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Abstract 

 

The encounters of westward propagating baroclinic eddies with a meridional wall 35 

on a β-plane and on an f-plane are considered both analytically and numerically using a 

reduced gravity model. It is shown that the eddy–wall interaction dramatically depends 

on the type of boundary conditions at the wall. On a β-plane, in the case of the no-slip 

boundary condition, no image effect occurs, so the eddy remains tangent to the wall and 

does not propagate in the meridional direction. Its radius diminishes gradually because of 40 

leakage at a rate that varies from 
  
1 / 1+!"R

0
t / 12(2! +1)#$ %&{ } for lenses to 

  
1 / !R

0
t / 8( )  

for deep upper layer eddies, where α is the vorticity coefficient. In the case of a free-slip 

condition, a non-lens eddy squeezes onto the wall, and a strong image effect occurs, 

pushing the eddy poleward. An equation defining the squeezing coefficient δ (i.e. ratio of 

the width of the squeezed segment to the eddy radius) as a function of time is obtained. 45 

The eddy propagation rate along the wall due to the image effect is expressed in terms of 

δ.  

On an f-plane, numerical simulations show that a non-lens eddy initially tangent to 

a slippery wall also squeezes and is subjected to the image effect (mostly because of 

alteration due to the viscosity in numerics). It translates along the walls of the rectangular 50 

domain with a propagation speed that can be roughly estimated using the formula 

obtained for encountering eddies on a β-plane. In the case of a no-slip wall condition, the 

eddy stays tangent to the wall at the same location and gradually dissipates.   

 

  55 
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1. Introduction 

 

The eddy–wall interaction problem is not new. In fact, it has been studied from 

many different points of view.  Lamb (1932), Saffman (1979), Pierrehumbert (1980), 

Minato (1982, 1983), Wu et al. (1984), Umatani and Yamagata (1987), and Masuda 60 

(1988) worked with linear quasigeostrophic eddies and with encounters taking place on 

an f-plane. Yasuda et al. (1986) were among the first to consider interaction on a β-plane. 

Nof (1988a) proposed an analytical modeling approach for eddy–wall interactions, 

considering a barotropic eddy with a small Rossby number, where interactions took place 

on an f-plane. He concluded that an anticyclonic (cyclonic) eddy encountering a zonal 65 

boundary leaks interior fluid from its right (left) side, looking offshore, after the contact. 

Nof (1988b) considered the interaction involving two types of baroclinic eddies: 

quasigeostrophic linear and moderately nonlinear. The former showed the same behavior 

as the barotropic eddies in Nof (1988a). For the later, however, there was no leak along 

the wall. The author explained this unexpected absence as a result of the high inertia of 70 

fluid particles inside the eddy. 

Shi and Nof (1993) investigated a violent encounter of an eddy with a meridional 

wall on an f-plane, resulting in a massive leak from the eddy interior and the subsequent 

split of the eddy. In this case, the collision of a cyclonic (anticyclonic) eddy with a wall 

produces an offspring anticyclonic (cyclonic) eddy, with the anticyclonic feature on the 75 

left side of the contact zone. The eddies move away from each other because of the image 

effect.  
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Shi and Nof (1994) investigated soft eddy–wall interactions on a β-plane, where 

three factors influence along-wall migration of the eddy: the image effect [see Lamb 

(1932), Kundu and Cohen (2008) for its explanation in a hydrodynamic sense], the β-80 

induced force, and the “rocket” force (due to the momentum of the leaking fluid). Also, 

these authors considered interactions between non-lens quasigeostrophic eddies and a 

wall on an f-plane. After contact, the eddy assumes a semicircular shape (which they 

called a “wodon”) that has a structure entirely different from that of an eddy in the open 

ocean. The wodons do not show leaks, leading to the conclusion that, for eddies with low 85 

Rossby numbers, the leaks do not have an important role in the interaction. The 

importance of the leakage increases proportionally with the nonlinearities of the eddy 

itself.  

Zavala Sansón et al. (1998) and Nof (1999) investigated encounters between 

anticyclonic lens-like eddies and a wall on a β-plane. Again the balance of forces along 90 

the wall involved three processes: the Coriolis force, the β-induced force, and the rocket 

force. The image effect was assumed negligible because, for lenses, the area of eddy–wall 

contact is very small. Zavala Sansón et al. (1998) showed that the lenses leak fluid while 

keeping their circular shape. The initial direction of their meridional migration depends 

on the relationship between their potential vorticity (PV) and the β-effect but, finally, the 95 

eddy migrates equatorward. Nof (1999) obtained an analytical formula for eddy 

decaying, in agreement with the results of Zavala Sansón et al. (1998). The equatorward 

translation of lenses is, however, very weak according to Nof (1999). In the author’s 

point of view, the results could not be extended to non-lenses because the image effect 
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could be significant, and it is not quite clear how to account for the effect in the force 100 

balance approach.   

As Shi and Nof (1994) and Azevedo et al. (2012, in press) suggested, eddy–

continent interactions due to β are relatively “soft” because the eddy translation speed is 

very small [
  
~ O(!R

d

2 ) , where 
 
R

d
 is the eddy Rossby radius]. We note, however, that 

there are eddy–continent interaction cases, where the eddy structure is dramatically 105 

altered within a few days (e.g., Shi and Nof, 1993).  

In this paper, we show that, for non-lenses, the image effect is negligible for a no-

slip boundary condition (NSBC). In contrast, in the case of a free-slip boundary condition 

(FSBC), the image effect is significant and leads to the propagation of the eddy along the 

wall. We suggest a formula for the propagation velocity owing to the image effect and 110 

show that the balance between the three other effects (considered by Nof, 1999) is still 

responsible for estimating the eddy radius decreasing rate and the amount of leakage. 

Also, in this paper we will show that a “viscous” image effect appears even in the f-plane 

simulations for an eddy initially tangent to the wall. We will suggest a possible 

explanation for this effect.   115 

The paper is organized as follows. In Section 2, we discuss the governing equations 

for the eddy-wall encounters on the β-plane. In Section 3, we present the numerical runs 

in different scenarios of encounters depending on the boundary conditions. In Section 4, 

we describe the equations for the evolution of an eddy during the encounter and its 

propagation due to the image effect (a detailed development of the equations is given in 120 

Appendix A). Section 5 is devoted to the consideration of the viscous image effect on an 
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f-plane. Finally, we summarize our results in Section 6. For convenience, we list all the 

relevant symbols in Appendix B.  

 

2. Formulation 125 

 

In this section, we consider the equations governing an eddy’s (not necessarily a 

lens’s) encounter with a vertical meridional wall (at   t = 0 ) as a result of β-induced 

westward propagation. A simple one-and-half-layer model is used, where an active upper 

layer (with density ! ) is atop an infinitely deep stagnant layer with density  (! + "!) . At 130 

this time we, at least formally, do not take into account the image effect, which will be 

discussed later. The basic approach and the scale analysis are similar to those given in 

Nof (1999).  

