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The advance of the front of a gravity current propagating in a rectangular channel and V-

shaped valley both horizontally and up a low slope is examined through theory, full-depth

lock-release laboratory experiments and hydrostatic numerical simulations. Consistent

with theory, experiments and simulations show that the front speed is relatively faster in

the valley than in the channel. The front speed measured shortly after release from the

lock is 5% to 22% smaller than theory with greater discrepancy found in up-sloping V-

shaped valleys. By contrast, the simulated speed is about 6% larger than theory showing

no dependence on slope for rise-angles up to θ = 8◦. Unlike gravity currents in a channel,

the current head is observed in experiments to be more turbulent when propagating in a

V-shaped valley. The turbulence is presumably enhanced due to the lateral flows down
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the sloping sides of the valley. As a consequence, lateral momentum transport contributes

to the observed lower initial speeds. A WKB-like theory predicting the deceleration of

the current as it runs upslope agrees remarkably well with simulations and with most

experiments, within errors.

1. Introduction

A gravity current is a buoyancy-driven flow in which predominantly horizontal pres-

sure gradient forces cause fluid of one density to flow under or over fluid of another

density. Gravity currents occur in nature as sea-breezes, oceanic overflows, river flows

and avalanches and also appear in many engineering applications (Simpson 1997).

There have been many laboratory studies of lock-release gravity currents propagating

on flat surfaces including those by Keulegan (1957), Simpson (1982), Rottman & Simpson

(1983), Huppert & Simpson (1980) and Shin et al. (2004). The three phases of gravity

current flow for a high Reynolds number lock-release gravity current on a horizontal

surface are described by Huppert & Simpson (1980). In the first phase, shortly after the

lock is released the gravity current flows steadily during what is called the constant-speed

(or slumping) phase. For an energy-conserving gravity current produced by full-depth

lock-release in a rectangular channel of depth H, Benjamin (1968) predicted the height

and speed of the current to be h = H/2 and U0 =
√
g′H/2, respectively, in which g′ is the

reduced gravity based on the density difference between the current and ambient fluid.

This work was verified experimentally by Shin et al. (2004) who extended the theory

for energy-conserving gravity currents released from partial-depth locks. In the second

phase, after propagating 6 to 10 lock-lengths the speed of the current front decreases, the

front position changing in time according to X ∼ t 2
3 (Rottman & Simpson 1983). This is
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called the inertial (self-similar) phase. Eventually the current enters the third, so-called

viscous phase, in which the front advances at a still slower rate due to the effects of

viscosity.

Gravity currents flowing down shallow to moderate slopes were examined in experi-

ments with a constant volume flux at the source (Britter & Linden 1980) and in lock-

release (constant volume source) experiments with corresponding simulations (Birman

et al. 2007). They found broadly similar results, namely that downslope gravity currents

are quasi-steady and that the speed of the current varies moderately with the slope angle.

In particular, for downslope lock-release gravity currents, Birman et al. (2007) found that

the front speed relative to the speed of horizontal currents is larger by approximately 10%

for downward slopes of s ' tan 10◦ and is approximately 20% faster when propagating

down a slope of s ' tan 40◦, for which the relative current speed was found to be fastest.

The evolution of gravity currents flowing up a slope have been examined numerically

by Safrai & Tkachenko (2009). Though focusing upon turbulent entrainment processes,

they did observe that the current decelerated while moving upslope with greater decel-

eration on larger slopes. Similar behaviour was observed by Ottolenghi et al (personal

communication) who examined a combination of Large-Eddy Simulations and laboratory

experiments of upslope currents. Marleau et al. (2014) performed laboratory experiments

examining the approach toward and propagation upon a rising slope of full- and partial-

depth lock-release gravity currents. Consistent with the predictions of a WKB-like theory,

they observed nearly constant deceleration along the uniform slope, s, with a horizontal

component of acceleration ax = −0.112g′s(D0/H0(2−D0/H0)), in which D0 is the depth

of the lock-fluid and H0 is the ambient fluid depth at the start of the slope. In particular,

for full-depth lock-release experiments (D0 = H0), they found ax = −0.112g′s.

Monaghan et al. (2009) used a combination of a theoretical box model and laboratory



4 Jones et al

experiments to show that lock-release gravity currents in a horizontal V-shaped valley

exhibited very similar behavior in the constant-speed and inertial-phase to lock-release

gravity currents in a rectangular channel. In the inertial-phase however, they predicted

that the front location changed in time according to X ∼ t 4
5 .

