
Chapter 1

Data assimilation by neural networks on
ocean circulation models

Olmo Zavala-Romero1,2, Dr. Steven Cocke2, Eric P. Chassignet2, Alexandra
Bozec1, Jose R. Miranda1,2

1 Department of Scientific Computing, Florida State University, Tallahassee, FL 32306
2 Center for Ocean-Atmospheric Prediction Studies, Florida State University, Talla-
hassee, FL 32306

1

Contents

1 Data assimilation by neural networks on ocean circulation
models . 1
Olmo Zavala-Romero1,2, Dr. Steven Cocke2, Eric P. Chassignet2,
Alexandra Bozec1, Jose R. Miranda1,2

1.1 Introduction . 4
1.2 An Introduction to the Hybrid Coordinate System Ocean

Model (HYCOM) . 5
1.2.1 HYCOM Data Assimilation System 6
1.2.2 An introduction to Machine Learning 8
1.2.3 Perceptron . 9
1.2.4 Multi-layer Perceptron (MLP) 10
1.2.5 Convolutional Neural Networks 11
1.2.6 U-net . 12

1.3 Data assimilation with Convolutional Neural Networks 13
1.3.1 Methods . 13
1.3.2 Results . 17
1.3.3 Generalization Tests . 21
1.3.4 Performance Comparison . 25

1.4 Final Remarks . 26
References . 27
References . 27

3

4 Contents

Abstract Deep learning models have excelled in language processing and
computer vision, enabling real-time translation, image classification, and
anomaly detection. In ocean sciences, machine learning has shown promise in
data assimilation (DA), emulating dynamical models, accelerating processes,
or serving as hybrid surrogate models. However, transitioning to full-scale
operational ocean models poses challenges not considered in existing works
with intermediate complexity. This chapter introduces Convolutional Neural
Networks (CNNs) for assimilating sea surface height and temperature obser-
vations in the HYbrid Coordinate Ocean Model (HYCOM) for the Gulf of
Mexico. Five experiments analyze CNN performance, providing insights for
applying CNNs to primitive equations ocean models with real observations
and complex topographies. The experiments evaluate CNN architecture, input
and output choices, window size impact, and the role of coastlines. Addi-
tionally, the speed improvement gained by using CNNs for DA is estimated.
This research advances data assimilation techniques in ocean modeling by
offering guidelines for employing CNNs in full-scale operational models. It
sheds light on optimizing CNN configurations and choices regarding inputs,
outputs, window size, and coastal considerations. The chapter highlights the
potential benefits and trade-offs of integrating CNNs into the DA process,
enhancing ocean forecasting capabilities.

1.1 Introduction

The problem of partial and noisy observations is a long-standing challenge in
the field of oceanography. Despite the significant strides made in addressing
this issue, there remains a need for more efficient and accurate methods.
These advancements are crucial not only for enhancing forecasts but also for
representing the attractor of the system more effectively [1]. The utilization of
these methods encompasses improved parametrization of unresolved processes
in numerical models and enhanced spatio-temporal interpolation of ocean
dynamics [2]. This chapter explores the application of machine learning,
specifically Convolutional Neural Networks (CNNs), in data assimilation for
oceanography, with a focus on the HYbrid Coordinate Ocean Model (HYCOM)
in the Gulf of Mexico.

The concept of CNNs, introduced by Fukushima in 1980 [3], was inspired
by the human ability for pattern recognition. This idea evolved with the work
of Homma et al., who introduced convolutions, and Yann LeCun in 1989,
who utilized back-propagation to learn the kernel coefficients. CNNs were
primarily developed to analyze image data, where each pixel in the image
has a spatial relationship with its neighbors, a feature that is also present in
oceanographic data.

Recent works in ocean sciences show that machine learning can be used
to emulate the dynamical model [4], substitute the data assimilation step to

Contents 5

speed up the process, or as a hybrid surrogate model to improve a forecast.
However, most of these works use ocean models of intermediate complexity
with significant simplifications. Overcoming these simplifications when moving
to full-size operational ocean models presents a new set of challenges.

This chapter investigates the use of CNNs to assimilate sea surface height
and sea surface temperature observations with HYCOM. The CNNs are
trained to correct the model error from a 1/25° resolution two-year-long data
assimilated HYCOM run with the Tendral Statistical Interpolation System
(T-SIS) as the assimilation package. The performance of the CNNs is studied
through five controlled experiments that provide intuition on how to apply
them in settings with full primitive equations, real observations, and complex
topographies.

Our experiments evaluate the architecture and complexity of the CNN, the
type and number of observations, the type and number of assimilated fields,
the response to the training window size, and the effects of the coastline. Our
results show strong correlations between the window size selected to train
the CNN, which is not commonly evaluated, and the ability of the CNN to
assimilate the observations. Similarly, we found a clear relationship between
the complexity of the chosen CNN and its overall performance.

The following sections will provide a detailed introduction to machine learn-
ing and its specific models such as the Perceptron, Multi-layer Perceptron
(MLP), CNNs, and U-net (Encoder-Decoder and Skip-Connections), as well as
an overview of HYCOM and T-SIS. The aim is to provide a comprehensive un-
derstanding of these models and their potential applications in oceanography,
particularly in data assimilation with the HYCOM model.

1.2 An Introduction to the Hybrid Coordinate System
Ocean Model (HYCOM)

The HYbrid Coordinate Ocean Model (HYCOM) is state-of-the-art multi-layer
ocean model [5][6][7][8][9]. A key feature of HYCOM is the use of a hybrid
vertical coordinate. While the horizontal coordinates are typically Cartesian,
the vertical coordinate need not be restricted to represent the vertical distance
from a specified origin, the so-called ”z-coordinate”. In various parts of an
ocean basin, the layer flow may be driven more strongly by different processes,
which in turn gives preference to the use of a more suitable vertical coordinate.
In the open stratified ocean, for example, in stable conditions ocean flow
typically follows along layers of constant potential density (isopycnals). For
shallow coastal regions, terrain-following coordinates may be more suitable
to characterize the flow subject to the kinematic constraint provided by the
bathymetry. In the surface mixed layer or where the ocean is un-stratified,
fixed pressure level coordinates may better represent the flow. The choices for
vertical coordinates for HYCOM is discussed in [6].