A schematic diagram of the model is shown in Figure 1. As the eddy is pushed 

against the wall, it leaks, and its volume decreases gradually. Later (in Section 4), we will 135 

consider two scenarios of eddy–wall interaction and the possibility of along-wall 

propagation. In both cases, we deal with two time scales. The first is a “fast” scale of 

O f
!1( ) characterizing the geostrophic adjustment and period of particle rotation inside a 

zero vorticity eddy, where f is the Coriolis parameter. The second is a “slow” scale of 

  
O( !R

d
) "1  that characterizes the eddy drift toward the wall. Here 

 
R

d
 is the Rossby 140 

radius of the eddy, and β the meridional gradient of f. Assuming that the parameter 

! = "Rd / f is small, we will analyze the scales in the following equations. 

 

 a. Conservation of mass.  
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 145 

We assume that the decrease of the eddy volume is due to leakage, and that the 

leakage velocity v is constant over its cross section (and equals the eddy orbital velocity 

along its rim, according to Bernoulli principle). We calculate the leakage transport across 

the segment PP
1
 (Fig. 1) by integrating

 
v H + !h x,t( )!" #$  over this segment, where H is the 

undisturbed upper-layer depth outside the eddy, and  !h is the perturbation depth. As the  150 

leakage is assumed approximately geostrophic in the cross-stream direction, its width is 

l = !g h
*
f
0
v( )

"1  (where v < 0  for anticyclonic eddies),  !g  is the reduced gravity, f
0
 is 

the absolute value of the Coriolis parameter at the eddy center, and 
 
h
*
= h

*
t( ) = !h 0, t( ) . 

As a result, the mass conservation equation is 

dV

dt
= !

"g
f
0

Hh
*
+
h
*2

2

#
$%

&
'(

,                                                                                                    (1)       155 

where V is the eddy volume. As we assume that V slowly varies in time, the left-hand 

side of (1) has a scale ! f 3Rd
4
/ "g = ! "g He

2
/ f  where H

e
 is the characteristic depth of the 

eddy (i.e., the depth of the upper layer at the eddy center.) Therefore, the scale of 

h
*varies from !1/2H

e
 for lenses (H = 0 ) to !H

e
 for non-lenses (when H is comparable 

to H
e
). Accordingly, the scale of l is !1/2R

d
 for lenses (Nof, 1999) and !R

d
 for non-160 

lenses.  

               

b. Momentum flux.  
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In a coordinate system moving with the eddy center, the nonlinear momentum 165 

equations (multiplied by the upper-layer depth h) and continuity equation are 

h
!u

!t
+ h

!C

!t
+ hu

!u

!x
+ hv

!u

!y
" f

0
+ #y( )vh +

$g

2

!

!x
h
2( ) = 0,                                            (2a) 

h
!v

!t
+ hu

!v

!x
+ hv

!v

!y
+ f

0
+ "y( ) u +C( )h +

#g

2

!

!y
h
2( ) = 0,                                              (2b) 

!h

!t
+

!

!x
hu( ) +

!

!y
hv( ) = 0,                                                                                                (3) 

where  C(t) is the eddy zonal propagation speed, h is the depth of the upper disturbed layer 170 

( h = H far away from the currents and BE), and !g = g"# / # is the reduced gravity. In 

this coordinate system, the wall is “moving toward the eddy,” so the boundary condition 

at the wall is 

u = !C at x = x
wall

! Cdt

0

t

" . 

As a significant simplification of our model, we assume that the eddy acceleration 175 

in the meridional direction is small, at least for a while, so that its along-wall propagation 

speed, if nonzero, is almost constant, and we can consider the system of equation solely 

in the zonal direction. Hence, we add (2b) and (3) multiplied by v, and integrate along the 

contour PQRS (Fig. 1 here). As a result, we obtain the basic momentum equation  

h
!v
!t
dS +

S

"" v
!h
!t
dS +

S

""
!
!x

huv( ) +
!
!y

hv
2( )

#

$
%

&

'
(

S

"" dS + f
0
+ )y( )

S

"" uhdS

+ f
0
+ )y( )

S

"" ChdS +
*g
2

!
!y

S

"" h
2( )dS = 0,

                           (4) 180 

which is analogous to (2.4) in Nof (1999). Here S is the area enclosed by PQRS.  
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Following Nof’s (1999) scaling, we drop the terms smaller than O !( ) . First, we note that 

v can be considered as v + !v( ) , where v is the meridional speed in absence of a wall, and 

!v is the time-dependent disturbance (due to the wall approaching) whose scale is 185 

O ! "g He( )
1/2#

$
%
&

. Therefore, under our assumption of slow variations, the time scale of the 

h!v / !t inside the eddy is O ! 3/2 "g He( )
1/2

fHe
#
$

%
&

. Less obvious is the order of the second 

term. Here, the integrand is O ! "g He( )
1/2

fHe
#
$

%
&

. For lenses, Nof (1999) argued that the 

contribution to the integral is from the asymmetrical part of v only, so the order of the 

integral is not more than O ! 3/2 "g He( )
1/2

fHeRd
2#

$
%
&

. In our case, the significant deformation 190 

of the eddy shape due to the wall is allowed, so the asymmetry of velocities is essential. 

However, we assume that: (i) the speed of the wall “intrusion” into the eddy is 

O ! "g He( )
1/2#

$
%
&

, and (ii) the eddy keeps its circulation, so, according to the mass 

conservation,
 

vdS !O ! "g He( )
1/2

Rd
2#

$
%
&

S

'' . On the basis on these assumptions, we conclude 

that the contribution from the eddy area to the second term in (4) is 195 

O ! 3/2 "g He( )
1/2

fHeRd
2#

$
%
&

 as well. Finally, the contribution from the leakage in the two first 

terms (with time derivatives) of (4) is also negligible because the leakage area is small.   