Marino & Thomas (2009) followed the approach of Benjamin (1968) to formulate a

prediction for the steady speed of a gravity current propagating in a horizontal channel

having cross-sectional width that changed as a power law with height, z, according to

bzα for constants b and α. The result was generalized further by Ungarish (2013) and

Zemach & Ungarish (2013) who predicted the steady speed in horizontal channels of

arbitrarily varying width with height. Using a hydrostatic, shallow water formulation,

they solved the equations for lock-release gravity currents in various horizontal channel

geometries including a V-shaped valley. The simulated front position over time agreed

well with the experiments by Monaghan et al. (2009) in both the constant-speed and

inertial phases. Other studies of gravity currents in V-shaped valleys have explored the

effects of viscosity (Takagi & Huppert 2007) and rotation (Darelius 2008).

There have been relatively few laboratory studies of high Reynolds number gravity

currents in more complex geometries and what little has been done has mainly been

limited to flow over obstacles (Rottman et al. 1985; Lane-Serff et al. 1995) and to surface

currents above a uniform slope (Sutherland et al. 2013).

The novelty of the present study lies in investigating a full-depth lock-release gravity

current propagating both upslope and within a V-shaped valley. A combination of theory,

numerical simulations and laboratory experiments is used to understand the dynamics

of this flow. Besides its fundamental interest, this idealized problem constitutes the first

step in understanding the more complex dynamics of a sea breeze as it moves uphill and

through canyons in coastal regions.
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Section 2 reviews recent theories for gravity currents in channels of arbitrarily varying

width with height and specifically considers the steady speed of an energy-conserving

gravity current in a horizontal V-shaped valley. Separately, a theoretical model predicting

the deceleration of flow up a slope is reviewed and extended for upslope V-shaped valleys.

Section 3 presents the set-up, analysis methods, and results of laboratory experiments

of gravity currents that propagate horizontally and upslope in rectangular channels and

V-shaped valleys. Section 4 describes the hydrostatic model which is used to simulate

the experiments using the same configuration and comparable parameter ranges. The

simulated front speed and deceleration is compared with theory and experiments and

the structure of the simulated current is compared with observations. Thus we assess

the ability of a hydrostatic code to capture the evolution of a gravity current in this

somewhat complex geometry. Section 5 summarizes the results.

2. Theory

2.1. Steady speed of a current in a horizontal V-shaped valley

We consider a gravity current of maximum height h flowing steadily in an ambient fluid

of maximum depth H propagating in a horizontal V-shaped valley having spread ϕ and

spanwise tilt φ, as illustrated in figure 1. The current is assumed to have uniform density

ρc and the ambient fluid has density ρ0 so that the reduced gravity is g′ = g(ρc−ρ0)/ρc.

Following the approach of Benjamin (1968), Marino & Thomas (2009) predicted the

steady speed of a gravity current propagating in a lengthwise uniform domain whose

spanwise width increased with height z according to W (z) = bzα. This description in-

cluded the special cases of a rectangular channel (α = 0) and a V-shaped valley (α = 1).

From conservation of momentum and mass, they derived an expression for the steady
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Figure 1. Schematic spanwise cross-section downstream of a gravity current head as it flows

steadily in a horizontal V-shaped valley with spread ϕ and tilt φ. For the purposes of theory,

the interface between the current and ambient fluid downstream of the current head is assumed

to be horizontal with depth h above the deepest part of the channel.

speed U0 of the gravity current as a function of the relative downstream height, h/H:

U2
0 = 2
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H
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(
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g′h. (2.1)

In the case α = 0, this gives the well-known prediction (Benjamin 1968; Klemp et al.

1994) for the speed of gravity currents in a rectangular channel.

In the case of a V-shaped valley, for which α = 1, the speed of a gravity current is

predicted to be

U2
0 = 2
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(
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H

)2
1 +

(
h
H

)2
)(
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3

(
h

H

)2
)
g′h. (2.2)

Starting more generally with a V-shaped valley of arbitrary tilt as well as spread, it

is readily shown from mass and momentum conservation that (2.2) predicts the steady

gravity current speed.

The predicted relative speeds of a gravity current in a rectangular channel and a V-

shaped valley given as a function of the relative current depth are plotted in figure 2.

