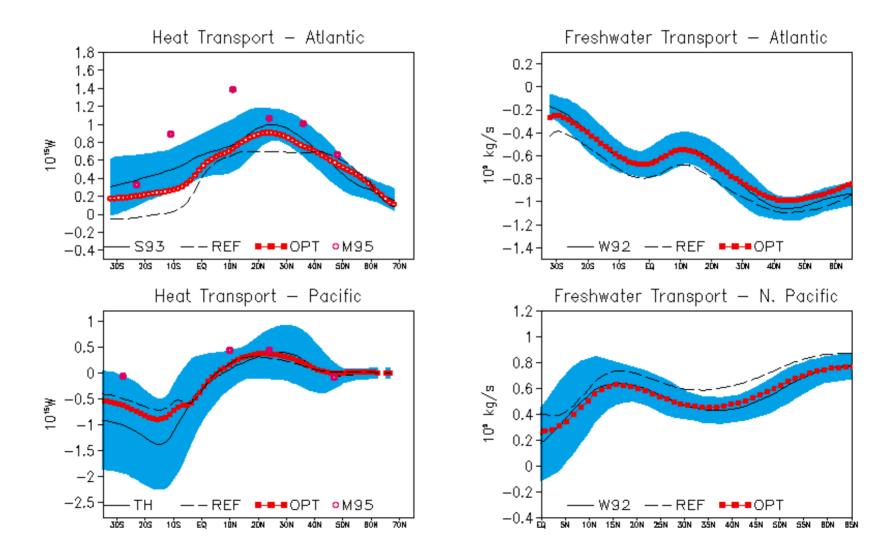


Freshwater flux

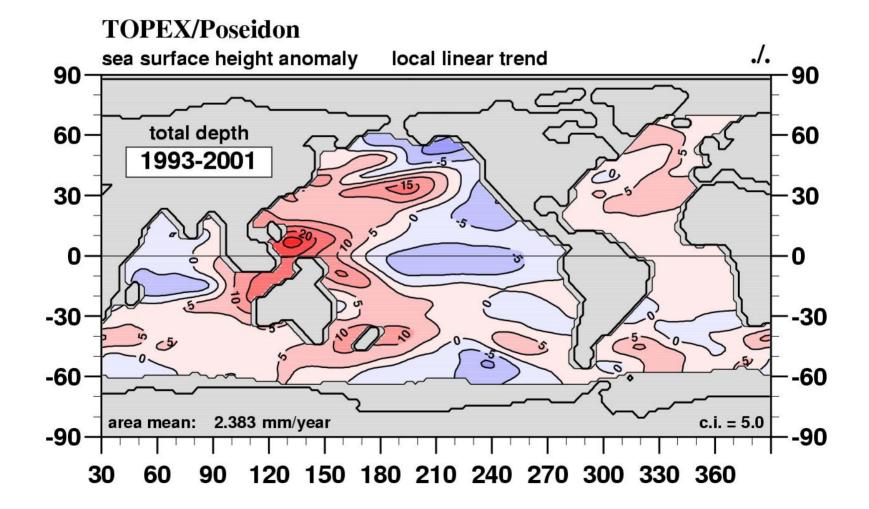




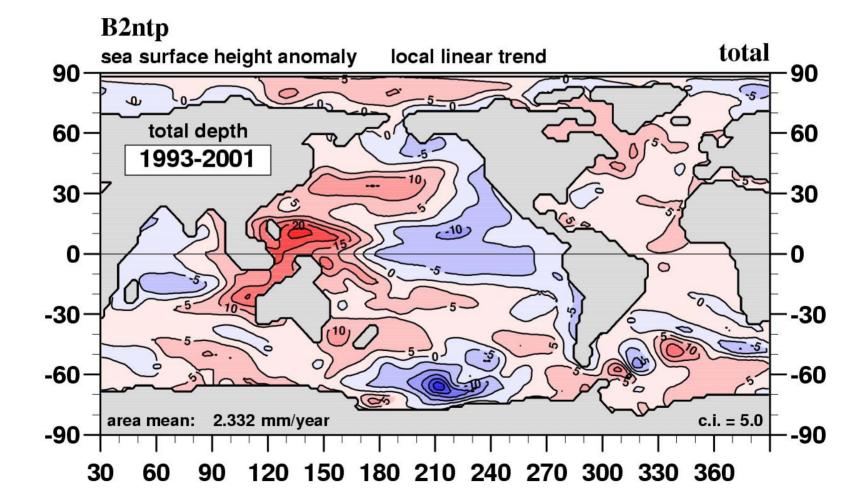
Heat and freshwater transport



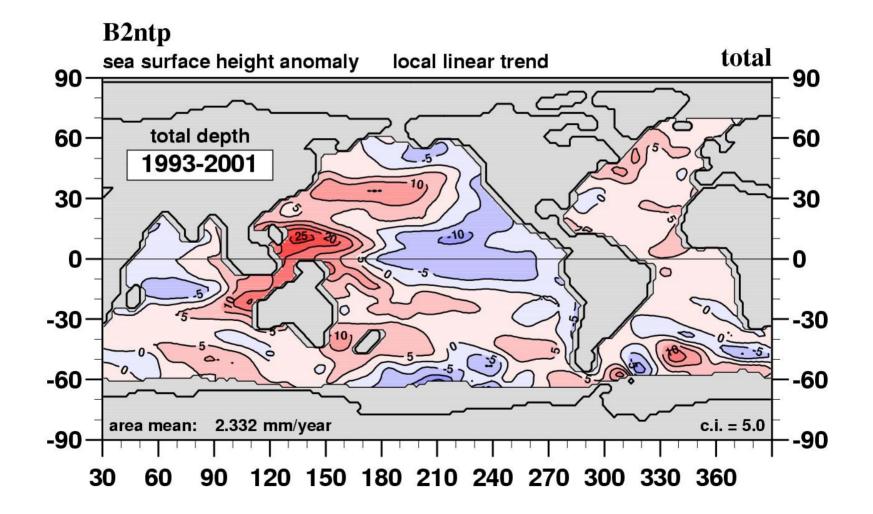
Observed sea level trend

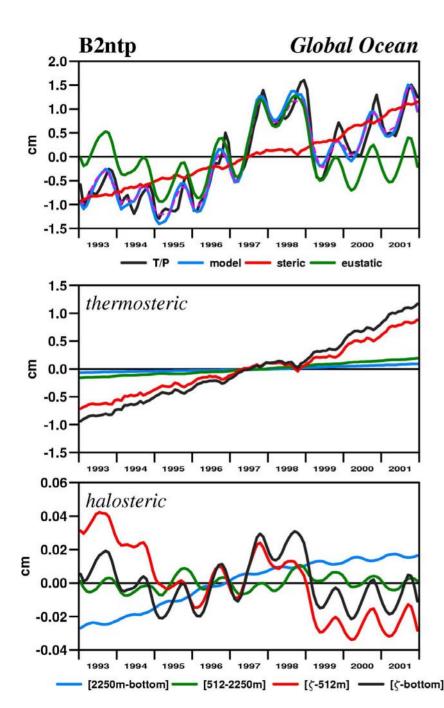


