In-situ observations: processes and methods

Uwe Send

GODAE Summer School La Londe, Sept. 2004

Objectives:

Provide an understanding for the need of in-situ observations, and of the options for obtaining sustained in-situ data.

Strong complimentarity between remote sensing and in-situ data

spring plankton bloom

The lecture will present....

1) Examples where satellite observations depend on or are enhanced by in-situ data

2) Additional variables or processes that cannot be observed from space

Will naturally guide through some of the platforms and sensors...

Satellite Altimetry

Sea surface height (SSH) consists of

- the steric (dynamic height $\overline{H_{dyn}}$) contribution of T and S
- a barotropic flow component (reference level pressure P_{ref})

Symbolically $SSH = P_{ref} + H_{dyn} = SSH' + SSH$

Altimetry has good spatial and temporal coverage but cannot determine

- steric and non-steric components
- mean SSH field (relative to geoid)
- T and S contributions (spiciness)
- interior structure (vertical distribution) of H_{dyn}

Profiling float data can help resolve these issues

Symbolically

Compare SSH[•] and float H[•]_{dyn}:

scatter is a measure for non-steric contributions (plus errors)

> large barotropic contributions at high latitudes

(from P.-Y. Le Traon)

Deep mean flow (p_{ref}) from float trajectories :

(from R.Davis)

Example of float salinity timeseries (2 years) in Mediterranean outflow

R

Various models of floats exist now:

- up to 4 years life
- up to 180 profiles
- profile depth currently up to 2000m

<u>ARGO</u>

A global system of floats, on average one per 300x300km, i.e. total of over 3000 floats. Profiling every 10 days.... i.e. 3000 new profiles every 10 days !

Sampling Issues:

- Sensor stability: no post-calibration possible, sensor-offsets/drifts need to be detected by comparison with other measurements in the region
- 2) Bias due to preferred/more frequent observations in convergent regions

3) Stokes-drift due to spatial gradients in oscillating flow fields

5) Not true deep trajectories:

Deployment also from commercial vessels

and from airplanes

Both global mean circulation and SST reference data are provided by the surface drifter program

www.aoml.noaa.gov/phod/dac/dac.html

STATUS OF GLOBAL DRIFTER ARRAY

- SST ONLY
- SST/SLPSST/SLP/WIND

GLOBAL DRIFTER PROGRAM

Global mean geostrophic surface circulation from 10 years of surface float data:

(P.Niiler)

The models also require <u>subsurface</u> temperatures (and densities).

• ARGO provides some with coarse temporal (10days) and spatial (300km) resolution.

Better spatial sampling:

ship sections (research vessels or Volunteer Observing Ships)

High-resolution XBT network from VOS

XBT: expendable profiling temperature sensor, profile depth normally 800m

<u>Surface</u> measurements from VOS also available for many other variables (S, O2, CO2, plankton, etc) via pumped hull intake. Research vessels can reach remote areas, stop, takes samples, handle heavy equipment, but are expensive and slow/not many (the WOCE survey below took 10 years).

WOCE Experiment

Better temporal sampling for subsurface temperatures: Moored instruments

Time-depth plot of temperature in central Labrador Sea over 7 years

Moorings can sample with high rate, from surface to bottom, and can carry heavy instruments

Computer animation of a subsurface mooring

8

Some larger moored instruments (sound sources)

Fixed-location instruments may also be bottom-deployed

Since expensive to install and maintain, timeseries sites (or "ocean observatories") are most useful for monitoring processes and changes in

- important/critical locations, or
- places representative of ocean "provinces"

Ecological Ocean Provinces

Surface chlorophyll from CZCS

57 provinces on the basis of:

Vertical distribution of Chl from 21,000 profiles Mixed layer depth from NOAA-NODC archive Surface nutrients Brunt-Vaisala

Longhurst 1995

Third complementarity with remote sensing: chlorophyll

[uM N/m³]

Chl-a

-119 -118

Ecosystem models clearly need observations on chlorophyll, nutrients, etc...

CalCOFI in Situ

I.Robinson showed that satellite chlorophyll estimates need in-situ data

- since large uncertainties (30% in best cases)
- no data in cloud-covered regions or such periods
- uncertain about vertical integration (light penetration, deep Chl maximum, etc)

Can be provided by moorings or gliders....

0.5

Underwater gliders:

for long repeat sections or profiling in fixed location, now in prototype stage.