6 Contents

The primitive equations of the HYCOM are detailed in [5]:

∂v

∂ts
+∇s

v2

2
+ (ζ + f)k× v +

(
ṡ
∂p

∂s

)
∂v

∂p
∇sM − p∇sα

= −g
∂τ

∂p
+

(
∂p

∂s

)2

∇s ·
(
∂p

∂s
∇sv

)
(1.1)

∂

∂ts

(
∂p

∂s

)
+∇s ·

(
v
∂p

∂s

)
+

∂

∂s

(
ṡ
∂p

∂s

)
= 0 (1.2)

∂

∂ts

(
∂p

∂s
θ

)
+∇s ·

(
v
∂p

∂s
θ

)
+

∂

∂s

(
ṡ
∂p

∂s
θ

)
= ∇s ·

(
ν
∂p

∂s
∇sθ

)
+Hθ (1.3)

where v is the horizontal velocity vector, s is the vertical coordinate, ζ is
the relative vorticity, f is the Coriolis parameter, k is the vertical unit vector,
p is pressure, M = gz + pα is the Montgomery potential, α is the potential
specific volume, τ is the horizontal wind stress at the surface or drag at the
ocean bottom, θ are one of two thermodynamic variables, either temperature
or salinity, and ν is the eddy viscosity coefficient.

The first equation (1.1) is the momentum equation for the components of v,
yielding two scalar equations. The second equation (1.2) is the mass continuity
equation. The third equation (1.3) represents two scalar thermodynamic
equations, one for each thermodynamic variable. Thus, there are a total of
five equations that are being solved.

A unique feature of HYCOM is that the vertical coordinate system can be
modified at any given time step during model integration as flow conditions
change. This is done through the use of a grid generator.

In addition to the equations above, HYCOM includes parameterizations
that take into account other physical processes, such as vertical mixing
(possibly due to turbulence), convection and sea ice.

The HYCOM model is a highly configurable model that can be run at a
wide range of horizontal resolutions, vertical levels and can be driven using
readily available lateral and boundary conditions (e.g., surface wind-forcing,
tidal forcing and bathymetry).

1.2.1 HYCOM Data Assimilation System

The HYCOMmodeling system in this study utilizes the T-SIS data assimilaton
system [10]. In the earliest version of this system, T-SIS followed the classical
Kalman filter approach for optimal interpolation. In this approach, it is
assumed that the model forecast follows a Markov process, and observations
can improve the estimate of the model state, in a least squares sense, taking
into account the modeled and observed error covariances as follows:

Contents 7

xf
t = f t

(
xa
t−1

)
(1.4)

xa
t = xf

t +Kt

(
yt −Htx

f
t

)
(1.5)

where x is the model state, f refers to the forecast after application
of the forcast operator, f (“the model”), while a refers to the analysis after
observations are assimilated. The matrix K is commonly known as the Kalman
Gain, and determines the relative weight given to observations versus forecast
state taking into account model and observation error covariances. H is an
observation operator that maps the modeled state variables to the observation
variables. In the simple case where the observations are of the complete model
state, H is just the identity operator. In most cases, observations will sample
only part of the model state, hence H will then select the corresponding
element(s) of the model state and perform any other transformation that may
be needed. The Kalman gain is computed as

Kt = Pf
t H

T
t

(
HtPtH

T
t +Rt

)−1
(1.6)

where Pf is the forecast model state error covariance matrix, and R is the
observation error covariance matrix. When the observation errors are high (R
is large), K gives low weight in the second term in Eq. 1.5, giving the forecast
state more weight. On the other hand, when observations are near perfect,
R ≈ 0, then most weight is given to the observations.

In general, a covariance matrix can be decomposed into a correlation matrix
and a diagonal variance matrix:

Pf = D1/2CD1/2 (1.7)

where C is a matrix of correlations and D is a diagonal matrix of variances.
The correlations in general are computationally challenging to compute and
may be non-stationary, hence requiring frequent re-computation, so an ana-
lytical expression based on a second order auto-regressive (SOAR) function
is used instead as an approximation [11]. The correlations (elements of C)
between gridpoints and observations are computed as the product of ChCv

where

Ch = (1 + sh) exp (−sh) (1.8)

Cv = (1 + sv) exp (−sv) (1.9)

where sh and sv are the distances between grid points and observations,
scaled by the geometric mean of the horizontal and vertical correlation length

8 Contents

scales, respectively, based on an auto-regression. These expressions could also
be used to compute the observation error covariances (R), but currently the
observations are considered to be independent, leading R to be diagonal.

In the newer version of T-SIS, version 2.0 [10], an alternative approach to
calculate the Kalman gain is used

Kt =
(
P−1

t +HT
t R

−1
t Ht

)−1
HT

t R
−1
t (1.10)

The Kalman gain is computed by first defining the information matrix as
L ≡ P−1 and then the information matrix is modeled by a Gaussian Markov
Random Field (GMRF). Each element is conditionally specified based on a
set of neighbors. Via spatial regression [9], the neighbors can be determined
in a manner that can lead to a sparse matrix for L. This approximation
of the inverse error covariance matrix results in a significant reduction in
computational expense when used implicitly to solve Eq. (1.10). Speed-ups of
an order of magnitude have been reported [10].

After each assimilation step, there are further adjustments to the data in
order to accommodate certain HYCOM constraints, such as model layer thick-
ness adjustments, min/max thresholds, hydrostatic checks, and geostrophic
balance. The data used in the assimilation have wide temporal and spatial
availability. Commonly used data are satellite altimetry and surface tempera-
ture estimates as well as in-situ observations from fixed and floating platforms
(e.g. floaters and buoys). Table (1.1) shows the data types, source, frequency
and spatial characteristics used in this study.

Type Provider/Source Frequency Spatial
Variability

Sea Level Anomalies CLS: Daily Along
Track

https://www.aviso.altimetry.fr/
Sea Surface Temp NAVOCEANO: Daily Gridded

https://podaac.jpl.nasa.gov/GHRSST

Table 1.1 Overview of observations in the Gulf of Mexico assimilated by T-SIS.