modelled sea level trend



modelled sea level trend



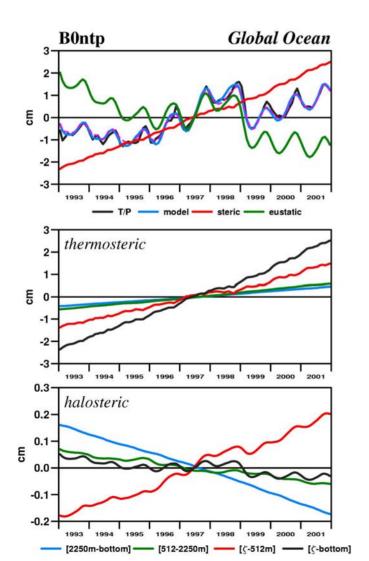


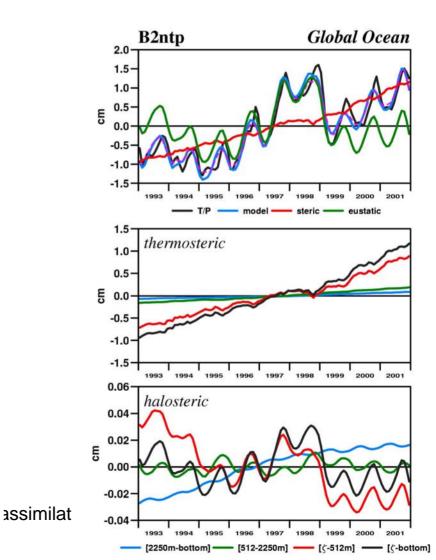
Global Mean Sea Level

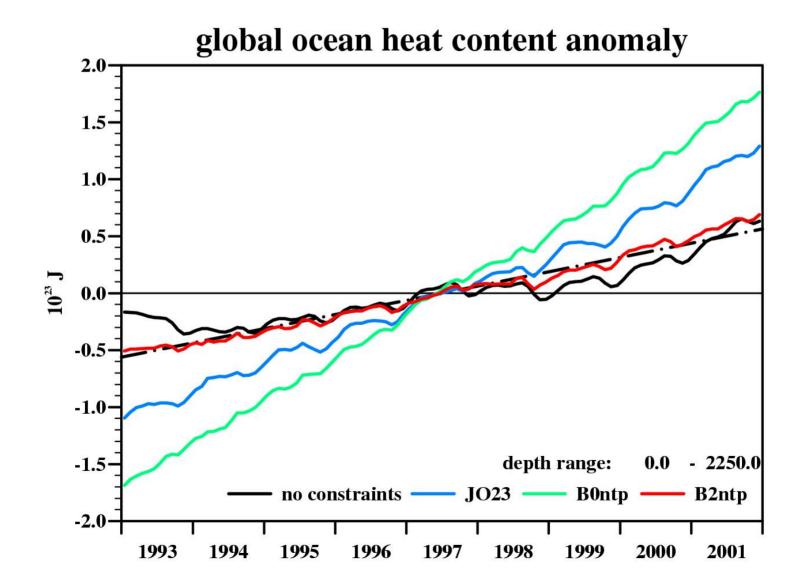
sea level rise is explained by thermal expansion