Test of a glider in a lake

Spray Characteristics

Length	200 cm	
Wing Span	90 cm	
Mass	52 kg	
52 Lithium DD Cells	13 MJ, 12 kg	
GPS Navigation	± 100 m	
Iridium Data Relay	1 kbyte in 2 minutes	
Buoyancy	150 gm	50 gm
Glide Angle	25°	18º
Horizontal Velocity	39 cm/s	20 cm/s
Cycles in Life ⁽¹⁾	865	1300
Range ⁽¹⁾	2900 km	6000 km

In a typical 1-km dive cycle a glider advances 4 to 6 km.

Integrating techniques:

Geostrophic transport integrals between moorings

Bottom Pressures from 3 sensors 2000-2001:

agreement to a few mm over 5000m $= 5 \times 10^{-7}$

1

057

Horizontal integration by sound transmission

Acoustic tomography principle

Transmitter

Receiver

Coastal Radar: Technical details

- Compact Tx & Rx antennae
- 360-degree view
- Nominal range 50 km (other systems exist with over 100km)
- 2-3 km spatial resolution
- 1-hr integration time
- 13 MHz carrier frequency
- Measures currents in the upper metre
- Measures sea state up to the saturation limit at $H_{\rm s} \sim 7.5$ m

Sampling characteristics of the platforms

Platform	strengths	weaknesses
Research vessels (\$25000/day)	 can take samples handle/deploy heavy equipment reach remote areas (use like VOS) 	 very sparse sampling expensive (too much for operationa obs, but needed for servicing)
VOS (free)	 high resolution along repeat tracks for surface reading many variables 	 tracks not always where wanted tracks may change, they don't stop no subsurface except T (800m)
Surface drifters (\$2000 ?)	 global coverage rapid sampling in time low-cost, robust technology 	 sparse spatial sampling only surface obs limited variables (T, air p, S)
Floats (\$15000+5000)	 global coverage vertical profiling to mid-depth "cheap" so large numbers feasible 	 coarse x,y,t resolution limited weight/power for sensors avoid or quickly leave certain region
Moorings (\$250000)	 high time resolution, surface to bottom many variables possible can monitor adverse/difficult locations re-calibrations, so can be reference 	 no x,y resolution expensive, incl. ships needed large technical effort/few groups
Gliders (\$70000)	 good sampling along tracks free choice of track, can be steered small sensor suite feasible 	 very slow (20-25cm/s) limited depth range and variables
Integrals	 integrate over long distances good time resolution 	 expensive limited variables and places possibl
Coastal radars	 good x,y,t resolution land based 	 limited coverage only surface, only currents and way

Example tasks: Assume the goals are to

1) Monitor water mass formation

2) Detect coastal eddies and their impact on the ecosystem

3) Observe the outflow through the strait of Gibraltar

4) Collect observations under the ice

Some technological aspects to remember:

data telemetry

Now feasible for most platforms

Advanced sensors

¹⁴C Primary Production Measurements(C. Taylor)

CO₂ sensor (M. DeGrandpre)

Optical (Dickey) and O₂ sensors (Wanninkhof)

Essential for further developments:

Minituarization of sensors

 Biogeochemical sensors that are small, low-power, "dry" (optical, acoustic, chips)

Optical O₂ sensor

MEMS chip

Micro-humidity sensor (JPL)

Some sensors can now be installed on floats (and gliders)

First O₂ optode profiles from floats (Labrador Sea).

(A.Koertzinger, J.Schimanski)

The challenge ahead is the integration of the various components

Sampl	ing characteristics of t	the platforms
Platform	strengths	weaknesses
Research vessels (\$25000/day)	 can take samples handle/deploy heavy equipment reach remote areas (use like VOS) 	 very sparse sampling expensive (too much for operational obs, but needed for servicing)
VOS (free)	 high resolution along repeat tracks for surface reading many variables 	 tracks not always where wanted tracks may change, they don't stop no subsurface except T (800m)
Surface drifters (\$2000 ?)	 global coverage rapid sampling in time low-cost, robust technology 	 sparse spatial sampling only surface obs limited variables (T, air p, S)
Floats (\$15000+5000)	 global coverage vertical profiling to mid-depth "cheap" so large numbers feasible 	 coarse x,y,t resolution limited weight/power for sensors avoid or quickly leave certain region
Moorings (\$250000)	 high time resolution, surface to bottom many variables possible can monitor adverse/difficult locations re-calibrations, so can be reference 	 no x,y resolution expensive, incl. ships needed large technical effort/few groups
Gliders (\$70000)	 good sampling along tracks free choice of track, can be steered small sensor suite feasible 	 very slow (20-25cm/s) limited depth range and variables
Integrals	- integrate over long distances	- expensive
Coastal radars	- good time resolution - good x,y,t resolution - land based	 limited variables and places possib limited coverage only surface, only currents and way