Explicitly, the speed is cast in terms of a Froude number based upon the maximum

ambient fluid depth

FrH ≡ U0/
√
g′H, (2.3)

and the maximum current depth is given relative to the maximum ambient fluid depth.
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Figure 2. Dependence of Froude number, FrH ≡ U0/
√
g′H, on the relative downstream height

of the gravity current propagating horizontally in a rectangular channel (thin line) and, from

(2.2), in a V-shaped valley (thick line). Solid circles indicate values for energy-conserving gravity

currents and dashed lines denote unrealizable values that require external energy to maintain

the flow. Note that for a current in a V-shaped valley, FrH is independent of the valley spread

and tilt, ϕ and φ, respectively.

Here we have chosen to cast the Froude number in terms of H rather than the maxi-

mum gravity current height, h, because the latter is difficult to measure in laboratory

experiments.

Assuming that, in addition to mass and momentum, energy is conserved, then the

relative height is constrained to be (Marino & Thomas 2009)

h

H
=

(
1

2 + α

) 1
1+α

, (2.4)
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and the steady speed is

U0 =
√

2

(
1 + α

2 + α

)√
g′h. (2.5)

Specifically in the case of the rectangular channel we have the Benjamin (1968) result

that

h = H/2 (2.6)

and

U0 = (g′H)1/2/2. (2.7)

Hence FrH = 1/2, which is moderately smaller than the maximum value of ' 0.527

occurring for h/H ' 0.347. The experiments of Shin et al. (2004) confirmed that full-

depth lock-release gravity currents indeed occupy half the depth of the ambient fluid

and propagate in steady state with Froude number approximately 5% smaller than the

energy-conserving value of 1/2. The discrepancy is attributed to energy loss resulting

from turbulence between the current head and ambient fluid.

For a V-shaped valley, the height of an energy-conserving gravity current is predicted

to be

h = H/
√

3 ≈ 0.577H, (2.8)

and its speed is

U0 =
2
√

2

3 4
√

3

√
g′H ≈ 0.716

√
g′H. (2.9)

Consistent with observations of gravity currents in horizontal rectangular channels, we

expect (2.8) and (2.9) should predict the height and speed of an energy-conserving gravity

current resulting from a full-depth lock-release in a horizontal V-shaped valley with any

spread or tilt. Like the rectangular channel case, the energy-conserving value of FrH for a

V-shaped valley is moderately smaller than its maximum value of ' 0.746, which occurs

for h/H = 0.452.
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The speed of an energy-conserving gravity current in a V-shaped valley is larger than its

counterpart in a rectangular channel can be understood because its relative height h/H

is approximately 15% larger and so the current is driven by a larger horizontal pressure

gradient. Furthermore, the cross-sectional area of the current is only one third of the

total cross-sectional area of the V-shaped valley. And so the overlying ambient return

flow is smaller than in the case of a rectangular channel for which the cross-sectional

areas of the current and ambient fluid are equal.

2.2. Upslope deceleration

In our study of currents propagating in V-shaped valleys we consider currents that prop-

agate horizontally and upslope, as illustrated in figure 3. Although no rigorous theory

exists for currents that propagate upslope in V-shaped valleys, we can extend the a

WKB-like theory of Marleau et al. (2014), derived for upslope currents in a rectangular

channel, to predict the deceleration of a current flowing up a valley. The theory assumes

a constant Froude number, FrH , so that the speed of the current at a given location x

depended only on the height H(x) of the ambient fluid at the front of the current through

U = FrH
√
g′H(x).

The assumption of constant FrH is equivalent to assuming that the ratio of local current

to ambient fluid depth is constant.

Setting the front speed U = dx
dt gives a differential equation that can be solved to find

the front position x ≡ X(t). In particular, for a uniform slope s and an initial front speed

U0 = FrH
√
g′H0 at X = X0 where H(X0) = H0, the front position is predicted to change

in time according to

X = X0 + U0t−
U2
0 s

4H0
t2. (2.10)

Therefore the along-slope acceleration is predicted to be constant and negative with
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horizontal component

Ax = −1

2

U2
0

H0
s = −1

2
Fr2Hg

′s. (2.11)

In full-depth lock-release experiments in a lengthwise sloping tank, the current is ex-

pected to accelerate rapidly from rest to a speed U0 over a short distance from the gate

after it is extracted. If the slope of the tank is sufficiently small, this speed should be

comparable to the energy-conserving speeds of gravity currents in a horizontal channel.