interannual variability and seasonal cycle are mostly eustatic³

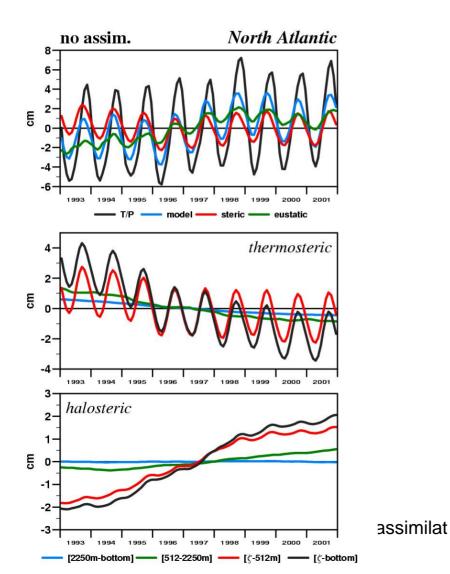
Global Mean Sea Level

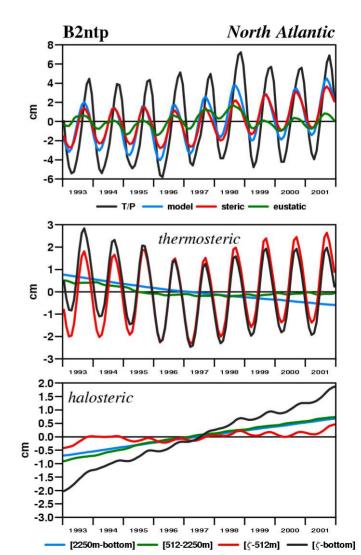




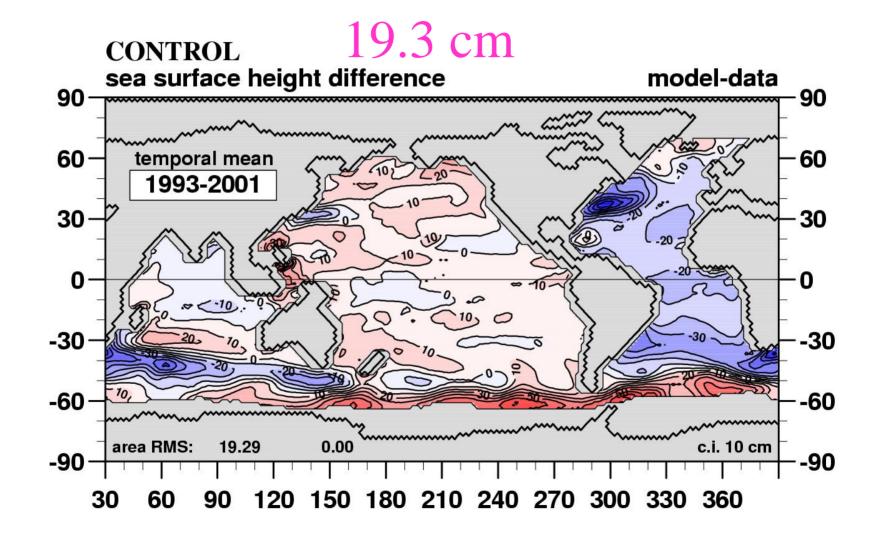


Mean Sea Level North Atlantic