Let the streamfunction ! be !" / !y = #uh; !" / !x = vh . From Stokes’ theorem, it 

follows from (4) that 

 

! hv
2
dx +

"S
!# huvdy ! f

0
$ y dS ! % y$ y

S

##
S

##
"S
!# dS +C t( ) f

0
+ %y( )hdS

S

##

!
&g
2

h
2
dx = 0,

"S
!#

                             (5) 200 
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where !S is the boundary of the region S (Fig. 1). The second term is zero (because at 

least one of the three multipliers of the integrand vanishes at each part of the integration 

contour), and, after integrating the fourth term by parts, we rewrite (5) as 

 

!hv2 + f" !
#g
2
h
2$

%&
'
()
dx + * " dS

S

++
,S
!+ +C t( ) f

0
+ *y( )hdS

S

++ = 0.                                     (6) 

 205 

Further simplifications are made neglecting small terms as described in Appendix 

A. We finally obtain 

! hv
2
dl + " # dS +C t( ) f

0
Vb

Se

$$
P

P1

$ = 0.                                                                                  (7) 

Here, 
 

V
b
= !hdS

Se

!!  is the volume of the eddy “bell” (see schematic Fig. 2), whose depth is 

 
!h(r) = h ! H , and S

e
 is the eddy area.  Note that  !h is negative for cyclones. 210 

Under the same assumptions that led to (1) (i.e., the BE volume decreases owing to 

the leakage, which is approximately geostrophic, and the leakage velocity is almost 

constant over the width), the first term in (7) is !v hvdl = !vdV / dt
P

P1

" , implying that v is 

the velocity of leakage here.  So, according to the Bernoulli principle, (7) takes the form 

!v" R( )
dV

dt
+ # $ dS +C t( ) f0Vb

Se

%% = 0,                                                                              (8) 215 

where  

v
!
= "# f

0
r / 2, r $ R                                                                                                         (9) 

 is the eddy orbital velocity, and α is twice the eddy Rossby number (! = 1for zero PV 

eddies.) Though the simplifications used to obtain (8) are justifiable, this equation still 
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neglects the image effect. Since it is not easy to consider this effect theoretically, 220 

numerical experiments are performed to better understand its role. We describe our 

numerical set-up in the next section.     

 

3.  Numerical experiments on a β-plane.  

 225 

A modified version of the Bleck and Boudra (1986) reduced gravity isopycnic 

model with a passive lower is used. The basin size is taken to be 1600! 1600 km; the 

horizontal resolution is 5 km, and the time step is 30 s. The parameters are !g = 2 "10
#2  

m s !2 , f
0
= 8.8 !10

"5 s !1 , ! = 2.3"10#11m !1 s !1 , R = 50  (or 100) km,   H = 300 (or 500) 

m, and initially ! = 1. During the experiments, the value of α is altered by the viscosity 230 

effect, as discussed in Zharkov and Nof (2008b).   

We start the experiments at   t = 0  by turning on a circular anticyclonic eddy 

centered at a point whose distance from the wall is twice the eddy radius, and run for 720 

days. The results presented here are for R = 100 km and  H = 500 m. The viscosity 

coefficient ν is taken to be 350 m 
2 s 

!1 , which is the minimum required for numerical 235 

stability (in this case, the diffusion speed is 0.07 m s 
!1 , which is small compared to the 

eddies orbital speed of at least 1 m s 
!1 ). Figure 3 shows the evolution of the eddy during 

the first 80 days of simulation for NSBC (left panel) and FSBC (right panel). The 

behavior of the eddy differs between the two cases. With NSBC, the eddy remains 

tangent to the wall at all times, and its radius monotonically decreases, probably because 240 

of the leakage. The tangency point between the eddy and the wall slightly shifts along the 

wall during the simulation. This behavior is similar to the behavior of a lens (Nof, 1999), 
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justifying the neglect of the image effect in (8). In contrast, with FSBC, a nearly wodon 

scenario occurs: the eddy squeezes against the wall, deforms significantly, and moves 

poleward along the wall because of the image effect, as will be described in the next 245 

sections. However, because (i) the center of the eddy moves towards the wall at 

approximately the same rate in both cases, and (ii) (8) (defining the movement of the 

eddy in zonal direction) is obtained disregarding the boundary conditions, we will 

consider the two different scenarios: a tangent scenario and a “wodonization” scenario. 

For both, we consider that, at least at the first stage of the eddy–wall interaction, the 250 

decay and squeezing of the eddy can be essentially described by (8), so that the image 

effect is responsible exclusively for the eddy along-wall propagation. 

 

4. Theoretical description of the eddy–wall interaction 

  255 

a. Tangent scenario 

 

On the basis of our numerics, we assume that the eddy is circular (i.e., distortions 

caused by both the β-effect and the intrusion of the wall are of the next order of 

smallness). Under NSBC, we generalize the formulas given in Nof (1999). Assuming that 260 

the eddy is radially symmetric (in a polar coordinate system with origin at its center), we 

have 

v
!

2

r
+ f

0
v
!
= "g

#h

#r
,                                                                                                             (10) 

where v
!

is defined by (9).  Since h = H  at the eddy rim ( r = R ), we obtain 
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h(r) = !h(r)+ H , !h(r) =
! 2 "!( ) f0

2

8 #g
R
2
" r

2( ).                                                                (11)   265 

Assuming that the eddy remains approximately circular, its volume is 2! h(r)r dr

0

R

" , 

and        

V =Vb +!R
2
H ; Vb =

!" 2 #"( ) f0
2
R
4

16 $g
.                                                                          (12) 

Also, for radially symmetric eddies (see Nof, 1981), ! = " v#hdr

r

R

$ , and   

! " dS = 2# r"
0

R

$
Se

$$ dr =
#%! f

0
R
4

8

% 2 &%( ) f
0

2
R
2

24 'g
+ H

(

)
*

+

,
-.                                              (13)  270 

Substituting (12) and (13) into (8) with C t( ) = dR / dt , we obtain the differential equation 

for the time-evolution of the eddy radius 

dR

dt
= !

"R2

12

# 2 !#( ) f
0

2
R
2
+ 24 $g H

2 !#( ) 2# +1( ) f
0

2
R
2
+16 $g H

.                                                                    (14)   

If we assume that the initial moment of time is zero, for anticyclonic eddies 

( 0 <! "1 ), the solution of (14) is 275 

t =
4

!
2

R
"
4# + 3( ) f0

2

2 "#
6# $g H

tan
"1 f

0
R

2

# 2 "#( )
6 $g H

%

&
'

(

)
*

+

,
-
-

.

/
0
0

R0

R
,                                          (15) 

where R
0
= R 0( ) . 

In this work, we assume that cyclonic eddies (! < 0 ) never outcrop, i.e., h(r) > 0  

everywhere. According to (11), the non-outcropping criterion is  

  

! (2"! )f
0

2R2

8 #g
+ H > 0$ 8 #g H > ! (! " 2)f

0
R.                                                        (16) 280 
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In this case, the solution of (14) is 

t =
4

!
2

R
"
(4# + 3) f0

4

# " 2
6# $g H

log
2 6 $g H + # (# " 2) f0R
2 6 $g H " # (# " 2) f0R

%

&'
(

)*
+

,
-
-

.

/
0
0

,                                (17) 

where 2 6 !g H " # (# " 2) f
0
R( ) > 0  due to (16).  

In the case of lenses (H = 0 ), (14) is reduced to  

  

dR

dt
= !