1.2.2 An introduction to Machine Learning

The term “machine learning” was originally coined by Arthur Samuel in 1959,
who developed a checker-playing program that improved its performance with
experience [12]. In the 1960s and 1970s, the focus of machine learning research
was primarily on symbolic methods, also known as “rule-based” systems [13]
[14]. These systems were designed to mimic human problem-solving skills, but
were limited in handling uncertainty and learning from data. The 1980s and

Contents 9

1990s saw a shift towards statistical methods and neural networks, inspired
by the structure and function of the human brain. The development of the
backpropagation algorithm in the 1980s, used to train neural networks, was
a significant milestone [14]. However, due to computational limitations at
the time, the practical applications of these methods were constrained. The
resurgence of neural networks in the 2000s was driven by the availability of
large datasets and powerful computational resources [15].

In a nutshell, Machine learning gives computers the ability to learn without
being explicitly programmed. It involves the development of algorithms that
can learn from data and make predictions or decisions without being explicitly
told how to do so. Classically, there are three main types of machine learn-
ing: supervised learning, unsupervised learning, and reinforcement
learning.

Supervised learning is the most common type of machine learning, where
the algorithms are trained on a set of input data (features) and known outputs
(labels). The programs learns to predict the outputs for new, unlabeled data.

Unsupervised learning the algorithm is tasked with finding patterns in
the data (e.g. clustering), and the data usually does not have labels.

Reinforcement learning is a type of machine learning where the agent
learns to behave in an environment by trial and error. The agent is rewarded
for taking actions that lead to desired outcomes and penalized for taking
actions that lead to undesired outcomes [16] [17].

1.2.3 Perceptron

The perceptron is one of the simplest forms of a neural network and serves as
the foundation for more complex neural architectures. It was first introduced
by Frank Rosenblatt in 1958 [18], inspired by earlier work on the McCulloch-
Pitts neuron model. The perceptron is essentially a binary classifier that
makes its decisions based on a linear predictor function combining a set of
weights with the feature vector [19].

The mathematical operation of a perceptron can be described as fol-
lows: Given an input vector x = (x1, x2, ..., xn) and a weight vector w =
(w1, w2, ..., wn), the output y of the perceptron is determined by the weighted
sum of the inputs and a bias b. This can be represented as:

y = w · x+ b

where w · x is the dot product of the weight and input vectors, and b is the
bias term which adjusts the threshold [20].

The perceptron learning algorithm involves iteratively adjusting the weights
and bias based on the difference between the desired and actual output for
training examples. This is done until the perceptron can not improve the

10 Contents

evaluation metric in all training examples, or a maximum number of iterations
is reached [21].

1.2.4 Multi-layer Perceptron (MLP)

A Multi-layer Perceptron (MLP) is a class of feedforward artificial neural
network [22]. Unlike the simple perceptron, which consists of a single layer
and neuron or node, the MLP has one or more layers of hidden nodes between
its input and output nodes. The nodes in these layers are fully connected to
the nodes in the preceding and succeeding layers [20].

The MLP can be expressed as a function f : Rd → Ro, where d is the
dimension of the input vector and o is the dimension of the output vector.
The function f is defined by a series of transformations:

1. An affine transformation z = Wx + b, where W is a weight matrix, x is
the input vector, b is a bias vector, and z is the output vector.

2. An activation function h : R → R, which is applied element-wise to the
output vector z. The activation function introduces a non-linearity into
the model, allowing it to learn complex patterns. Common choices for h
include the sigmoid function, the hyperbolic tangent function, and the
rectified linear unit (ReLU) function.

3. These steps are repeated for each layer in the MLP, with the output of one
layer serving as the input to the next.

The MLP learns by adjusting the weights and biases in the affine trans-
formations based on the error of its predictions. This is done using a process
called backpropagation, which is a method for calculating the gradient of the
loss function with respect to the weights and biases [21].

The ability of MLPs to approximate any continuous function, given enough
neurons and layers, makes them a versatile tool for emulating more computa-
tionally expensive data assimilation techniques, such as the Kalman filter and
the ensemble Kalman filter. For example, a study by Cintra and Campos Velho
(2018) [23] used MLPs to emulate the local ensemble transform Kalman filter
(LETKF) for data assimilation in an atmospheric general circulation model.
The MLP was trained offline using synthetic observational data, and the
resulting MLP-based data assimilation system was able to produce analyses
that were very close to those produced by the LETKF, but with reduced
computational cost.

Contents 11

1.2.5 Convolutional Neural Networks

Fully-connected neural networks have approximately m ∗ n + n number of
parameters for every layer whith m previous nodes and n current nodes. The
number of parameters grows rapidily by incorporating additional intermediate
layers, rendering them impractical for training large-scale problems encoun-
tered in domains like computer vision. However, this limitation is overcome
by the introduction of Convolutional Neural Networks (CNNs).

CNNs are able to reduce the number of parameters by sharing weights
across different locations in the input data. This is done by using a convolution
operation, which takes a small window of the input data and applies a filter to
it. The output of the convolution operation is a feature map, which represents
the different features that are present in the input data [24].

The convolutional layers extract different sets of features from the input
data. The features extracted by the first layer are typically low-level features
(such as edges and corners for vision tasks), and the features extracted by
the subsequent layers are typically higher-level features (such as objects and
faces, also for vision tasks).

Convolutional Neural Networks (CNNs) are a type of NNs designed to
process data with a grid-like topology (e.g. images). The name ”convolutional”
indicates that the network employs a mathematical operation called convolu-
tion, which is a specialized kind of linear operation. CNNs are neural networks
that use convolution in place of general matrix multiplication in at least one
of their layers [24].

The convolution operation is a fundamental building block of CNNs. Let’s
consider two sequences, a = (ai)i∈Z and k = (ki)i∈Z. Their convolution is the
sequence:

b = (bi)i∈Z , bi :=
∑
j∈Z

ajki−j

Here, the sequence k is called the kernel of the convolution. The sequence
a is the input and the output b is known as the feature map.