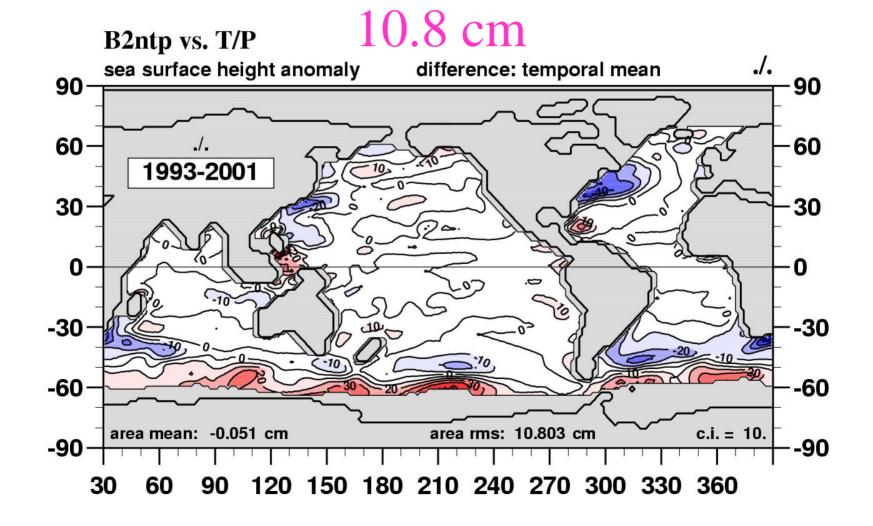




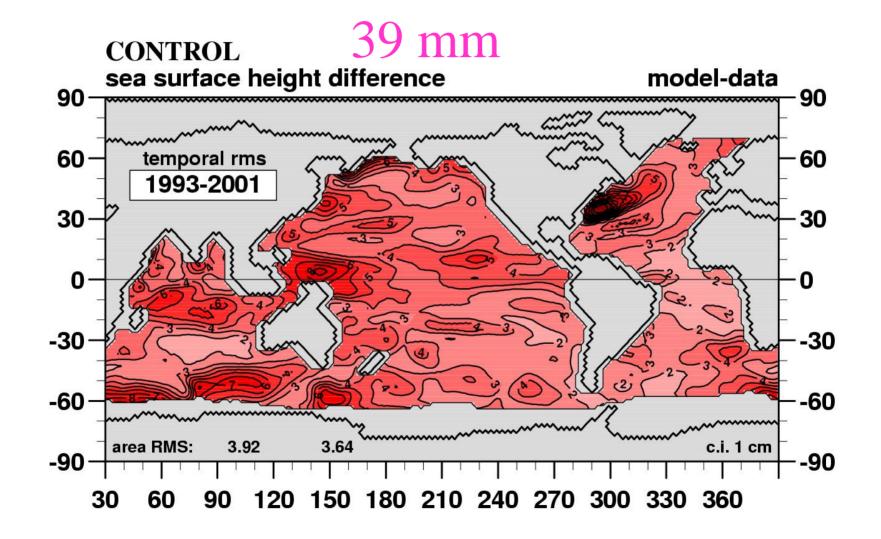
MSL difference (no assimilation)



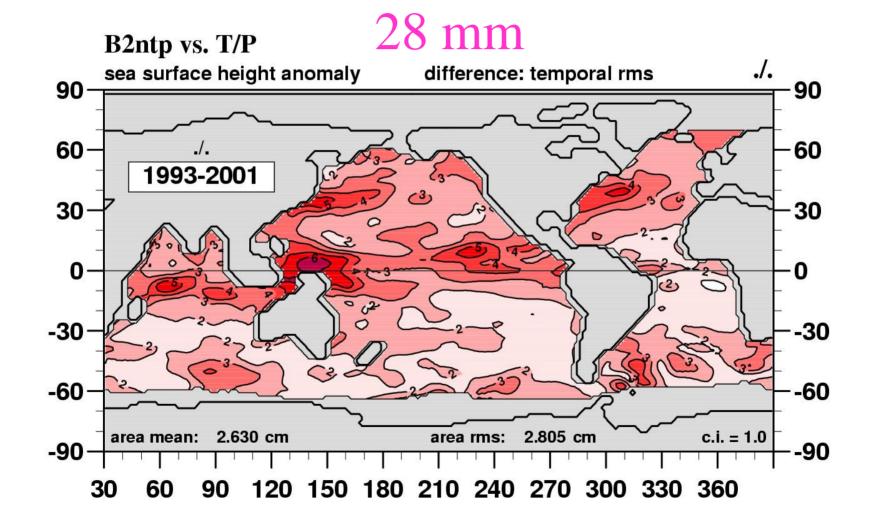
MSL difference (with GRACE)



SLA difference (no assimilation)



SLA difference (with GRACE)



Global Ocean Mass