"#R2

12(2" +1)
.                                                                                                         (18) 285 

 
So, the solution is  

  

R = R
0

1+
!"R

0
t

12(2! +1)

#

$
%

&

'
(

)1

.                                                                                                (19) 

For zero PV ( ! = 1), this equation takes the form of (3.7) from Nof (1999).   

In the opposite limit H !" , called a cylindrical eddy (when the Rossby radius of 290 

the upper-layer depth is much larger than the eddy radius), we have 

  

dR

dt
= !

"R
2

8
.                                                                                                                    (20) 

The solution is  

  

R = R
0

1+
!R

0
t

8

"

#$
%

&'

(1

.                                                                                                        (21) 

For 
  
R

0
= 50  km and  ! = ±1 , the evolution of the eddy radius modeled by (14) and 295 

the respective volume for the different kinds of eddies is shown in Figure 4.  It can be 

seen that the non-lenses (and especially cyclones) decay much faster at the beginning of 

the squeezing process than the lenses do. This can be explained by the fact that initially 

the contact area between the wall and a lens is very small, so the encounter is much softer 
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than for a non-lens eddy. However, the decaying process slows with time. The transition 300 

from a lens to a cylindrical eddy occurs quickly with growing H (the “intermediate” case 

is H = 50  m, yellow line in Fig. 4a). If H is of the order of the bell depth (which is about 

125 m for   R = 50  km and  ! = 1), the evolution of the radius is similar to the cylindrical 

eddy. Similar conclusions can be drawn for   H = 500  m. Consequently, the difference in 

decaying between cyclonic and anticyclonic eddies of the same H is small (see blue and 305 

green lines for  H = 500  m, and magenta lines for H !"  in Fig. 4a). At the same time, 

the decrease in volume (Fig. 4b) for an anticyclonic eddy with   H = 500  m (blue line) is 

similar to the decrease of the cylindrical eddy volume (magenta line) but is significantly 

different from that of a cyclonic eddy (green line).  

 310 

b. Wodonization scenario  

 

Now, we return to the situation depicted in Figure 1 and assume that, as the eddy is 

pushed against the wall, it deforms into a wodon. At the same time, the eddy propagates 

along the wall because of the image effect (which will be considered below), so we 315 

assume (8) to be valid in a coordinate system moving with the eddy center along the y- 

axis. The distortion due to the interaction with the wall is 
  
O 1( )  but we assume that at 

least with error of O !
1/2( ) , the purely geometrical description of the wall intrusion can be 

used. As before, any distortions due to β are neglected. In this case, the (darker) region 

ACB (Fig. 1) gradually enlarges, and the remaining area S
e
decreases as a function of t. 320 

The integration in the second and third terms of (7) is carried out over S
e
(t) . If the length 
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of CD is b, then OD length is R ! b  and the BD length is b 2R ! b( ) . The value (in 

radians) of the angle !  is 
 
2cos!1(1!" ) = 2sin!1

" (2!" ), where ! = b / R . Therefore, 

the area of the region S
e
is   

dS = I
1
R,!( ) =

Se t( )
"" #R2G

1
!( ),

G
1
!( ) = 1$

1

#
sin

$1 ! 2 $!( ) $ 1$!( ) ! 2 $!( )%
&

'
(.

                                                    (22)  325 

If the eddy evolves completely into a wodon, the final value of b is R (i.e., ! = 1 ). 

We assume that C t( ) = !db / dt = !Rd" / dt. The initial expressions for the second term 

in (8) and 
 
V

b
 are  (13) and (12), respectively. However, during the wodonization process 

( t > 0 ),  

Vb =
! 2 "!( ) f0

2

8 #g
I
2
,                                                                                                         (23) 330 

! "
Se t( )
## dS =

$! f
0

4

$ 2 %$( ) f0
2

16 &g
I
3
+ I

2
H

'

(
)

*

+
,,                                                                      (24) 

where I
2
R,!( ) = R

2 " r2( )
Se t( )
## dS  and I

3
R,!( ) = R

2 " r2( ) 2
Se t( )
## dS . 

Calculating the double integrals, we obtain 

I
2
R,!( ) =

"R4

2
G
2
!( ),

G
2
!( ) = 1#

1

"
sin

#1 ! 2 #!( ) #
! 2 #!( ) 1#!( ) 3+ 4! # 2! 2( )

3

$

%

&
&

'

(

)
)
;

                              (25) 

and 335 
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I
3
R,!( ) =

"R6

3
G
3
!( ),

G
3
!( ) = 1#

1

"
sin

#1 ! 2 #!( ) #
! 2 #!( ) 1#!( ) 15 + 20! + 22! 2 # 32! 3

+ 8! 4( )
15

$

%

&
&

'

(

)
)
.

   (26) 

The functions G
i
!( )  ( i = 1, 2, 3 ) are plotted in Figure 5. Initially, the eddy is 

tangent to the wall, so that G
1
0( ) = G

2
0( ) = G

3
0( ) = 1 , and we recover (12)–(13) from 

(22)–(24). At the initial stage of the squeezing process, G
2
 (and I

2
) and especially G

3
 

(and I
3
) decrease more slowly than G

1
 (and I

1
). In a pure wodon case  (final stage), 340 

G1 1( ) = G2 (1) = G3 1( ) = 0.5 .  

In this wodonization case, we assume that the eddy decays, not by decreasing its 

radius, but instead by deforming against the wall. This translates as dR / dt = 0  and 

dH / dt = 0 . So, from (22) and (25) we get 

dI
1

dt
= !2R2 " 2 !"( )

d"

dt
,
dI

2

dt
= !

4R
4

3
" 2 !"( )#$ %&

3/2 d"

dt
.                                             (27) 345 

Since 

V =V
b
+ I

1
H ,                                                                                                                   (28) 

it follows from (22), (26) and (27) that 

dV

dt
= !

" 2 !"( ) f
0

2
R
2

6 #g
$ 2 !$( ) + 2H

%

&
'

(

)
*R

2 $ 2 !$( )
d$

dt
.                                             (29)     

Substitution of (23), (24) (29) and (9) into (8) gives the final differential equation that 350 

models the eddy deformation against the wall, 

!"R
8

# 2 $#( ) f0
2
R
2

24 %g
G
3
&( ) +G2

&( )H
'

(
)

*

+
,

$
2 $#( ) f0

2
R
2

48 %g
3!G

2
&( ) + 4#& 2 $&( ) & 2 $&( )'

(
*
+ + H & 2 $&( )

-
.
/

0
1
2

d&
dt

= 0,

               (30) 
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whose solution is  

t =
4

!"R

48 #g H $ 2 %$( ) + 2 %&( ) f
0

2
R
2
3!G

2
$( ) + 4&$ 2 %$( ) $ 2 %$( )'

(
)
*

24 #g HG
2
$( ) +& 2 %&( ) f

0

2
R
2
G
3
$( )

0

$

+ d$ .      (31)  

The integrand in (31) is always positive, even for cyclonic eddies ( ! < 0 ). In the last 355 

case, the denominator is positive because of the non-outcropping condition (16).  