Thus in a rectangular channel, for which U0 is given by (2.7), the consequent gradual

deceleration of the current as it runs upslope is predicted by

Ax = −g′s/8 = −0.125g′s. (2.12)

This prediction is close to the deceleration measured for gravity currents in a rectangular

channel incident upon a slope (Marleau et al. 2014).

Because the information about the cross-channel geometry in (2.11) is captured by the

Froude number, we anticipate that the deceleration of a gravity current in an upsloping

V-shaped value should be given by (2.11) in which U0 is given by (2.9). Explicitly,

Ax = −(4/9
√

3)g′s ' −0.257g′s. (2.13)

These predictions are compared with the results of laboratory experiments and nu-

merical simulations in the next two sections.

3. Laboratory Experiments

3.1. Laboratory Setup

The experimental setup is illustrated in figure 3. The rectangular tank had length 148 cm,

width 19.8 cm and height 28.7 cm. The sides of the tank were at right angles to each other,

meaning that the valley spread was ϕ = 90◦ in all experiments.

A rail along the edge of the tank and blocks under the end of the table allowed the
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Figure 3. Schematic of the initial configuration of the laboratory experiments showing a) a

spanwise cross-section across the lock and b) a lengthwise cross-section along the deepest part

of the valley with the gate indicated by the thick dashed line. In a) the position of the camera

is shown to be looking down the side of the tank to produce a top-view of the current through

the ambient fluid and a side-view of the current through light reflected from the mirror (hashed

markings). The bottom lengthwise slope is given in terms of the rise-angle θ by s = tan θ. The

along-slope co-ordinate system is represented by ` and the projection of this co-ordinate onto

the horizontal is x = ` cos θ.

slope angle θ = tan−1(s), in which s is the slope, and tilt φ to be varied independently

with θ = 0◦, 1◦, 2◦, . . . , 7◦, 8◦ and φ = 0◦, 15◦, 30◦, 45◦. Here we compare upslope flows

in a V-shaped valley (θ > 0◦,φ > 0◦) to horizontal flows in a V-shaped valley (θ = 0◦,

φ > 0◦) and to upslope flows in a rectangular channel (θ > 0◦, φ = 0◦).

A gate of thickness 1 cm was positioned 36.7 cm from the left hand end of the tank

with a silicon seal to prevent water in the lock to the left of the gate from leaking into

the ambient fluid to the right of the gate until the gate was extracted. A rail of height

0.5 cm held the gate perpendicular to the sides of the tank. Because the lock-length was

one quarter the total length of the tank, the current released from the lock in horizontal

tank experiments (θ = 0◦) was expected to propagate at constant speed to the end of

the tank before entering the self-similar regime (Rottman & Simpson 1983).

Salt was added to the water in the lock to increase its density, and after thorough

mixing it was dyed with food coloring in order to visualize the advance of the gravity
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current after release from the lock. The density of the fluid on each side of the lock

was then measured with an accuracy of 5 × 10−5 g/cm3 using an Anton Paar DMA 58

densitometer. In all the experiments, the resulting reduced gravity g′ was approximately

6 cm/s2.

The tank was filled with water to a depth that varied depending upon the tilt angle

φ in order to ensure that the fluid in the tank was bounded laterally only by the two

outward sloping side-walls of the tank (figure 3a). The greatest depth of fluid at the

gate, H0, was 15.5 cm for a rectangular channel (φ = 0◦), 5 cm for φ = 15◦, 9.9 cm for

φ = 30◦ and 10 cm for φ = 45◦. These lock-depths caused the end of the tank to be dry

in some of the valley experiments where the rise-angle was moderately large (θ > 3◦).

For flow in a rectangular channel, the typical Reynolds number was Re = H0U0/ν ≈

8000 based on the ambient fluid height and the anticipated energy-conserving speed given

by (2.7). In the V-shaped valley experiments for which U0 is estimated by (2.9), the value

of H0 was smaller resulting in lower Reynolds number flows. Explicitly, Re ∼ 5000 for

φ = 45◦ and φ = 30◦, and Re ∼ 2500 for φ = 15◦. In all cases, the Reynolds number is

sufficiently large that viscosity should play a negligible role in the evolution of the current

close to the gate and during the initial stage of deceleration in upsloping experiments.

