
AWI

Finite-Element Ocean 
circulation Model (FEOM)

Sergey Danilov, Sven Harig, 
Gennady Kivman, and Jens Schröter

Alfred Wegener Institute for
Polar and Marine Research,

Bremerhaven



Motivation:

• Complexity of coastal lines 
• Need for very high resolution in 

dynamically important regions 
• Sloping bottom topography

Finite-element discretization provides a framework 



Long history of using FE in tidal and coastal modeling 
(QUODDY, ADCIRC) :
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Main interest - surface
elevation
Main forcing – wind 
and tides      

⇓
Spatial scales
Typical integration –
a few months  

QUODDY mesh for the Gulf of Maine, 
the spatial resolution varies from 4 to 50 km 



FE (unstructured) models
• tides:  FESxx, Mog2D etc.
• shallow water: Untrimm, etc.
• coastal: Quoddy, Adcirc, Ricom

FVcom, SEOM, Elcirc…
• engeneering Delft
• convection etc. ICOM
• basin scale RAS, FEOM
• atmosphere ICON, Canda



Ocean GCM traditionally use Finite Difference approach

“... there are two general problems which have arisen when 
attempting to use unstructured grid in climate models. 
The first is that it is difficult to represent the geostrophic
balance correctly. ...
The second is that every change in grid spacing provides 
an opportunity for unphysical wave scattering....

... Unstructured grids have proven to be impractical for 
climate modelling.”         

Griffies et al., Development in ocean climate modelling, 
Ocean Modelling, 2000



10-years of FEOM on a grid with mean resolution of 0.5o



Boundaries are important!

Munk gyre circulation:
elevation differs by 
a factor of two due to
stepwise boundaries
(angle of rotation is 
only 3.4 degree)

Dupont et al., 2003



Topography is important!
Mean SSH with MOM 
full- and partial - cells 

Myers & Deacu, 2004



Horizontal discretization with triangles or quadrilaterals:
- accurate representation of coastlines and bathymetry 
- flexibility in local mesh refinement (no nesting)
- potential  adaptivity (IOM)

Depth, m



Horizontal discretization with elements 
of different type
--- low order or high order polynomial
--- staggered grids
--- FE or FV

Vertical discretization
like any FD model 
z ,sigma, s, hybrid



Perspectives
(a) geometry
In many places the ocean circulation is sensitive to the geometry 
and bottom topography of the ocean basin (e.g., Denmark Strait, 
Drake Passage). Unstructured grids seem to provide a tool  to 
explore the role of these features.     

(b) global model
Use a coarse global model with local refinement to avoid open 
boundaries.

(c) adaptivity and error control
‘Dynamical’ adaptivity seems to be expensive, but ‘static’ 
adaptivity is feasible 

(d) sea ice modelling
potential for better sea ice rheology, ridging, adaptive refinement



Basics of FE numerics
Representation of variables
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Ansatz for SSH

3D fields are expanded in series of analogous 3D 
basis functions defined on tetrahedra



Basics of FE numerics
Discretize equations as in spectral methods

• Substitute the expansions for variables in 
equations

• Require residuals be orthogonal to the 
basis functions

• Solve for unknown coefficients of the 
expansions



Variational formulation of the
advektion-diffusion equation

0T grad  divT gradTt =+⋅+∂ Kv

T~

project the equation onto piecewise
polynomial functions, multiply by
testfunction and integrate

0d ~  grad  div~  grad~ =Ω−⋅+∂∫
Ω

TTTTTTt Kv



Partial integration and Gauß-Theorem

∫
Ω

+Ω∂ d ~ TTt

∫
Ω∂

=Γ⋅− 0d  grad  ~ nK TT

−Ω+⋅+ ∫
Ω

d   grad  ~ grad~  grad TTTT Kv

Massmatrix
(symmetric)

Stiffnessmatrix
(unsymmetric
by v-entries)

boundary conditions
(this integral is evaluated
and put to the
right hand side)



Basics of FE numerics
1D example:

• Equation 

• FE-discretization on a uniform grid with grid size h
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Weighting over neighbours Central differences

☺ same stencil for all terms reduced dispersion
necessity of matrix inversion



Basics of FE numerics
Advection scheme
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(a) – central differences, (b) QUICK, (c) – unstabilized FE, (d) –
stabilized FE, (e) – overstabilized FE; (f) – the exact dispersion



Finite elements vs. finite differences:

Need for assembling matrices

Need for effective preconditioners and solvers 

On unstructured grids computing RHS is more 
expensive than with finite difference method

Parallelization of matrix assembly and RHS 
computation is relatively straightforward, 
effective parallelization of factorization and 
solvers is feasible, but requires special efforts.



