# **New Features of HYCOM**

Alan J. Wallcraft
Naval Research Laboratory

11th HYCOM Consortium Meeting

April 26, 2007

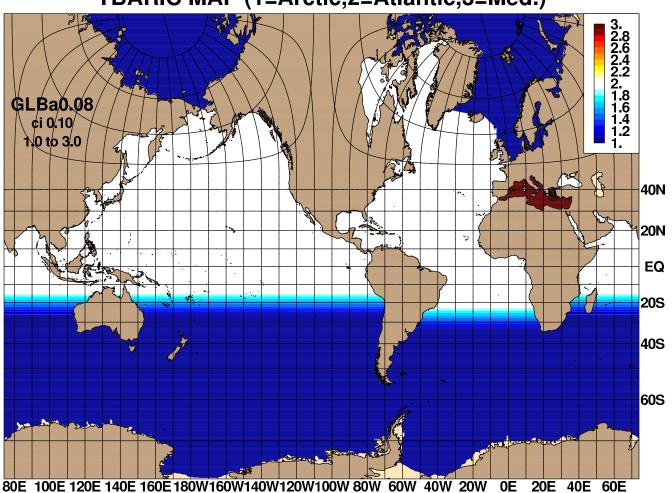
## **HYCOM 2.2 (I)**

- Maintain all features of HYCOM 2.1
  - Orthogonal curvilinear grids
  - Can emulate Z or Sigma or Sigma-Z models
    - It is "Arbitrary Lagrangian-Eulerian", see:
       Adcroft and Hallberg, O. Modelling 11 224-233.
  - Explicit support for 1-D and 2-D domains
  - KPP or Kraus-Turner or Mellor-Yamada 2.5 or Price-Weller-Pinkel
  - Rivers as bogused surface precipitation
  - Multiple tracers
  - Off-line one-way nesting
  - Scalability via OpenMP or MPI or both
    - Bit-for-bit multi-cpu reproducibility

## **HYCOM 2.2 (IIa)**

- Alternative scalar advection techniques
  - Provided by Mohamed Iskandarani
  - Donor Cell, FCT (2nd and 4th order), MPDATA
  - FCT2 replaces MPDATA as standard scheme
- Vertical coordinate changes
  - Vertical remapping uses PLM for fixed coordinate layers
  - Thin deep iso-pycnal layers
  - Stability from locally referenced potential density
  - Spatially varying layer target densities
    - Different isopycnal layers in semi-enclosed seas

#### **HYCOM 2.2 (IIb)**


- Equation of state that is quadratic in salinity
  - HYCOM must "invert" the equation of state
    - tofsig(r,s) and sofsig(r,t)
  - Traditional version is cubic in T and linear in S
    - Finding the root of a cubic is expensive, but exact
    - Linear in S is not accurate at low salinity
  - Optional version is cubic in T and quadratic in S
    - Coefficients provided by Shan Sun
    - More accurate at low salinity
      - · Rivers, Black Sea, Caspian Sea
    - Not much more expensive
- Pade equation of state
  - $\circ$  Optional Pade version:  $P_{22}/Q_{11}$ 
    - $\diamond P_{22}$  is quadratic in T and S
    - $\diamond Q_{11}$  is linear in T and S
  - Developed at NCEP
    - Only Sigma0 at present
  - More accurate at low salinity

#### **HYCOM 2.2 (IIc)**

- Special halo exchange for tripole global grid
  - Arctic dipole patch on standard Mercator globe
  - o Logically rectangular domain
    - Two halves of top edge "fold" together
    - V-velocity changes sign across the fold
- Improved thermobaricity
  - No single reference state is appropriate for the global ocean
    - Hallberg, Ocean Modelling, 8, 279-300
  - Use a linear combination of pressure gradients from two out of three reference states
    - ♦ Atlantic (3°C, 35.0 psu)
    - ♦ Arctic/Antarctic (0°C, 34.5 psu)
    - ♦ Mediterranean (13°C, 38.5 psu)
  - Most locations use just one reference state
    - Linear combinations allow smooth transition between states
      - · Do this in shallow water if possible
  - In deep water, constrain the T&S used for thermobaricity to be close to the reference state

# 1/12° GLOBAL THERMOBARIC REFERENCE STATE





## HYCOM 2.2 (IIIa)

- Mixed layer changes
  - GISS mixed layer model
    - Provided by Armando Howard
  - KPP bottom boundary layer
    - Provided by George Halliwell
  - KPP tuning
- Atmospheric forcing changes
  - Option to input ustar fields
    - Best option for monthly forcing
    - Otherwise calculated from wind stress or speed
  - Can relax to observed SST fields
  - Improved COARE 3.0 bulk exchange coefficients
  - Black-body correction to longwave flux
  - $\circ$  Climatological heat flux offset,  $\overline{Q}_c$

$$Q = (Q_{sw} - Q_{lw}) + (Q_l + Q_s) + \overline{Q}_c$$

- $\diamond \overline{Q}_c$  is constant in time
  - · Typically based on the model's climatological SST error, times (say) -45  $Wm^{-2}/^{\circ}C$