However, in experiments with moderately large rise-angles viscosity is expected to play

a role at late times, as the current slows to a halt where the surface touches the tank

bottom, and at the sides of the valley where the fluid is shallow.

A movable Hitachi KPF 100 camera was positioned above the tank angled so that it

looked along the tank wall as illustrated in figure 3a. In rectangular channel experiments

a mirror was placed at 45◦ to the horizontal so that the camera would simultaneously

record a side-view of the current, as shown in figure 4. In V-shaped valley experiments

the mirror was placed flat on the table supporting the tank, as illustrated in figure 3a.
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Figure 4. Snapshot taken from an experiment of a gravity current propagating along a hori-

zontal rectangular channel in an ambient fluid of depth H0 = 15.5 cm and with reduced gravity

g′ = 6.57 cm/s2. The upper part of the image shows a top-view looking through the surface

of the (clear) ambient fluid to the dyed current whose front is situated approximately 50 cm

to the right of the gate. The bottom part of the image shows the side view of the current vi-

sualized by a mirror tilted at 45◦ from the horizontal along the length of the tank. The three

white lines indicate where along-tank slices were taken to construct time-series images of the

rightward-advancing current front.

In this case the view from the mirror compared with the view through the open end of

the tank enabled us to evaluate the symmetry of the gravity current.

When the gate was extracted, the dyed lock-fluid flowed along the bottom of the tank

as a gravity current. A grid on the bottom of the tank was used to locate the position

of the head of the current as it propagated along the tank. The lines of the grid were

spaced every 5 cm in the spanwise (y-) direction and every 10 cm in the along-slope (`-)

direction.

Movies were recorded at a rate of 10 frames per second, and recording continued until

the current front reached the end of the tank or until the front became stationary in

upsloping cases where the free surface intersected the tank bottom.

3.2. Analysis

Time-series of the front position were constructed from movies of the experiments. Explic-

itly, slices from each frame of a movie were extracted along lines approximately parallel
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Figure 5. Time-series taken from an experiment of a gravity current propagating upslope in

rectangular channel with H0 = 15.5 cm, g′ = 6.49 cm/s2 and θ = 6.2◦ (s ' 0.11). The closely

spaced white stars indicate points selected to determine the along-slope front position, `, versus

time, t,

to the long side of the tank. In rectangular channel experiments three slices were taken

along lines spaced by 5 cm across the tank, as illustrated by the white lines in figure 4.

In V-shaped valley experiments the slices were taken a few pixels apart against the near

tank wall.

In either case, the position of the current front was identified by a change in the

brightness threshold between the dyed current and the ambient fluid. The position of the

front was then determined from the location of the contour with this intensity in each

time-series image, as illustrated in figure 5.

When the gate was removed, the fluid adjusted for a few seconds before the gravity

current formed. For this reason, data from the first two seconds of each experiment were
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discarded. Data taken within 10 cm of the right hand side of the tank were also discarded

because surface waves reflecting off the end of the tank tended to cause oscillations of

the front in this region, particularly for currents propagating upslope. In V-shaped valley

experiments the images of the current were obstructed by clamps that tilted the tank at

an angle. Data points in these locations were also discarded.

Anticipating that the upslope-propagating front should decelerate according to (2.10),

we found the best-fit quadratic to the measured along-slope front position in the form

` = `0 + u`t+ 1
2a`t

2. The coefficients gave the initial horizontal component of the along-

slope front speed u0 = u` cos θ and the horizontal component of the front acceleration

ax = a` cos θ. These results were compared with the predicted speed U0 given by (2.7)

and (2.9) and the acceleration Ax given by (2.11).

This procedure was followed for each of the time-series constructed from multiple slices

along the tank. The mean and standard deviation of the measured values of u0 and ax

were then computed. In V-shaped valley experiments the results underestimated the true

velocity and acceleration if the lines used to construct the time-series were not exactly

parallel to the tank wall.

3.3. Results

The measured horizontal component of the along-slope initial speed u0 nondimensional-

ized by
√
g′H0 (i.e. the Froude number) is plotted against rise-angle θ as solid symbols

in figure 6. In the case of a horizontal rectangular channel (θ = 0◦), the observed Froude

number is nearly 10% lower than the predicted value of FrH = U0/
√
g′H0 = 1/2, but

the measured values are consistent with those reported by Shin et al. (2004). As in their

work, we attribute the difference to energy loss resulting from viscous dissipation and

mixing.