Vertical discretization

Full cells (generally used, 
no pressure gradient errors)

Partial cells (a few examples) 

Shaved cells  (not yet used
in climate studies)

At the cost of pressure gradient  errors in 
the lowest cells:



Vertical discretization
Surface triangle defines
a prism

Possibilities to proceed:
(a) full prisms and z-levels
(analogous to MOM, POP, HOPE, 
MITgcm, OPA) 

stepwise bottom 
(b) full prisms and terrain
following levels (analogous to POM,
ROMS)

pressure-gradient errors
(c) cut bottom prisms, and z-levels 
(analogous to shaved cells of 
MITgcm)



Vertical discretization
No errors in pressure gradients 
due to variable horizontal 
resolution

A full prism is divided
into three tetrahedra

FEOM uses tetrahedra - the most 
flexible yet expensive way 

A prism cut by bottom
is represented by one
or two tetrahedra



Advection of a 
temperature anomaly

Gaußian temperature anomaly in a divergence free
velocity field in a regular and unstructured mesh



velocity field

3D, but
independent 
of depth





application to the DOME setup
(Dynamics of Overflow Mixing and 

Entrainment)



Surface grid



Vertical discretization and initial
temperature stratification



Isosurface of marker







3D view of the North Atlantic  mesh
Resolution 0.2o – 1.5o

Mean resolution 0.5o



Horizontal discretization with triangles:
--- accurate representation of coastal lines 
--- flexibility in local mesh refinement
--- potentiality in adaptivity (not yet used)
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Basic features of FEOM

• Primitive equations
• Rigid lid and free surface options
• 2D unstructured triangular mesh
• Vertically aligned nodes
• Tetrahedral elements
• z-levels with inclined bottom (any level system can 

be used in principle without modifying the code)
• Backward Euler time stepping (to be replaced with 

Cranck-Nicolson method)



Specific features of the NA version
• Richardson number dependent vertical diffusion
• Convection via enhanced diffusion (1 m2/s)
• Smagorinsky horizontal viscosity
• Background horizontal viscosity and diffusion 25 m2/s
• 0.2 ° - 1.5 ° resolution (16000 surface nodes)
• 23 z-levels ( 220000 3D nodes)
• Time step 2 h for (u, v, ζ) and 1 h for (T, S) in the 

rigid lid mode  



POP 0.1 POP 0.28

POP 0.1o >FEOM 0.5o>POP 0.28o

•Azores Current
•Recirculation
•NA current
•Sub-polar gyreFEOM 0.5

Mean SSH



Comparison with 
DYNAMO models

(a) LEVEL
(b) ISOPYCNIC
(c) SIGMA
(d) SIGMA (snapshot)



SSH variability MOM  (Oschlies, 2002) 

FEOM
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Meridional overturning

POP 0.1o

DYNAMO
SPEM

DYNAMO MOM DYNAMO MICOM

FEOM



Meridional heat transport

POP 0.1o

DYNAMO
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Zonal velocity cross-section at 30o W (Azores Current)
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Salinity section at 35o N: Comparison with DAMÉE and A03 

FEOM

A03



Western boundary currents at 27o N

FEOM LEVEL ISOPYCNIC

Core velocities are about 
1 m/s for the Florida 
Current 

-13 cm/s -7 cm/s

-15 cm/s

SIGMA

-12 cm/s

FC DWBC

FEOM 37 17

LEVEL 35 17

SIGMA 36 16

ISOPYCNIC 38 11

Transports:



Numerical cost and parallelization
MPI parallelization 
Scalability:

Vectorization --- future 
perspective. It requires
sparse vectorized solvers
and optimization of indirect
addressin

Current cost 3.5 h per 
model year on 32 PE 
of IBM pSeries 690  
(Hannover) 
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Conclusions

FEOM is the first 3D FE primitive equation OGCM based on 
unstructured mesh 

⇓
(i) Variable resolution and smooth coastal line
(ii) Inclined bottom within z-coordinate 

⇓
Finite-elements could be used in climate ocean 

modelling
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