At   t = 0 , it follows from (30) that the eddies’ propagation speed is  

Cxi = !R
d"
dt

= !#
$R2

12
+

2 %g H
2 !$( ) f0

2

&

'
(

)

*
+,  

which coincides with the eddy propagation speed in the open ocean [Zharkov and Nof, 

2008b, Eq. (2)]. At the time the eddy is transformed into a wodon (! = 1 ), we obtain 360 

Cxf = Cxi 1+
8!

3"
+

32 #g H

" 2 $!( ) f
0

2
R
2

%

&
'

(

)
*

$1

.                                                                             (32) 

For the zero PV lenses (  ! = 1, H = 0 ), we have Cxf = Cxi / 1+ 8 / 3!( ) " 0.541Cxi , which 

is larger than C
xi
/ 3 in the tangent scenario (Nof, 1999).    

The solid lines in Figure 6a show the evolution of δ for an anticyclonic and a 

cyclonic eddy both with R = 50  km and   H = 500  m, and a lens of the same radius. For 365 

comparison, the dashed lines represent the propagation speeds of eddies in the open 

ocean (if there were no wall). Figure 6b shows the decrease of the eddy volume (as a 

fraction of the initial value). The value   H = 500  m satisfies the non-outcropping 

condition (16) for cyclonic eddies, where the minimal value of h is h(0) = 137  m. As 

expected, the encounter is stronger for non-lenses than for lenses. Here, we define the 370 

lagging period as the difference between the time an eddy takes to transform into a 

wodon and the time it would take to propagate at a distance equal to its radius in the open 
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ocean i.e., R /C
xi

. In Figure 6a, this is the interval !
l
between the points where the solid 

and dashed lines of the same color reach the upper border. We can see that !
l
 does not 

depend strongly on H.  For lenses, the leakage (i.e., the volume decreasing rate, see Fig. 375 

6b) is initially very small but later intensifies. If H is sufficiently large, for both an 

anticyclone and a cyclone, the leakage does not strongly depend on time. We note that 

Figure 6 is idealized because, as we will show, an eddy cannot turn completely into a 

wodon, and wodonization of lenses is unlikely.   

 380 

с) Quantitative comparison of the theoretical formulas for encounter scenarios with 

numerics 

 

To test our formulas for the eddy decaying velocity C (= dR / dt ) in both scenarios, 

we compare the theoretical and numerical values of dR / dt for the conditions of Figure 3 385 

(left panel for tangent scenario and right panel for wodonization) and for lenses with the 

same parameters, exceptH = 0  (tangent scenario). We average the parameters between 

the 150th and 200th days of simulation for lenses and the 20th and 40th days for non-lenses 

(which propagate much faster), when the eddy distortion is not yet strong enough to 

significantly complicate the measurement of R in the snapshots. The results are given in 390 

Table 1, where we list the characteristic parameters R, H, α, and δ (where the indices i 

and a indicate the initial and averaged values, respectively); estimated and numerical 

values of C (C
E

andC
N

, respectively); and the ratios C
N
/C

E
. We recall that the value of 

α (being one initially) is strongly altered by viscosity, so that its values (based on the 

eddy orbital velocity) at the moment of encounter are about 0.25 (in the tangent 395 
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scenarios) and 0.36 (in the wodonization scenario).  Also, the eddy radius increases 

during the alteration (before the contact with the wall), so that R
a
> R

i
. As a result, the 

ratio between numerical and theoretical values in the tangent scenario is 0.45 for lenses 

and 0.52 for non-lenses, respectively, and 0.81 in the wodonization scenario. It is not 

surprising that these values are less than one because, in the numerics, the propagation of 400 

eddies is usually slowed down by viscosity. As an example, the ratios between numerical 

and theoretical values of the eddy propagation speed with no obstacles are usually of the 

order 0.5 and even less (see, e.g. Zharkov and Nof, 2008a, Fig.9a).  

 

d) Image effect 405 

  

Shi and Nof (1994) argued that the eddy along-wall migration speed due to the 

image effect is of the same order as the orbital speed. In fact, this scale seems to be too 

large (one to a few meters per second). Here, on the basis of Shi and Nof’s (1994) 

principle (using an heuristic approach), we try to obtain more realistic estimates of the 410 

image effect-induced migration speed.  

A schematic plot showing the configuration of eddy–wall interaction is shown in 

Figure 7 (a modification of Fig. 1) in which the mirror-reflection of the arc ACB  is shown 

as AC
1
B . Also, we plot a vector indicating the direction of imaginary “flow into the 

wall,” which is important since, theoretically, the image effect occurs mainly because 415 

there is no such flow. The direction of v
!

 at point A (where the eddy touches the wall, 

Fig. 7) is represented by an inclined vector. According to the notations in subsection 4b, 

the speed of the imaginary flow into the wall is,  
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v
I 0
= v! sin" = v! # 2 $#( ),                                                                                            (33) 420 

 

where, as before, ! = b / R . Since we assume that the wall reflects the fluid particles, (33) 

defines the characteristic speed of particles inside the region bound by the wall and the 

arc AC
1
B , i.e., the particles in the volume V

AC
1
B

. However, we should consider the 

movement of the entire volume of the “truncated” eddy (i.e., the “squeezed” circle with 425 

the segment ACB  cut out). Therefore, the image effect-induced propagation speed is  

v
I
= v

I 0

V
AC1B

V
AEB

.                                                                                                                   (34) 

According to (22) and (23), we have 

VAEB = I1H +
! 2 "!( ) f

0

2

8 #g
I
2
.                                                                                            (35) 

Also, assuming that V
AC

1
B
=V !V

AEB
, we obtain from (12), (34), and (35) an estimate of 430 

the truncated eddy propagation speed 

vI = v! " 2 #"( )
16 $g H 1#G

1
"( )%& '( +) 2 #)( ) f0

2
R
2
1#G

2
"( )%& '(

16 $g HG
1
"( ) +) 2 #)( ) f0

2
R
2
G
2
"( )

,                                 (36) 

where G
1
and G

2
 are expressed by (22) and (25).  

To test (36), we compare the theoretical results with numerics under the conditions 

of Figure 3 (right panel), using the same parameters, except  H = 300  m. We note that, at 435 

the beginning of numerical run, the eddy accelerates along the meridional wall. So, to 

exclude that period, we average all results between the 50th and 100th days of simulation. 

The results are given in Table 2. Here we list the same parameters as in Table 1 along 
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with v
!