Consistent with (2.9), the measured Froude number was larger for flow in a horizontal
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Figure 6. Initial relative front speed, u0/
√
g′H0, versus the rise-angle, θ (in degrees). The

front speed is determined from (solid symbols) laboratory experiments and (open symbols)

numerical simulations of gravity currents in a) a rectangular channel and b) a V-shaped valley.

The horizontal grey line in each plot indicates the predicted Froude number, FrH = U0/
√
g′H0

for horizontal channels and V-shaped valleys. In b) different symbols are drawn depending upon

the tilt, φ, of the V-shaped valley, as indicated in the legend. Errors in the measurements taken

from laboratory experiments are no larger than the size of the symbols themselves.

V-shaped valley than for flow in a horizontal rectangular channel. However, only the

symmetric case with tilt φ = 45◦ gave FrH ≈ 0.714 close to the theoretical value of

2
√

2/(3 4
√

3) ' 0.716. For φ = 15◦, FrH was 22.4% smaller and for φ = 30◦, FrH was 7.4%

smaller than the theoretical prediction. The greater discrepancy in the case φ = 15◦ is



Gravity Current Propagation Up a Valley 17

probably because the lock-depth and hence Reynolds number is smaller, so that viscous

dissipation plays a more significant role.

In rectangular channel experiments (solid squares in figure 6a) there is little change

in Froude number as the rise-angle, θ, increases from 0◦ to 8◦. All measured values are

smaller than the energy-conserving prediction by between 4% and 15%. This observation

is consistent with the expectation that the slope should not influence the initial speed

if the slope is sufficiently small. Likewise, in V-shaped valley experiments we did not

observe any significant change in the Froude number with rise-angle θ = 6◦ in the case

with the valley having tilt φ = 30◦ (solid rightward-pointing triangles in figure 6b).

However, in experiments with tilt angle φ = 45◦ (solid circles in figure 6b) we found that

the Froude number did decrease moderately as θ increased from 0◦ to 8◦, there being a

22% difference between the measured and energy-conserving values when θ = 8◦.

This Froude number dependence can be understood by considering the spanwise motion

of fluid running down the sides of the valley due to buoyancy forces. If the current runs

upslope, then the spanwise velocity includes a component in the opposite direction to

the along-slope speed of the gravity current. The resulting opposing momentum increases

with increasing θ and is largest for tilt-angle φ = 45◦. Turbulence near the gravity current

head should act even more efficiently to transport opposing momentum from the valley

sides to the interior slowing the front-propagation speed.

In figure 7 the measured horizontal component of the along-slope acceleration, ax,

normalized by Fr2Hg
′s is plotted versus the rise-angle, θ. Here we set FrH to be the

Froude number for energy-conserving gravity currents: from (2.7), FrH = 1/2 for currents

in a rectangular channel; from (2.9), FrH = 2
√

2/(3 4
√

3) ≈ 0.716 for currents in a V-

shaped valley. According to the right-most expression in (2.11), the predicted horizontal
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component of (negative) acceleration, Ax, when normalized by Fr2Hg
′s should be −1/2

for currents in rectangular channels and V-shaped valleys.

For small rise-angles, gravity currents in a rectangular channel were found to decelerate

faster than the theoretical prediction, but the error in these measurements was also

significant, compounded by the fact that the normalized values are computed by taking

the ratio of a small measured deceleration to a small slope s. For rise-angles larger than

θ = 5◦ and for all the V-shaped valley experiments with θ ≥ 2◦, we found that the

measured deceleration of the current head was not as large as predicted, with typical

values between 60% to 80% of the predicted value.

In figure 6 we showed that the measured relative speed differed from the predicted

energy-conserving speed. With this consideration, in figure 8 we replot the measured

acceleration data but normalize it using the middle expression of (2.11) in which we use

the measured speed u0 rather than the predicted energy-conserving speed U0. Again,

theory predicts that the normalized acceleration, ax/(u0
2s/H0), should be −1/2. With

this semi-empirical normalization, we find better agreement between experiments and

theory. Particularly for the V-shaped valley experiments, the measured normalized de-

celeration differs by less than 23% from the predicted deceleration for all rise-angles above

2◦. Considering the approximations used to derive (2.11), this agreement suggests that

the model captures the main physical processes at play.