## **HYCOM 2.2 (IIIb)**

- Improved support for rivers
  - Still bogused surface precipitation
  - High frequency inter-annual river flow allowed
    - Add it to atmospheric precip, off-line
    - Instead of monthly climatology, or in-addition to it (flow anomalies)
  - Better control of low salinity profiles
  - Option for mass (vs salinity) flux
  - Equation of state that is quadratic in salinity
- Tidal forcing
  - Provided by NCEP
  - Body forcing and open boundary forcing
  - Boundary forcing currently for "Flather" ports
    - Extend it to Browning-Kreiss ports and nesting
  - Tidal drag based on bottom roughness
    - Presently applied to total near-bottom velocity
      - Can we apply this to tidal signal only?

## **HYCOM 2.2 (IIIc)**

- New diagnostics within HYCOM
  - Time-averaged fields (in archive files)
    - Identical to off-line mean archives
    - No on-line capability to capture variability
    - Instantaneous archives still available
  - Synthetic instrumentation
    - Provided by George Halliwell
    - 3-D particle tracking
    - surface and constant depth drifters
    - isopycnic drifters
    - fixed instruments and moorings

## **HYCOM 2.2 (IIId)**

- Finer control over energy loan ice model
  - Melting point can be linear in salinity
  - Set ice minimum and maximum thickness
  - Set ice vertical temperature gradient
    - $\diamond$  Or get ice surface temperature from  $T_a$
  - Made compatible with coupled sea-ice approach
- Two-way coupling to LANL's CICE sea ice model
  - O HYCOM exports:
    - ♦ SST, SSS, SSH
    - Surface Currents
    - Available Freeze/Melt Heat Flux
  - o CICE exports:
    - Ice Concentration
    - Ice-Ocean Stress
    - Actual Freeze/Melt Heat/Salt/Mass Flux
    - Solar Radiation at Ice Base
  - Coupling via the Earth System Modeling Framework

#### **HYCOM AND ESMF**

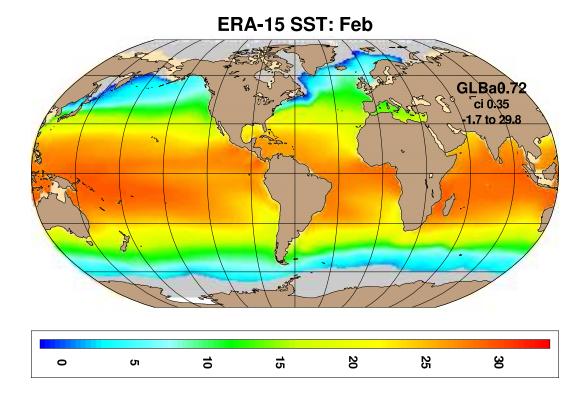
- Earth System Modeling Framework http://www.esmf.ucar.edu/
  - Superstructure couples components
    - Air/Ocean/Ice/Land
    - Asynchronous I/O component
      - · Run "concurrent" with model components
  - Infrastructure provides data structures and utilities for building scalable models
- Added a superstructure "cap" to HYCOM
  - Simplifies coupled systems
    - HYCOM coupled to LANL CICE sea-ice
    - Convert atmospheric field processing and the energy-loan ice model into ESMF components
  - Use ESMF for (user-level asynchronous) I/O
  - Inter-operate with other ESMF compliant ocean models (e.g. Poseidon, MITgcm, MOM4)
- This initial ESMF support is optional
  - TYPE=esmf instead of TYPE=mpi
- ESMF will eventually required to run HYCOM
  - HYCOM version 3.0

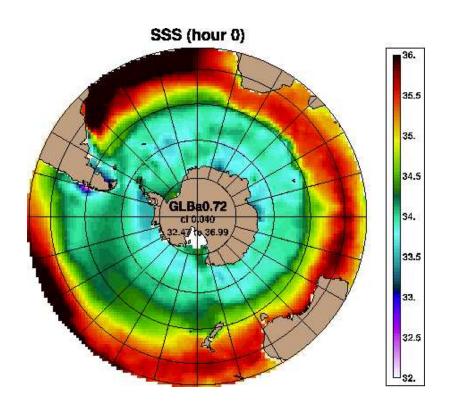
#### HYCOM AND CCSM

- Community Climate System Model http://www.ccsm.ucar.edu/
  - Fully-coupled, global climate model