 (initialized and averaged), values of v
I
 estimated theoretically by (36) and its 

numerical values ( v
IE

and v
IN

, respectively) and the ratios v
IN
/ v

IE
. We note here that, (i), 440 

in Table 1 (focused on the eddy center zonal propagation speed), the data are averaged 

between the 20th and 40th days (which is the eddy meridional acceleration period), so !
a
 

and ! for the same experiment with R
i
= 100  km and H = 500  m are different in Tables 

1 and 2; and (ii), unlike C
E

, v
IE

 is expressed through the orbital velocity that is already 

altered by viscosity during the experiment. Therefore, the effect of viscosity on the ratio 445 

v
IN
/ v

IE
 is weak, so values more than one are suitable. On the basis of the v

IN
/ v

IE
values, 

we suggest that (36) gives a satisfactory estimate of the image speed.  

 

e) Notes about realization of scenarios and image effect in the theoretical model and the 

numerics. 450 

 

We have already mentioned that the tangent scenario with no image effect 

characterizes the encounter process for lenses in any condition, and for non-lenses when 

the boundary condition at the wall is no-slip. In the case of FSBC, a non-lens eddy is 

expected to squeeze according to the wodonization scenario and, at the same time, 455 

propagate along the wall because of the image effect.  

Note that, in (36), we do not take the leakage into account. If we do, the expression 

(36) for v
I
 should be multiplied by   (1! L)  with L the leakage coefficient, which is the 

ratio of the leakage volume and V
ACB

. From (8), we obtain the leakage volume transport 

dV / dt  but it is difficult to determine over which period of time it should be integrated. 460 

However, we showed in subsection 2a that 
 
l ! !R

d
! 0.35!R , so the assumption that l is 
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small compared to b should be valid as well (excluding a very short period of time at the 

beginning of the encounter when the eddy propagation along the wall is still 

accelerating). Indeed, in Table 2, the values of δ are much larger than   0.35! , which is 

about   3.1!10
"3 for the considered value of R and latitude of, say, Brazil-Malvinas 465 

convergence.)  Since l and b characterize the zonal scales of leakage and ACB , 

respectively, and the meridional scales are comparable, we can assume that the leakage 

volume is much smaller than V
ACB

. Hence   L ! 1 , and the inherent error is small.  

Also, there is an alternative choice of denominator in (34). We can use V (the entire 

eddy volume) instead of V
AEB

because there are both non-reflected and reflected particles 470 

inside the segment AC
1
B  (Fig. 7). However, the difference is O !

5/2( ) for lenses and 

O !
3/2( )  for cylindrical eddies. For real eddies, it is O !

2( ) , which is about 15-20% in our 

cases and also comparable with errors inherent in all other assumptions. So, (36) is 

approximately valid.  

It can be seen from our numerics that the wodonization is not complete but stops at 475 

some intermediate stage and, beyond that point, the eddy volume decreases according to 

the tangent scenario though the area of eddy–wall contact is large. The value of δ, at this 

stage, remains almost constant, so the image propagation speed is approximately constant 

as well. An estimation of that speed can be derived by analogy with the case of “viscous 

image effect” on an f-plane, as will be considered in the next section. Such an assumption 480 

is based on the idea that, if δ is constant, the β−effect is not important.  

Finally, when the eddy reaches the northwestern corner of the simulation area (for 

the Northern Hemisphere), it gets locked there and gradually dissipates.  
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5.  “Viscous image effect” on an f-plane 485 

 

In the preceding section, we considered the eddy–wall encounter on a β-plane 

resulting from the usual westward propagation. Theoretically, baroclinic rings cannot 

propagate on an f-plane, and we should not expect any eddy–wall interaction without β. 

Nevertheless, in numerical experiments, some anomalous effects appear that cannot be 490 

explained by an idealized non-viscous model without taking into account the boundary 

conditions.  

Here we analyze one of these anomalous effects. Figures 8 and 9 show the 

simulations with eddies whose parameters are R = 100  km,  ! = 1(initially), and  

  H = 300  m (Fig. 8) and 500 m (Fig. 9). Analogous with Figure 3, left panels show 495 

simulations with NSBC, and right panels with FSBC. For all the simulations, the 

viscosity coefficient !  is 50 m 
2 s 

!1  (which gives a diffusion speed of 0.01 m s 
!1 ). The 

initial condition is an anticyclone tangent to the wall on an f-plane, approximately 400 

km off the lower border of the calculation area.  

As seen in the figures, in the case of FSBC, an anticyclonic eddy initially tangent to 500 

the wall starts to propagate northward along it (in the Northern Hemisphere) and then 

goes clockwise around the square/rectangular domain area until it completely dissipates. 

Under NSBC, such an eddy does not propagate. On the whole, the eddy behaves similarly 

to the simulations on a β-plane. The main qualitative difference is that, with FSBC, the 

eddy is not locked at the northwestern corner but continues to move along the walls (see 505 

the lower right panel in Fig. 9).  
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As expected, the propagation speed strongly depends on the eddy basement depth 

H (i.e., depth of the upper layer at the rim of the eddy, see Fig. 2). As a side effect, if the 

depth of the eddy is relatively large, some weaker vortices (cyclonic in this particular 

case) appear and translate in the opposite direction (Fig. 9, right panels) in agreement 510 

with Shi and Nof (1993). In the case of FSBC, a single companion eddy goes around the 

perimeter of the simulation area counterclockwise (and even bypasses the main eddy 

when re-encountering it – not shown). In the case of NSBC, two very weak cyclones 

rotate around the main eddy but dissipate quickly.   

From our analysis, it seems that even on an f-plane, the image effect also occurs in 515 

the case of FSBC. We suggest that this is an artifact of numerical simulations due to the 

viscosity. At the beginning of the experiment, the vorticity of eddy decreases, while its 

radius grows slightly. Under the NSBC, the eddy continues to be tangent to the wall, 

similar to an “elastic ball.” Under the FSBC, the distance between the eddy center and the 

wall remains approximately constant, so the eddy actually squeezes onto the wall, leading 520 

to the image effect. In the displayed simulations, the viscosity coefficient is small, so, 

initially, the eddy accelerates in the meridional direction very slowly, and its shape is not 

quite circular. Both the squeeze and the more stable propagation start after a certain 

period of time.  

To better understand this image effect, we also simulate encounters for eddies with 525 

smoothed orbital velocity profiles, as 

v! = "
# f

0

2
r "

r
n+1

R
n

$
%&

'
()
, n = 1,2,3,...                                                                                   (37) 

 
From (10) and (37) we obtain 
 530 
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     (38) 

 
In the case of n = 1 , the structure of v

!
is parabolic.   