4. Numerical Simulations

4.1. Model Setup

Shallow water theory, which assumes hydrostatic balance, has often been used to ex-

amine the evolution of gravity currents (Ungarish 2009, 2013). Here we examine the

efficacy of a hydrostatic code in capturing the observed dynamics of upslope gravity cur-
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Figure 7. Horizontal component of the (negative) relative acceleration, ax/(Fr2H g′s), versus the

rise-angle, θ. Here FrH is the Froude number predicted for energy-conserving currents. Values are

plotted for (solid symbols) laboratory experiments and (open symbols) numerical simulations

with currents in a rectangular channel indicated by squares and currents in a V-shaped valley

with tilt, φ, as indicated in the legend. The horizontal gray line is the (negative) relative ac-

celeration predicted by theory. Errors in the measurements taken from laboratoray experiments

are indicated by vertical error bars.

rents in channels and valleys. Specifically we used the Hybrid Coordinate Ocean Model

(HYCOM) (Bleck 2002; Chassignet et al. 2003; Halliwell 2004), a hydrostatic model

commonly used to study ocean processes.

The code was set up to model the evolution of a hydrostatic two-layer fluid with no

mixing allowed between the current and ambient fluid. The domain was set to have the

same size and shape as the tank used for the laboratory experiments. The resolution was

0.5 cm, except in the experiments with asymmetric valleys (φ 6= 45◦), in which case the

model resolution was set to 0.25 cm to accommodate for the smaller flow scales. Further
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Figure 8. As in figure 7, but plotting the (negative) acceleration of the current normalized by

u0
2s/H0, in which u0 is the horizontal component of the front speed measured shortly after the

current was released from the lock, as shown in figure 6.

refinement of the grid had no effect on the recorded speed or acceleration of the gravity

current.

The reduced gravity, g′, for all simulations was 4.79 cm/s2. It was verified that the non-

dimensional speed and acceleration did not change if g′ was varied by approximately 20%.

The depth of fluid at the lock-gate, H0, varied with the tilt φ as it did in the laboratory

experiments. For numerical stability, but also to mimic unresolved turbulent processes,

the viscosity was set to be four to ten times larger than that of water. The corresponding

Reynolds number, calculated using the predicted speed of the current and the ambient

fluid depth at the gate, was approximately Re = 800. This value is still sufficiently high

that viscous effects are not expected to influence the speed and deceleration of the current

at early times.
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The front was defined as the furthest downstream location at which the interface was

more than 0.1 cm above the bottom of the model tank. Its position was computed every

0.2 s. As in the laboratory experiments, the best-fit quadratic of the front position versus

time was computed. From this we measured the horizontal components of the initial

speed, u0, and (negative) acceleration, ax.

4.2. Qualitative Results

In figure 9 the interface between the current and ambient fluid computed from the hydro-

static code is compared with the structure observed in laboratory experiments. Consistent

with shallow water theory (Ungarish 2009), the simulated current front is nearly vertical.

For a horizontally propagating gravity current in a rectangular channel, the interface is

nearly horizontal behind the front. However, the structure is more complex for a hori-

zontally propagating gravity current in a V-shaped valley. Shortly behind the front, the

simulated current height rapidly decreases and then gradually increases in height far in

the lee of the current head. Being hydrostatic, the model is not expected to capture the

structure of the front. Indeed, in laboratory experiments the front of the gravity current

is not vertical but slopes away from the bottom. Well behind the front, however, the hy-

drostatic code captures the near-horizontal interface between current and ambient fluid

in a rectangular channel, and the gradually increasing current height with distance from

the front for gravity currents in a V-shaped valley.

Figure 10 shows vertical cross-sections and contours of current height at three succes-

sive times for simulations of a horizontally propagating gravity current in a V-shaped

valley with tilt φ = 45◦. At each time the head appears as a localized elevated region

of along-tank length approximately 5 cm. The trailing tail gradually increases in depth

with distance from the front, and superimposed on this sloping interface are wave-like

structures that are found to travel backward away from the front. The waves move in
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a)

b)

Figure 9. Side-view snapshots of gravity currents propagating horizontally in a) a rectangular

channel and b) a V-shaped valley with tilt φ = 45◦. The solid white line superimposed on both

images shows the current height mid-way along the span of the tank taken from the numerical

simulations at times when the computed front position is at the same location as the observed

front position relative to the gate. The vertical dotted white line indicates the position of the

gate.

this direction because the front is supercritical, moving faster than the long wave speed.