Typically, the kernel has finite length, that is, ki = 0 unless −n ≤ i ≤ m.
Hence, the convolution operation can be written as:

bi =

m∑
j=−n

ajki−j

This operation operates locally: each bi is a weighted sum of nearby values
of a. We often call the vector (k−n, k1−n, . . . , km) a filter of length n+m+ 1.

The stride of a convolution operation can be changed by replacing the
previous equation with:

12 Contents

bi =

m∑
j=−n

atjki−j

where t ∈ N is the stride. This stride operation essentially skips the feature
map over the input.

CNNs are composed of one or more convolutional layers, often followed by
a pooling or down-sampling operation, which is then followed by one or more
fully connected layers, as in a typical image classification problems.

Pooling or down-sampling operations are used to reduce the spatial size of
feature maps while preserving their most important features. This has the
effect of reducing the number of parameters in the network and making it
more efficient to train [24].

1.2.6 U-net

U-net is a type of convolutional neural network (CNN) that was initially
developed for biomedical image segmentation at the Computer Science De-
partment of the University of Freiburg, Germany [25]. The architecture of
U-net is symmetric and it consists of two main parts: an encoder (contracting
path) and a decoder (expanding path), which gives it a U-shaped architecture.

The encoder part of the U-net architecture is a typical CNN that consists of
repeated application of two 3x3 convolutions (unpadded), each followed by a
rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2 for
downsampling. At each downsampling step, the number of feature channels is
doubled.

The decoder part of the U-net architecture consists of an upsampling of
the feature map followed by a 2x2 up-convolution that halves the number of
feature channels, a concatenation with the correspondingly cropped feature
map from the encoder path, and two 3x3 convolutions, each followed by a
ReLU. The cropping is necessary due to the loss of border pixels in every
convolution.

The unique feature of U-net is the skip connections between the encoder
and decoder parts. These connections provide a path to propagate local
information by bypassing the encoder-decoder bottleneck, which is crucial for
recovering the fine-grained details that are lost during the encoding process.

The final layer of the U-net is a 1x1 convolution used to map each 64-
component feature vector to the desired number of classes.

The operation of a U-net can be represented as follows. Let fi denote
the feature maps at the i-th layer of the network. In the encoder, each layer
performs two convolutions with ReLU activations, followed by max pooling:

fi = max(0,Wi ∗ fi−1 + bi)

Contents 13

where Wi and bi are the weights and biases of the i-th layer, and ∗ denotes
the convolution operation. The max pooling operation is applied to the result.

In the decoder, each layer performs upsampling of the feature map from the
previous layer, concatenation with the feature map from the corresponding
encoder layer, followed by two convolutions with ReLU activations:

fi = max(0,Wi ∗ (fi−1 ⊕ fi−encoder) + bi)

where ⊕ denotes the concatenation operation.

1.3 Data assimilation with Convolutional Neural
Networks

1.3.1 Methods

In this section, we explore the application of Convolutional Neural Networks
(CNNs) as a data assimilation technique for ocean models. We evaluate
the performance of CNNs through five experiments involving multiple CNN
models. These models assimilate both sea surface temperature (SST) and
sea surface height (SSH) data, and their results are compared with those
obtained through the optimal interpolation method as implemented in T-SIS.
The Gulf of Mexico serves as our test case for the numerical ocean model,
with a domain extent spanning from 18.09◦ to 31.96◦ in latitude and −98.0◦

to −77.04◦ in longitude, as depicted in Figure 1.1.

Fig. 1.1 Gulf of Mexico domain used as test case.

The ocean model used is the HYbrid Coordinate Ocean Model (HYCOM)
with a spatial resolution of 1/25◦. The GOMb0.04 domain is set up with the

14 Contents

high resolution 1km bathymetry of the Gulf of Mexico [26] over a domain going
from 98◦E to 77◦E in longitude and from 18◦N to 32◦N in latitude. With 41-
hybrid layers in the vertical, the latest version of the HYCOM model (2.3.01:
https://github.com/HYCOM/HYCOM-src) is forced at the surface with the
CFSR/CFSv2 hourly atmospheric forcing. The lateral open boundaries are
relaxed to daily means of the global HYCOM GOFS3.1 reanalysis https://
www.hycom.org/dataserver/gofs-3pt1/reanalysis. The initial conditions
are taken from a 20-year reanalysis created with the same configuration.

The Tendral Statistical Interpolation (T-SIS) package www.tendral.com/
tsis, described in section 1.2.1, is used with HYCOM to produce the hind-
cast. The basic functionality of the package is multivariate linear statistical
estimation given a predicted ocean state and observations. To optimize the
system’s performance for the HYCOM Lagrangian vertical coordinate system,
subsurface profile observations are first layerized (re-mapped onto the model
hybrid isopycnic-sigma-z vertical coordinate system) prior to assimilation. The
analysis procedure then updates each layer separately in a vertically decoupled
manner. A layerized version of the Cooper and Haines (1996) procedure is
used to adjust model layer thicknesses in the isopycnic-coordinate interior in
response to SSH anomaly innovations. Before calculating SSH innovations,
the mean dynamic topography (MDT) is added to the altimetry observations.
A MDT derived from a 20-year freerun of the GOMb0.04 configuration is used
for converting SLA to SSH. The multiscale sequential assimilation scheme
based on a simplified ensemble Kalman Filter [27, 28] will be used to combine
the observations and the model to produce best estimates of the ocean state
at analysis time.

This assimilative ocean model configuration is run initially for two years,
2009 and 2010, yielding a total of 730 daily outputs. These outputs serve to
train and validate the proposed CNNs. For each day, the increment fields of
SSH and SST, Kt(yt −Htx

f
t) from equation 1.5, the background state xf

t ,
and the observations yt are utilized to train the CNN models.

The CNNs’ performance is assessed through five controlled experiments
designed to reveal their expected behavior in practical operational settings
with full primitive equations, real observations, and complex topographies.
These experiments investigate the CNNs’ response relative to the size of
the spatial windows used for model training, the complexity of the CNN
architecture, the number and types of ocean fields used as input and output
fields, and the permissible ocean percentage in the training examples.