Also, we simulate the Gaussian eddies with  

h = H + h0 exp ! r / r0( )
2"

#
$
%
, r & R; h = H , r > R,                                                             (39)   535 

v! = "
rf0

2
1+

8 #g h0

f0r0( )
2
exp " r / r0( )

2$
%

&
'
"1

$

%

(
(

&

'

)
)
, r * R; v! = 0, r > R.                                  (40) 

Figure 10 shows snapshots for the Gaussian eddies in the case of FSBC; the parameter 

values are given in Table 3, the second row from the bottom. Unlike the preceding 

figures, the left panel shows the evolution of vector-velocities of the eddy particles.  The 

basin size is 2000! 2000 km, and, at the initial moment of time, the eddy is centered at 540 

x = 250  km and y = 1000  km. It is seen that, qualitatively, there are no significant 

differences with the cases described above, although the leakage of the eddy looks 

somewhat stronger. Also, it can be inferred from the left panel that, as a result of the 

“image effect,” the particles at the wall strongly accelerate at the moment of their 

detachment (at the upper point of the eddy–wall contact area). As before, in the NSBC 545 

case, the image effect is absent. For smoothed profiles (not shown), the snapshots are 

qualitatively similar. Therefore, we can consider only quantitative differences in the 

behavior of eddies with linear, smoothed, and Gaussian structures.  

As an argument in favor of our conclusion that the considered image effect is 

caused by viscosity, we note that the viscosity is the main factor defining the propagation 550 

speed. Actually, it acts in two ways. On one hand, the viscosity causes the growth of the 
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eddy radius, increasing δ and, therefore, accelerating the eddy. On the other hand, it 

slows the orbital velocity and, therefore, the propagation speed as well. Consequently, the 

eddy accelerates initially, propagates with almost constant speed for a while, and then 

slows. The period of this cycle significantly shortens for large viscosity, especially for 555 

eddies with linear profiles of v
!

.  

We assume that when the propagation speed is nearly constant, it can be estimated 

using (36), by analogy with the image effect in the wodonization case. It is obvious that, 

if we use (37) and (38) or (39) and (40) instead of (7) and (11), all formulas in Section 4 

are not valid, excepting (10). Nevertheless, we test whether (36) can give a fair estimate 560 

of the propagation speed in these cases as well by taking v
!

 as the maximal radial speed.  

The results are given in Table 3, where the parameter notations are the same as in Table 

2. In numerics, we calculate the characteristic values of v
I
by averaging data from the 

100th to the 200th day of simulation, except for the large viscosity cases, for which we 

averaged data from the 50th to the 150th day, and small viscosity and linear v
!

 profile, for 565 

which we averaged data from the 150th to the 250th day. Unfortunately, v
IN
/ v

IE
is not 

accurate because (36) is strongly nonlinear, so that, on average, the nearly 15% 

uncertainty in experimental estimation of δ (which comes mainly from deformations of 

the eddy in numerical simulations) leads to about 40% uncertainty in the calculation of 

v
IE

.  570 

It is seen from Table 3 that, despite the aforementioned uncertainty, (36) is suitable 

for estimating the speed except for cyclonic eddies. (In this case, the theoretical results 

are almost of the order of the orbital speed but the experimental values are much larger 

than for anticyclonic eddies as well.) For large values of viscosity, as expected, the 
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smoothed eddies propagate slower than those with a linear profile of v
!

. However, for 575 

small viscosity, eddies with smoothed profiles of v
!

 propagate faster than ones with a 

linear profile. This is because, for smoothed profiles (rows 10–15 in the main body of 

Table 3), the characteristic δ weakly depends on the viscosity (probably because of gentle 

“adaptation” of the velocity distribution to the encountering process), so, with increasing 

! , the decrease of maximal orbital velocity becomes an overwhelming factor that slows 580 

the propagation. In contrast, in the case of linear velocity profile (and zero PV initially, 

see rows 1–6 in the main body of Table 3), the characteristic value of δ significantly 

grows with increasing viscosity, and so does the propagation speed. The effect of 

decreasing initial value of α is analogous to smoothing the profile (though δ does grow 

with increasing viscosity but not as strongly as in the case of zero PV initially). Also, as 585 

should be the case, the propagation speed increases with growing H.  

Finally, we note that in Section 4 (simulations on a β-plane), we considered the 

eddy initially centered at a distance equal to its diameter from the wall. In that case, the 

viscous adjustment of the eddy was almost completed when it touched the wall. So, in the 

case of FSBC, the image effect was entirely caused by the β-effect. However, in some 590 

runs with an eddy initially touching the wall on a β-plane (not shown in the figures), the 

viscous extension was the strongest factor defining the eddy along-wall propagation 

speed, overwhelming the β-effect. We do not suggest that this is common because it 

depends on the eddy initial parameters.  

 595 

6. Conclusions and discussion  
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Eddies’ encounters with a meridional wall and their subsequent along-wall 

propagation are investigated using one-and-half layer analytical and numerical models. 

Such an investigation can be applied to dynamics of eddies in many regions of the 600 

world’s oceans (Nof, 1999) [though, in some cases, the western boundary currents 

complicate this process (see, e.g. Byrne et al., 1995, for Agulhas eddies)].  

In the Northern Hemisphere, the results can be summarized as follows: 

1. The behavior of a non-lens eddy encountering a wall strongly depends on the 

boundary condition. In the case of a no-slip boundary condition (tangent 605 

scenario), the encounter is quite similar to the case of lenses described by Nof 

(1999). The eddy barely propagates along the wall and gradually leaks. The rate 

of the decrease in the radius is 1/ 1+!"R
0
t / 12 2! +1( )#$ %&{ } for lenses and 

1/ 1+ !R
0
t / 8( ) for deep upper-layer eddies (the latter approximation is probably 

valid even when the depth of the environmental upper layer H is of the same order 610 

as the height of the eddy bell).  

2. In the case of a free-slip boundary condition (wodonization scenario), the eddy 

squeezes against the wall, and because of dissipation, the center approaches the 

wall significantly faster than it does in the tangent case. The approaching speed 

increases with growing H. Also, the image effect is significant. For both 615 

dissipation rate and along-wall speed, the formulas are obtained in terms of orbital 

velocity and coefficient of squeezing (defined in Section 2).  

3. In the wodonization case, the eddy does not transform completely into a wodon. 

Rather, the coefficient of squeezing reaches approximately 0.6 and then remains 

almost constant during the dissipation period.   620 
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4. In f-plane numerical simulations, a non-lens baroclinic eddy initially tangent to a 

free-slip wall is subjected to a viscous image effect, and its along-wall 

propagation speed can be roughly estimated with the same formula used in the β-

plane encounters.  

5. Our formulas are in adequate agreement with numerical experiments except for 625 

the very strong viscous image effect over cyclonic eddies.      