Sea-Ice: CICE

o Ocean: POP


- HYCOM can be used in place of POP in CCSM3
  - Only tested at NCAR on an IBM p575+ (blueice), for the gx1v3 domain with ocean as the only active component
- Uses the standard HYCOM source code
- Subdirectory CCSM3 used to hold and build the CCSM3 version
  - Some source code files are specific to CCSM3
  - HYCOM ".f" files are renamed ".F" to simplify CCMS3 integration
  - Macro USE\_CCSM3 for CCSM3-specific code


## **HYCOM 2.2 (IV)**

- Climatological nesting now allowed
  - Start from monthly mean outer model archive files
  - Allows nested runs longer than the outer run
    - But with less accurate boundary state
  - Probably only suitable for regional nests
- Nesting no longer requires co-located grids
  - General archive to archive horizontal interpolation (curvilinear)
- Hybrid to fixed vertical grid remapper
  - Allows fixed-coordinate nests inside hybrid coordinate outer domains
    - Output
      Output
      Output
      Description
      Output
      Description
      Description
    - ♦ HYCOM to NCOM

#### **HYCOM 2.2 (V)**

- Enhanced hycomproc and fieldproc
  - NCAR-graphics based
  - Many more color palette options
    - Can read in an arbitrary palette
  - Mark locations, and draw tracks, on plot
  - Plot diffusion coefficients and tracers (hycomproc)
  - Overlay vector and line-contours (fieldproc)
- Added fieldcell
  - Like fieldproc, but for cell-array (vs contouring)
    - Mark locations and draw tracks
    - Overlay line-contours
  - Uses NCAR's map projections
  - Typically much faster than fieldproc, but can leave unfilled cells
  - Option to increase resolution of input (bi-linear interpolation)





## **HYCOM 2.2 (VI)**

- Diagnostic fields to netCDF and other file formats
  - Archive fields in layer space
    - On p-grid (interpolated velocity)
  - 3-D archive fields interpolated to z-space
    - ♦ On p-grid, or
    - Sampled at stations or along arbitrary tracks
  - 3-D archive fields sampled on iso-therms
  - Meridional stream-function from (mean) 3-D archive
    - In logical array space (rectilinear grids)
    - Binned to latitude bands (curvilinear grids)
  - Atmospheric forcing input fields
    - Time axis depends on ".b" file format
    - Any ".a" file with the right ".b" file structure can be converted to netCDF
  - Fields binned into lon-lat cells

#### **HYCOM CURVILINEAR GRIDS and NetCDF**

- Most basin-scale cases use a Mercator grid
  - 1-D lat & lon axes (rectilinear)
  - Handled well by many netCDF packages
- Global HYCOM's tripole grid is curvilinear
- HYCOM netCDF use the CF-1.0 conventions, which support curvilinear grids
  - If latitude and longitude are 2-D grids
    - 1-D axes are array indexes
    - Longitude and latitude arrays are also in the file and identified as alternative coordinates
    - Velocity rotated to eastwards and northwards
      - Optionally output native x\_velocity & y\_velocity
- Most netCDF packages are not CF-1.0 aware
  - Bin into uniform Ion-lat cells off-line
  - Interpolate to a 1-D latitude and longitude grid off-line
    - General archive (field) to archive (field) horizontal interpolation
- Archive to archive remapper can also be used to support standard (non-native) grids, e.g. MERSEA

#### WETTING AND DRYING

- Current free surface formulation
  - Assumes the free surface is a small fraction of the total depth
    - Includes steric effects, but does not exactly conserve either mass or volume
    - Not satisfactory for coastal domains
  - Replaces dp with dp' nearly everywhere
    - Simplifies split-explicit time step
- Mass conserving formulation
  - Remove the dp' "equals" dp approximation
  - Could still archive dp' (for compatibility)
  - Allows wetting and drying
    - Almost for "free", given HYCOM's existing numerics
  - Already implemented in SHOM variant of HYCOM
  - Will be in HYCOM 2.3
- Mass conservation also allows:
  - E-P and rivers as a mass flux
    - Already approximately available via "epmass" option

#### OTHER CANDIDATE FEATURES FOR HYCOM 2.3

- Stable-code vs new features
  - Released code-base has to be tested and stable
  - New features can be a significant improvement
  - Will add interim releases to web page
    - Features may be removed in next released code
- Fully region-independent
  - Compile once, run on any region and any number of processors
    - Run-time memory allocation
    - Might reduce performance (fewer compiler optimizations available)
  - Needed for full ESMF compliance
- Enhanced support for ESMF
- Diurnal heat flux cycle
  - Already in CCSM3 version
- Wind drag coefficient based on model SST