Window size. The first experiment investigates the performance of the
CNNs concerning the size of the spatial dimensions and the number of training
examples. Training a CNN within a fixed domain does not guarantee that the
model will generalize well to other domains. Even with translational invariant
convolutional layers, the models may learn specific relationships with the
masked land areas in the full domain, making it challenging to generalize to
domains with different coastlines and ocean dynamics. Conversely, training

https://github.com/HYCOM/HYCOM-src
https://www.hycom.org/dataserver/gofs-3pt1/reanalysis
https://www.hycom.org/dataserver/gofs-3pt1/reanalysis
www.tendral.com/tsis
www.tendral.com/tsis

Contents 15

our models with the whole domain means each training example corresponds
to one day from our model run, totaling only 730 days with our two-year
daily run. Alternatively, selecting sub-windows within our model as training
examples may increase model generalization and the number of examples
during training, but possibly at the cost of hindering the models from learning
specific relationships found in the entire domain.

Training a model with the full domain provides just one training example
per day. When training with smaller window sizes, the total number of training
examples is determined by how many sub-windows can fit within our domain.
For each dimension, the total amount of sub-windows that can be selected is
given by:

Number of training examples = Ds −Ws + 1 (1.11)

Here, Ds represents the dimension size, and Ws denotes the window size.
For instance, if the domain size is 10× 10 and the window size is 5× 5, we can
fit a total of 6 windows in each dimension, or a total of 36 different examples.
In our experiments, when training the networks with a window size smaller
than the full domain, 10 random windows are selected for a given day, and
each epoch is completed after 1000 of these randomly selected windows are
generated. The experiment investigates four different window sizes: 384× 520
(whole domain), 160× 160, 120× 120, and 80× 80.

CNN complexity. The second experiment evaluates the performance
of the CNNs for data assimilation concerning the complexity of the CNN
architecture. Five different models are evaluated using two CNN architectures.
The first four models follow a simple CNN architecture, which we refer to as
SimpleCNN. Models from this architecture are built by stacking convolutional
layers with an increasing number of filters. Each hidden convolutional layer
employs a ReLu activation function, and the last two convolutional layers
contain a single filter and a linear activation function. The four models using
this architecture vary in the number of hidden convolutional layers with 2, 4,
8, and 16 layers. The second architecture tested follows the encoder-decoder
architecture with skip connections from the U-Net [29]. For this architecture,
one model with three levels and 18 CNN layers is evaluated. Figure 1.2 presents
detailed information on this model, where all CNN layers except the last one
use the ReLu activation function.
Table 1.2[h] shows the names, number of hidden layers, and number of filters
used at each hidden layer for the five model architectures tested.

Inputs. This experiment investigates the use of multiple ocean fields as
inputs in our models. It would be advantageous to have a single deep learning
model capable of assimilating multiple observations at the same time. In tra-
ditional data assimilation methods, that use an approximation of the model’s
error covariance matrix for the assimilation, incorporating correlations with

16 Contents

Fig. 1.2 Encoder

Name CNN Hidden layers Filter size
SimpleCNN02 2 32, 64
SimpleCNN04 4 32, 64x3
SimpleCNN08 8 32, 64x7
SimpleCNN16 16 32, 64x15

U-Net 14 16x2, 32x2, 64x2, 128x2, 64x2, 32x2, 16x2

Table 1.2 Summary of the number of hidden layers and filters tested in each of the
proposed CNN models.

additional fields exponentially increases the size of the error covariance matrix.
In this experiment, we vary the inputs by adding new input fields such as
SST and the SSH observation errors.

Outputs This experiment evaluates the network’s performance concern-
ing the type and number of output fields. As in the previous experiment,
having a single model that can assimilate observations into multiple fields is
desired. The two fields considered in this experiment are SSH and SST, tested
individually and jointly. The primary objective is to investigate whether a
moderately complex CNN model can assimilate observations from multiple
fields as effectively as from a single field.

Table 1.3 summarizes all the options tested in each experiment. Each tested
model is trained five times to gather statistics on the training’s consistency
and allow a more accurate comparison between the models’ performances. A
total of 75 CNN models are evaluated in these experiments.

All models are trained using the Adam optimizer [30] with a learning rate
of 10−3. The loss function used is the Root Mean Square Error (RMSE)
between the increment provided by the CNN and the one generated by the
T-SIS model. The RMSE loss is only evaluated in the grid cells where there is
ocean, and the CNN models’ outputs are always masked by land areas, which
are irrelevant for data assimilation in the ocean. All trainings are halted when

Contents 17

Table 1.3 Models tested

Window size CNN Complexity Ocean Perc. Inputs Output

384x520 SimpleCNN 02 90% SSH SSH
160x160 SimpleCNN 04 60% SSH, SST SST
120x120 SimpleCNN 08 30% SSH, SST, SSH Err, SST-Error SSH and SST
80x80 SimpleCNN 16 0%

U-Net

the error in the loss function has not decreased for 20 epochs, as evaluated in
the validation set.

1.3.2 Results

Figure 1.3 shows a performance comparison with respect to the window size
used to train the networks. In this experiment, all other parameters remain
fixed, with U-Net serving as the default architecture. The SSH increment is
used as the target output, and the SSH background state xf

t and satellite
altimeter observations yt are used as inputs. Furthermore, a mask delimiting
areas in the GoM deeper than 200 meters is included as input because T-SIS
does not generate any SSH increment for shallow areas. To enable the CNN to
learn this restriction, we provided this mask as an additional input channel.

Fig. 1.3 RMSE comparison of CNN models by window size, evaluated in the test
dataset.

18 Contents

This experiment reveals a clear relationship between the model’s perfor-
mance and the size of the window used for training. Larger windows yield
better performance, and using the entire domain for training achieves the
best results.

Figure 1.4 presents the results of the comparison of the CNN architecture
and complexity. As before, all other parameters remain fixed. In this case, we
used the full domain to train the models, with SSH increment used as the
target output, and SSH background state and satellite altimeter observations
serving as input.

Fig. 1.4 RMSE comparison of CNN models by architecture complexity, evaluated in
the test dataset.

