New Features of HYCOM

Alan J. Wallcraft Naval Research Laboratory

2005 Layered Ocean Model Users' Workshop

January 28, 2005

HYCOM 2.2 (I)

- First public release of HYCOM 2.2
 - Scheduled for February, 2004
- Maintain all features of HYCOM 2.1
 - Orthogonal curvilinear grids
 - Can emulate Z or Sigma or Sigma-Z models
 - Explicit support for 1-D and 2-D domains
 - KPP or Kraus-Turner or Mellor-Yamada 2.5 or Price-Weller-Pinkel
 - Rivers as bogused surface precipitation
 - Multiple tracers
 - Off-line one-way nesting
 - Scalability via OpenMP or MPI or both
 * Bit-for-bit multi-cpu reproducibility
- New diagnostics within HYCOM
 - Time-averaged fields (in archive files)
 - Drifters

HYCOM 2.2 (II)

- Alternative scalar advection techniques
 - Donor Cell, FCT (2nd and 4th order), MPDATA
- Vertical coordinate changes
 - Vertical remapping uses PLM for fixed coordinate layers
 - Thin deep iso-pycnal layers
 - Spatially varying iso-pycnal layer target densities
 - Stability from locally referenced potential density
- Atmospheric forcing changes
 - Option to input ustar fields
 - Option to relax to observed SST fields
 - Improved COARE 3.0 bulk exchange coefficients
 - Black-body correction to longwave flux
- Mixed layer changes
 - GISS mixed layer model
 - KPP bottom boundary layer
 - KPP tuning
 - Latitudinally dependent background diffusion

HYCOM 2.2 (III)

- Improved support for rivers
 - Still bogused surface precipitation
 - Better control of low salinity profiles
 - Option for mass (vs salinity) flux
- Nesting no longer requires co-located grids
 - General archive to archive horizontal interpolation
- Hybrid to fixed vertical grid remapper
 - Allows fixed-coordinate nests inside hybrid coordinate outer domains
 - * HYCOM to (fixed-grid) HYCOM
 - * HYCOM to NCOM
- Diagnostic fields to netCDF and other file formats
 - All x-y "hycomproc" fields
 - * Layer space
 - * Velocity interpolated to the p-grid
 - All 3-D archive fields interpolated to z-space
 - * On p-grid, or
 - * Sampled along arbitrary tracks
 - Forcing input fields

HYCOM CURVILINEAR GRIDS and NetCDF

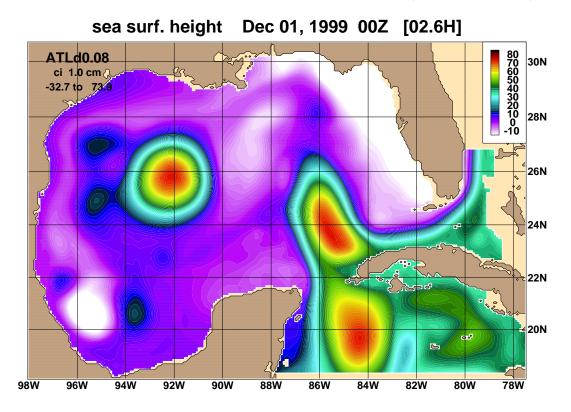
- Most basin-scale cases use a Mercator grid
 - 1-D lat & lon axes (rectilinear)
 - Handled well by many netCDF packages
- Global HYCOM's Arctic patch grid is curvilinear
- HYCOM netCDF use the CF-1.0 conventions, which support curvilinear grids
 - If latitude and longitude are 2-D grids
 - * 1-D axes are array indexes
 - * Longitude and latitude arrays are also in the file and identified as alternative coordinates
- Most netCDF packages are not CF-1.0 aware
 - Can plot in "logical" (array) space
 - Interpolate to a 1-D latitude and longitude grid off-line
 - * General archive to archive horizontal interpolation
- Archive to archive remapper can also be used for standard (non-native) grids
 - MERSEA grid is uniform 1/8°
 - \circ AOMIP grid is rotated uniform 1/2 $^\circ$

HYCOM PERFORMANCE

- Our 1/12° global domain is very large
 - Array size: 4500 x 3298 x 28
- Used in scalability study on 3,000 cpu IBM POWER4+
 - Large horizontal array extent scales well
 - Limiting factors are:
 - * Halo exchanges
 - * Global sums
 - * I/O
- I/O performance most likely to improve
 - MPI-2 I/O limited by need to write data void values over land
 - MPI-2 I/O can have "holes", but can't fill them with data voids
 - Easier to improve read performance than write performance
 - * writes are more important
 - Best approach may be asynchronous I/O (ESMF)

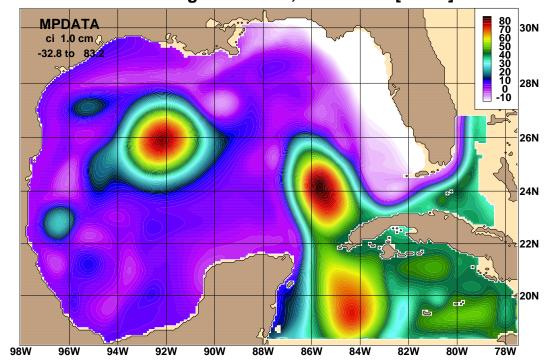
GLOBAL HYCOM BENCHMARK ON IBM P655

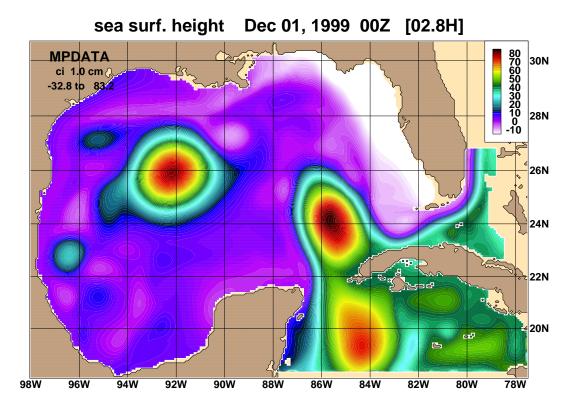
MPI Tasks	8-CPU NODES	WALL-TIME seconds	SPEEDUP
504	63	1515.1	(1.7 GHz)
1006	126	946.9	1.60x 504
2040	255	587.2	1.61x1006