There was no evidence of these waves in the laboratory experiments presumably because

their manifestation was obstructed by turbulence.

4.3. Quantitative Results

As well as showing the experimental measurements and theoretical predictions for the

horizontal component of the initial speed u0, figure 6 plots the computed initial speed as

open symbols. Unlike the laboratory experiments, the Froude number found in all simula-

tions is moderately larger than the predicted Froude number for horizontally propagating

energy-conserving currents. Explicitly, we found u0/
√
g′H0 = 0.53 ± 0.01 for the rect-

angular channel and u0/
√
g′H0 = 0.745 ± 0.005 for the V-shaped valley with φ = 45◦.

These values are consistent with the maximum Froude number occurring for dissipative

currents with smaller relative downstream depth h/H0 (see Figure 2). Also different from

laboratory experiments, the simulations show that the initial speed had no significant

dependence upon the rise-angle even in the case of a V-shaped valley with tilt φ = 45◦.
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Figure 10. Structure of a horizontally propagating gravity current in a V-shaped valley with

tilt φ = 45◦ as determined from simulations at times a) t = 4 s, b) t = 8 s and c) t = 12 s

after release from the lock. In each case the top plot shows the current height along a vertical

cross-section at y = 0 (the deepest part of the domain) and the bottom plots shows contours

of current thickness as a function of along-tank (x) and across-tank (y) co-ordinates. The scale

determining the depth is indicated to the right of each bottom plot.

The horizontal component of acceleration, ax, determined from the simulations is plot-

ted as open symbols in figures 7 and 8. As in the laboratory experiments, normalizing

according to the middle expression in (2.11) and using the measured initial speed (i.e.
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u20s/H0) leads to better agreement with the theoretical prediction than normalizing by

the Froude number predicted for energy-conserving currents. Whether for simulations in

a rectangular channel or a V-shaped valley, all values lie within 20% of the predicted

relative acceleration of −1/2 for rise-angles between 1◦ and 8◦. This suggests that non-

hydrostatic processes do not play a significant role in determining the deceleration.

5. Conclusions

Using a combination of theory, laboratory experiments and a hydrostatic numerical

model, we have investigated the evolution of Boussinesq, full-depth lock-release gravity

currents that propagate either horizontally or upslope in a rectangular channel or in a

V-shaped valley.

In a horizontal V-shaped valley of arbitrary spread ϕ and tilt φ, the Froude number of

a steady energy-conserving gravity current was predicted to be FrH = 2
√

2/3 4
√

3 ≈ 0.716.

Consistent with experiments of gravity currents in a rectangular channel, we found that

experimental measurements of FrH were up to 15% smaller than this prediction. The

simulated evolution of gravity currents using a hydrostatic code predicted moderately

larger initial speeds. The shape of the simulated gravity current head also differed, ex-

hibiting a sudden descent of the interface immediately behind the head near the middle

of the cross-section.

In experiments of gravity currents running upslope, we found that the initial gravity

current speed in a rectangular channel was not significantly affected by the rise-angle

of the tank. However, the initial gravity current speed in a V-shaped valley with tilt

φ = 45◦ was found to decrease with increasing rise-angle. In contrast, simulations of

upslope gravity currents showed that the initial speed was independent of rise-angle in

all cases.
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We attribute the discrepancies to turbulence, which appears to be enhanced in V-

shaped valley experiments as a consequence of spanwise motions induced by lateral

slumping of dense fluid down the sides of the valley. The turbulence slows the current

due to enhanced dissipation and also due to enhanced transport of retrograde momentum

across the span of the valley.

The WKB-like theory of Marleau et al. (2014), which predicts the deceleration of

upslope propagating gravity currents in a rectangular channel, was adapted to the case

of V-shaped valleys. In comparison with experiments and simulations, best agreement

was found when the measured deceleration was normalized by the measured initial front

speed, u0, rather than predicted speed, U0. Explicitly, for rectangular channels and V-

shaped valleys we found that the (negative) upslope acceleration was well represented

by

ax ' −
1

2

u0
2s

H0
,

for slopes at least as large as s = tan 8◦ ' 0.14.

This work provides an important step toward understanding the more complex problem

of a sea breeze propagating up valleys near coastal regions. Future work will examine

the effect of ambient stratification, meandering and rough topography and more realistic

source conditions.
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