The results illustrate that, for the problem of data assimilation in ocean
models mimicking the optimal interpolation method, the CNNs’ performance
improves with increased complexity in their architecture. Two key observations
include: the exponential decay observed in the RMSE of the loss function
relative to the complexity for the SimpleCNN architectures (as the number
of hidden layers increases), and how the more advanced U-Net architecture,
incorporating batch normalization, skip connections, and an encoder-decoder
design, yields the best performance. It’s worth noting from this experiment
that although there’s a clear relationship between the complexity of the CNNs’
architectures and the performance obtained, the difference between them is
not too big. The SimpleCNN architecture with only four hidden CNN layers
already approximates the T-SIS data assimilation package with a RMSE of
just 8 mm.

Figure 1.5 presents the results of the experiment that compares the per-
centage of ocean required in the training windows. Recall that the goal of
this experiment is to investigate how grid cells with land areas can affect the

Contents 19

training of the CNNs—an problem that is not intrinsic in typical computer
vision problems.. For this experiment, the window size is fixed at 160× 160,
the network architecture is the U-Net, the SSH increment is used as the target
output, and the SSH background state and satellite altimeter observations
are used as inputs.

Interestingly, we do not identify a clear trend between the performance
of the CNNs and the percentage of ocean specified in the training examples.
These results suggest that CNNs are not significantly affected by land grid
cells when addressing the problem of data assimilation in ocean models.

Fig. 1.5 Comparison of the RMSE loss in the test dataset by the percentage of ocean
required in the training examples.

Figure 1.6 presents the results of including additional observations as input
into the models. For this experiment, the rest of the parameters are as follows:
U-Net is used as the network architecture, the entire domain is used to train
the models, and the SSH increment serves as the target output. The three
tested input observations are the satellite altimeter tracks (SSH), the altimeter
tracks combined with SSH and their corresponding observational errors (SSH,
SSH-ERR, SST, SST-ERR), and the altimeter tracks combined with SST,
but without the error information (SSH, SST).

This experiment reveals how the CNN models might benefit from addi-
tional observations as inputs. The performance improves when the error of
the observations is included as an input (as an extra channel in the input
layer), and the variance of the trained models improves when including SST
observation as an input variable. It is expected that the performance improves
by including the observational error because T-SIS uses it to compute the
increment—the error covariance matrix of the observations, R−1

t in equation
1.6, contains this information. However, it’s noteworthy to show that including

20 Contents

Fig. 1.6 Comparison of the test RMSE loss by the number and types of input fields.

additional SST observations does not affect the model’s performance, even
though we know that SST is not used by T-SIS to generate the SSH increment.

Finally, figure 1.7 presents the results of testing CNNs to simultaneously
generate multiple data assimilation increments, in this case, SSH and SST.
The rest of the parameters are as follows: U-Net is used as the network
architecture, the entire domain is used to train the models, and the SSH
increment serves as the target output. The three output increments tested
are the satellite altimeter tracks (SSH), sea surface temperature (SST), and
both together (SSH, SST).

Fig. 1.7 RMSE comparison of CNN models by the number and types of output fields,
evaluated in the test dataset.

Contents 21

For this final experiment, it’s important to note that the Y-axis is in meters
for the first two models, SSH and SSH, SST, but it is in degrees for the last
case of SST. The key takeaway from this experiment is that the performance
in predicting the SSH increment is not affected when the model is tasked with
generating both increments (SSH and SST) simultaneously. This indicates the
ability of the CNNs to manage multiple outputs without a significant drop in
performance for individual tasks.

1.3.3 Generalization Tests

Following the series of experiments in the previous section, which provide
insights in the performance of CNNs in an operational ocean model setting with
data assimilation, the best model was selected based on optimal parameters.
This model utilized the U-Net architecture, was trained using the entire
domain of the Gulf of Mexico (GoM) for training examples, and incorporated
the SSH observations, the SSH observation errors, the SSH background state,
and a binary mask indicating depths greater than 200 meters as inputs. The
desired output was the increment of SSH, essentially the corrections to be
made to this field in the model on a daily basis.

Figure 1.8 illustrates a comparison between the SSH increment as predicted
by T-SIS and the increment predicted by the CNN model for a specific day,
October 27th, 2010, from the test dataset. Generally, the overall predictions
are similar, with the RMSE across the entire domain in this example being
3.2 mm.

However, the figure also reveals some discrepancies, primarily at the periph-
eries of areas where there is an increment. This could potentially be attributed
to a hard threshold within T-SIS that doesn’t provide any increments beyond
a certain distance from the observation. An expected pattern from Figure
1.8 is that the corrections to the model are made predominantly close to the
locations of the satellite tracks.

Figure 1.11 depicts RMSE for the entire test set, ranging from October
19th to December 31st of 2010, as well as the initial days of the year used
for training. The mean RMSE for all the test set is 3.72 mm, while for the
days used for training it is 3.51 mm. This suggests that the CNN model is
effectively generalizing to unseen examples. However, two points need to be
considered in this analysis:

1. The Gulf of Mexico’s dynamics do not change rapidly over time. Hence,
the dynamical state of the GoM for the test set might be quite similar to
the state used for training the model.

2. There is a slight discrepancy in the mean RMSE between the training
and validation sets, indicating that a more comprehensive experiment is
necessary to understand how effectively the model generalizes to unseen

22 Contents

Fig. 1.8 Comparison of the predictecd HYCOM model error (increment) for SSH
from T-SIS in the top left panel and the proposed CNN model in the top right panel.
The bottom panel in the middle shows the difference between both predictions.

examples where the GoM’s dynamical state differs from that in the training
set.

To scrutinize the model’s ability to generalize across different dynamical
states of the GoM, two contrasting years were chosen based on the states of
the Loop Current (LC), the key driver of ocean dynamics in the GoM. Notably,
it’s challenging to confidently predict how a trained model will perform on
unseen data. In experiments that use synthetic data, it is simpler to identify
examples that fall outside of the training distribution, but in this scenario, the
process is not as straightforward. The assumption is that the CNN model will
learn to assimilate observations in the GoM akin to the optimal interpolation
method and will generalize correctly to data from different years, regardless
of the GoM’s dynamical state.