• I/O time is constant: 80 seconds

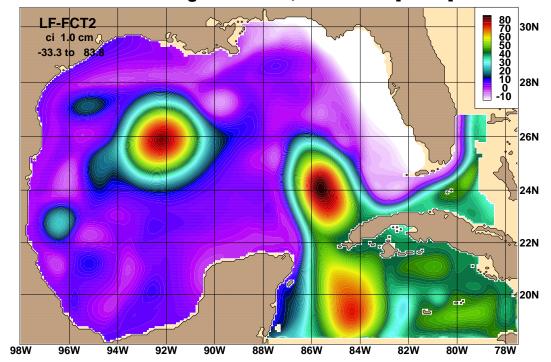
 \circ 5% to 15% of total time

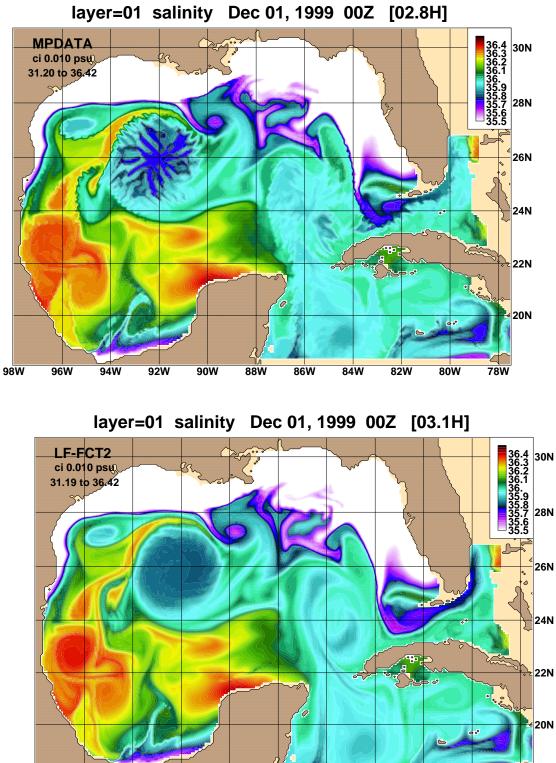
- Global sum time increases: 15 to 30 seconds
- Halo exchange time decreases, 175 to 100 seconds


GoM NESTED TEST DOMAIN


- Same resolution nesting unexpectedly useful
 - No need to rerun large domain
 - Change atmospheric forcing (e.g. use MM5)
 - Change vertical structure
 - Tracer studies (e.g. add biology)
- 1/12°: Gulf of Mexico inside Atlantic
 - Change from 20m to 5m coastline
 - Run for Aug 1999 to equilibrate
 - Run Sep-Nov as standard test case
- Used to test advection schemes
- All needed file are prebuilt
 - o ftp://hycom.rsmas.miami.edu/awall/hycom/GOMd0.08/
 - Uses 2.1.20, and 2.1.27 is also available
 - Easiest way to get latest "unreleased" code
 - Includes a passive tracer

ATLANTIC vs GOM NEST (MPDATA)


sea surf. height Dec 01, 1999 00Z [02.8H]



MPDATA VS LEAPFROG-FCT (SSH)

sea surf. height Dec 01, 1999 00Z [03.1H]

88W

86W

84W

82W

80W

78W

MPDATA VS LEAPFROG-FCT (SSS)

94W 92W 90W

98W

96W

CANDIDATE FEATURES FOR HYCOM 2.3

- Stable-code vs new features
 - Released code-base has to be tested and stable
 - New features can be a significant improvement
 - Will add interim releases to web page
 * Features may be removed in next released code
- Fully region-independent
 - Compile once, run on any region and any number of processors
 - Needed for full ESMF compliance
- Improve split-explicit time scheme
- Tidal forcing
- Diurnal heat flux cycle
- Equation of state that is quadratic in salinity
- Even better support for rivers
- Wind drag coefficient based on model SST
- Initial support for ESMF

HYCOM AND ESMF

- Earth System Modeling Framework http://www.esmf.ucar.edu/
 - Superstructure couples components
 - * Air/Ocean/Ice/Land
 - * Asynchronous I/O component
 - · Run "concurent" with model components
 - Infrastructure provides data structures and utilities for building scalable models
- Add a superstructure "cap" to HYCOM
 - Simplifies coupled systems
 - * HYCOM coupled to LANL CICE sea-ice
 - Convert atmospheric field processing and the energy-loan ice model into ESMF components
 - Use ESMF for (user-level asynchronous) I/O
 - Interoperate with other ESMF compliant ocean models (e.g. HOME)
- This initial ESMF support will probably be optional
- ESMF may be required to run HYCOM at some point
 - Harder to get started with HYCOM
 - Will provide many new capabilities