The years 2002 and 2006 were selected for this test. In 2002, the LC
is primarily in a contracted state, while in 2006, it is predominantly in
an extended state, with some eddies being shed throughout the year. New
assimilated runs of HYCOM and T-SIS were created for these two years

Contents 23

Fig. 1.9 RMSE of the proposed CNN model for the year 2010. The vertical green line
indicates the date where the validation dataset starts. The two dashed lines indicate
the RMSE of the training and validation sets.

as described earlier, featuring a 1/25◦ spatial resolution and using NCEP
CFSR/CFSv2 as the atmospheric forcings.

Figure 1.10 showcases a day from 2002 and 2006, emphasizing the different
dynamical states of the GoM for these two years.

Fig. 1.10 Contrasting dynamical states of the Gulf of Mexico for years 2002 and
2006. The left panel illustrates the retracted Loop Current on April 20th, 2002, while
the right panel depicts the extended Loop Current on April 20th, 2006. Both cases
are representative of the mean dynamical state of the GoM for that respective year.

The RMSE of the proposed model, trained with data from 2009 and 2010,
is 4.39 mm for 2002 and 4.22 mm for 2006. This demonstrates how effectively
the model is generalizing to new data and varying states of the GoM. It is
anticipated that the model will yield similar results, with an RMSE around 4
mm, for any other timeframe of the GoM. Figure 1.11 presents the RMSE

24 Contents

obtained for every day in 2002 and 2006, along with the mean for the two
years. The RMSE has increased from 3.7 mm in the validation set to 4.2 mm
in this new generalization test. This underscores the importance of identifying
appropriate scenarios to test the generalization of our models. Specifically, in
the context of ocean models, it is crucial to evaluate the model in different
dynamical scenarios to avoid being satisfied with metrics that may not hold
up when using the model operationally.

Fig. 1.11 RMSE of the proposed CNN model for the years 2002 on the top plot and
2006 in the bottom. The vertical dashed lines indicate the mean error for the whole
year.

Contents 25

1.3.4 Performance Comparison

The primary objective of this study is to investigate the use of CNNs as a more
efficient alternative to traditional data assimilation methods in ocean models.
However, comparing the performance between the proposed CNN model and
the traditional T-SIS optimal interpolation method is not straightforward.

The proposed CNN model is a prototype that only assimilates surface data
for a single field at a time (two in some of the experiments). In contrast, the
T-SIS data assimilation software is an operational package that simultaneously
assimilates all the HYCOM fields, namely temperature, sea surface height,
velocity fields U and V, salinity, and the 41 vertical layers of the model.

Furthermore, like most operational data assimilation systems, the T-SIS
package is implemented in FORTRAN and runs on tens to hundreds of CPUs
stored in clusters at High Performance Computing (HPC) centers. Meanwhile,
the proposed model is implemented in Tensorflow with Python and runs on
GPUs, which may contain thousands of small processors.

In this performance analysis, the times taken by T-SIS to assimilate a
single day of observations in two different settings are compared. The first
setting is when it is executed on a cluster with 32 processors at the HPC
center in Florida State University, and the second when it is executed at the
Narwhal Navy Super Computer with 96 processors.

Assimilating a single surface field using the proposed CNN model takes
0.054± 0.005 seconds with the an NVIDIA Quadro RTX 4500 GPU.

To simulate the performance when executed in full 3D (5 fields and 41
vertical-layers), we have two scenarios. The first scenario assumes we will
not be able to parallelize our code further (CNN Simulated 3D Sequential),
where we need to multiply our times by the number of fields and the number
of vertical levels (41*5). The second scenario assumes we will be able to
parallelize everything in 3D (CNN Simulated 3D Parallel).

These are the two extremes we can have, and the speed up of the proposed
CNN, compared to the 32 T-SIS processors, ranges between 1.8 and 388.
Compared with the 96 processors T-SIS version, the speedup ranges between
0.73 (slower) and 150.

As these ranges are quite large, we simulate assimilating all the vertical
layers by running our model in a batch of 41. This provides a metric closer
to what we would expect by parallelizing our code. For this scenario (CNN
Simulated 3D 41 Batch), the time it takes to perform a single day assimilation
is 0.36 ± 0.01 seconds. In this case, the expected speed-ups are 58 versus
running T-SIS with 32 processors and 22 versus running T-SIS with 96
processors.

Table 1.4 shows the time, in seconds, that the T-SIS package takes to
assimilate one day of data when run on an HPC with 32 processors and 96
processors, together with the estimates of times our model would take in the
case that we can only parallelize our model for assimilating the data in vertial

26 Contents

layers as a batch and when we assume we will be able to parallelize also the
five fields.

T-SIS 32 Procs T-SIS 96 Procs CNN Simulated CNN Simulated CNN Simulated
Sequential fields Parallel fields 41 Batch

21± 0.3 s 8.11± 0.5 s 11.07± 0.1 s 0.054± 0.005 s 0.36± 0.01 s

Table 1.4 A table comparing the times it takes to simulate a single day of observations
using T-SIS, using different number of CPUs, and with the proposed CNN model,
with multiple paralellization schemes.

1.4 Final Remarks

In this chapter, we’ve introduced the fundamental principles of numerical
ocean models, supervised machine learning and deep learning to explore the
application of CNNs as a DA scheme for ocean models.

A series of experiments were conducted to analyze the performance of
CNNs when applied to data generated from ocean models. These experiments
evaluated the architecture and complexity of the CNN, the type and number
of observations (inputs), the type and number of assimilated fields (outputs),
the response to the window size, and the effects of the coastline.

The results show a clear relationship between the window size used to
train the CNNs and the achieved performance: larger window sizes generally
yield better performance, especially when the full domain is used as the
training window. In the context of assimilating surface fields in ocean models,
there is also a discernible relationship between the complexity of the CNN
network and its performance. Deeper networks obtained better results, and
the U-net-based architecture outperformed the others.

We also found that even a shallow CNN with a straightforward architecture
could assimilate SSH with an error of just 8 mm. Another critical experiment
that assessed the effects of land in the ocean models showed that CNNs are
robust to areas of no interest, such as land. By merely replacing the land
areas with zeros, the CNNs’ performance was not affected by the percentage
of ocean used to train the models.

Our experiments also showed how CNNs could effectively utilize additional
inputs without degrading performance and how they could assimilate multiple
fields simultaneously.

Importantly, we highlight the need to identify a suitable test set to evaluate
the generalization capabilities of deep learning models. When working with
realistic ocean models on time scales shorter than weeks or months, it might
be misleading to randomly select a portion of the training data to test our

Contents 27

models. In these cases, the ocean might not undergo sufficient change within
those time scales, leading to overly favorable and misleading results.

We tested the generalization of our proposed model in two years that
included different dynamical states of the GoM. Although the error was
slightly higher than with the initial test data, an error of 4 mm was identified
as the expected value when using our CNN DA method in operational systems.

Finally, we compared the time performance of a conventional DA method,
implemented in FORTRAN and executed in a high-performance computing
(HPC) cluster, with the proposed CNN method executed on a single GPU.
These comparisons are challenging but provide some estimates on the potential
time and cost savings achievable with these new technologies.

In our tests, we found that the proposed CNN model can approximate
the DA optimal interpolation method implemented in T-SIS with less than
a 4 mm error, for SSH, and potentially achieve speedups of 50 compared to
running the DA system using a cluster with 32 processors.

References

1. Julien Brajard, Alberto Carrassi, Marc Bocquet, and Laurent Bertino. Combining
data assimilation and machine learning to infer unresolved scale parametrization.
Philosophical Transactions of the Royal Society A, 2021.

2. Maike Sonnewald, Redouane Lguensat, Daniel B. Jones, Peter Düben, Julien
Brajard, and Venkatramani Balaji. Bridging observations, theory and numerical
simulation of the ocean using machine learning. Environmental Research Letters,
2021.

3. Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202, 1980.

4. Chao Ma, Jianchun Wang, et al. Model reduction with memory and the machine
learning of dynamical systems. arXiv preprint arXiv:1808.04258, 2018.

5. Rainer Bleck. An oceanic general circulation model framed in hybrid isopycnic-
cartesian coordinates. Ocean modelling, 4(1):55–88, 2002.

6. Eric P Chassignet, Linda T Smith, George R Halliwell, and Rainer Bleck. North
atlantic simulations with the hybrid coordinate ocean model (hycom): Impact of
the vertical coordinate choice, reference pressure, and thermobaricity. Journal of
Physical Oceanography, 33(12):2504–2526, 2003.

7. Eric P Chassignet, Harley E Hurlburt, Ole Martin Smedstad, George R Halliwell,
Patrick J Hogan, Alan J Wallcraft, Remy Baraille, and Rainer Bleck. The hycom
(hybrid coordinate ocean model) data assimilative system. Journal of Marine
Systems, 65(1-4):60–83, 2007.

8. Eric P Chassignet, Harley E Hurlburt, E Joseph Metzger, Ole Martin Smedstad,
James A Cummings, George R Halliwell, Rainer Bleck, Remy Baraille, Alan J
Wallcraft, Carlos Lozano, et al. Us godae: global ocean prediction with the hybrid
coordinate ocean model (hycom). Oceanography, 22(2):64–75, 2009.

9. Toshio M Chin, Arthur J Mariano, and Eric P Chassignet. Spatial regression
and multiscale approximations for sequential data assimilation in ocean models.
Journal of Geophysical Research: Oceans, 104(C4):7991–8014, 1999.

28 Contents

10. Ashwanth Srinivasan, TM Chin, EP Chassignet, M Iskandarani, and N Groves.
A statistical interpolation code for ocean analysis and forecasting. Journal of
Atmospheric and Oceanic Technology, 39(3):367–386, 2022.

11. James A Cummings. Operational multivariate ocean data assimilation. Quarterly
Journal of the Royal Meteorological Society: A journal of the atmospheric sciences,
applied meteorology and physical oceanography, 131(613):3583–3604, 2005.

12. Arthur L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3(3):210–229, 1959.

13. Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
14. David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

internal representations by error propagation. In Parallel Distributed Processing,
volume 1, pages 318–362. MIT Press, 1986.

15. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

16. Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2016.

17. Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of
Statistical Learning. Springer, 2nd edition, 2005.

18. Frank Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408, 1958.

19. Marvin L. Minsky and Seymour A. Papert. Perceptrons: An introduction to
computational geometry. MIT Press, 1969.

20. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

21. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

22. David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. In Parallel distributed processing:
Explorations in the microstructure of cognition, volume 1, pages 318–362. MIT
Press, 1986.

23. Rosangela Saher Cintra and Haroldo F de Campos Velho. Data assimilation by
artificial neural networks for an atmospheric general circulation model. Advanced
applications for artificial neural networks, 265, 2018.

24. Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.
ar5iv.org, 2015.

25. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI, pages 234–241, 2015.

26. V Panagiotis. Gulf of mexico high-resolution (0.01◦× 0.01◦) bathymetric grid-
version 2.0, february 2013. Distributed by: Gulf of Mexico Research Initiative
Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas
A&M UniversityCorpus Christi https://doi. org/10.7266/N7X63JZ5, 2014.

27. Geir Evensen. The ensemble kalman filter: Theoretical formulation and practical
implementation. Ocean dynamics, 53:343–367, 2003.

28. Peter R Oke, John S Allen, Robert N Miller, Gary D Egbert, and P Michael
Kosro. Assimilation of surface velocity data into a primitive equation coastal
ocean model. Journal of Geophysical Research: Oceans, 107(C9):5–1, 2002.

29. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

30. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

	Data assimilation by neural networks on ocean circulation models
	 Olmo Zavala-Romero1,2, Dr. Steven Cocke2, Eric P. Chassignet2, Alexandra Bozec1, Jose R. Miranda1,2
	Introduction
	An Introduction to the Hybrid Coordinate System Ocean Model (HYCOM)
	HYCOM Data Assimilation System
	An introduction to Machine Learning
	Perceptron
	Multi-layer Perceptron (MLP)
	Convolutional Neural Networks
	U-net

	Data assimilation with Convolutional Neural Networks
	Methods
	Results
	Generalization Tests
	Performance Comparison

	Final Remarks
	References
	References