Though the numerical simulations of a single eddy do not require strong viscosity 

coefficients for stability, it would be interesting, in the future, to consider less viscous 

numerical models, like QG-models. Also, in considering the eddy propagation along the 

wall, we do not take into account the effect of possible self-propagation of baroclinic 630 

eddies (Radko and Stern, 1999, 2000).  In our f-plane simulations, if the distance between 

the initialized eddy and the wall were equal to the eddy diameter, this eddy could not 

move. Possibly the effect of finite depth can significantly affect the behavior of such an 

eddy.  

Finally, we did not consider how the wall boundary conditions (which are artificial 635 

in numerics) are related to the real character of the continental coast and the nearshore 

oceanic area. In real conditions, we know intuitively that the tangent scenario of 

encountering is more likely to occur than the wodonization. However, the eddy is more 

likely to propagate along the wall than to stay at the same location (though, according to 

observations, anticyclionic eddies can go both poleward and equatorward after 640 

encountering the wall – see Shi and Nof, 1994).  Probably the free-slip boundary 

condition is a more natural condition because, in fact, the wall is not vertical and the 

entire eddy basement cannot attach to it all at once. Although we do not take into account 
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the bottom topography when considering the eddy propagation, the wall can be 

considered a line behind which the real depth is less than some chosen value. This value 645 

can be, for example, of the order of double or triple the Ekman layer depth, the 

characteristic depth of the upper layer, the depth of a narrow continental bank, etc. In any 

case, the real bathymetry can stop the movement of the eddy’s deep part, while its 

shallow part can both go across the line of “wall” and slip along it. Since the behavior of 

the encountering eddy strongly depends on the type of boundary condition, we expect its 650 

strong dependence on the steepness of the continental slope and bottom topography.  

Several papers consider the interaction of eddies with continental slope topography (see, 

e.g., Frolov et al., 2004; Sutyrin et al., 2009), though the investigations focus mainly on 

quasigeostrophic eddies, which are relatively weak. Future studies might examine the 

effect of topography for the wide diversity of eddies.  655 

 

APPENDIX A. Contour integration and neglect of small terms in 

governing equation (6).  

 

As we assume that the disturbances outside the eddy and leakage are small, we rewrite 660 

the first term as 

 

!hv2 + f" !
#g
2
h
2$

%&
'
()
l

dx +
*S
!+ !hv2 + f" !

#g
2
h
2$

%&
'
()
e

dx
*S
!+ ,                                                 (A1) 

where the indices l and e mean the contributions from leakage and the eddy. In the first 

term, the contour !S  can be reduced to PP
1  (i.e., the crosscut of the leakage, see Fig. 1.) 

As we assume that, in the first approximation, the leakage is geostrophic, and f does not 665 
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strongly change inside the considered area, we can neglect f! " #g h2 / 2( )  in this term, 

so that, in the zero-order in expansion by ! , we have 

 

!hv2 + f" !
#g
2
h
2$

%&
'
()
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dx = ! hv
2

P

P1

* dl.
+S
!*                                                                            (A2) 

In the second integral in (A1) that expressed the “non-leaking eddy” contribution, 

we can assume that, outside the eddy, H is constant, and u and v are at least of the next 670 

order of smallness compared to the liquid velocities inside the eddy and the leakage. 

Here, we again introduce the expansions analogous to (3.1) in Nof (1999) and use the 

“small distortion approximation.” Now, we estimate 
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following Nof’s (1983) approach. We assume that our solution is slowly varying in time, 

so that the Bernoulli function in a moving coordinate system  675 
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where y
0
the latitude of ! = 0 far away from the eddy; u, v, and h are calculated at the 

eddy boundary. Therefore,  680 
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As a result, 
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Some terms are constant (we recall that H is also constant), so their contributions to 

the integral vanish and (A4) becomes 690 
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Although we consider the “contribution from the eddy” in (A1), the contour 

 !S encloses the eddy from outside (which can be considered a streamline bordering the 
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eddy), so the summation of the terms with v in (A5) is valid. If we assume that, along 

 !S , both u and v are of the order of C, the horizontal scale is R
d
, and the time scale is 695 

f
0

!1 , then 
 
x, y, y

0{ } ! Rd  and 
 
!g H ! Rd f0( )

2  in the common case. Furthermore, 
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!y ! " f

0
. Also, because !  is constant along a streamline, 

the only contribution to the last term in the braces is across the “imaginary” leakage, i.e., 

the segment PP1. In subsection 2a we showed that, for non-lenses, l (which is the length 

of PP1) is of the order !R
d
. [For lenses, 

 
l ! !

1/2
R
d
 but the results are basically the same 700 

(Nof, 1999).] Hence, 
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where h is again expressed by (A3).   

Therefore, there are no terms of the order ! 0 in the braces in the right-hand side of 

(A5), and the only term of the order !1  is 2 !g Hf
0
Cy . So, with error O !

2( ) , we can write  
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Taking into account (A1), (A2), and (A6) in (6), we obtain (7), where the 

integration area in the term with β is S
e
because this term describes the β-force due to the 

eddy rotation, and the contribution from the area outside the eddy is negligible.   

 

APPENDIX B. List of abbreviations and symbols 710 

 

b – width of the squeezed segment of eddy 

C t( )  – zonal westward propagation speed of the eddy 

Cxi ,Cxf – value of C t( ) at the beginning of squeezing and at the moment when the eddy 

(theoretically) becomes a wodon 715 
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f – Corilois parameter 

f
0
– local absolute value of  f  

FSBC – free-slip boundary condition 

!g – reduced gravity 

G
i
!( )  ( i = 1, 2, 3 ) – dimensionless functions defined by (22), (25), (26) 720 

h – depth of upper (disturbed) layer 

h
*  – depth of leakage 

H – value of h outside the eddy (“basic” depth) 

 

!h = h ! H( )– disturbed part of h (in the eddy area – depth of the eddy bell) 

I
1
, I

2
, I

3
– integrals defined by (22), (25), (26) 725 

l – width of leakage  

n – parameter of smoothness of the eddy orbital velocity profile in (37) 

NSBC – no-slip boundary condition 

PV – potential vorticity  

R – eddy radius 730 

R
0
– initial value of R 

R
d
 – eddy Rossby radius 

Ro – Rossby number 

S – overall integration area 

S
e
– eddy integration area 735 

t – time  

u, v – horizontal velocity coordinates 

V – eddy volume 

V
b
– eddy bell volume  

v
!

– orbital velocity of the eddy 740 

v
I 0

– projection of v
!

on the x-axis 

v
I
 – eddy propagation velocity owing to the image effect 

v
IN

– value of v
I
in the numerics 

v
IE

– theoretical value of v
I
calculated by (36) 
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v
!i
,v

!a
– initial and time-averaged values of the eddy maximal orbital speed in numerics   745 

x, y – horizontal coordinates 

α  −  eddy vorticity parameter 

β – meridional gradient of the Coriolis parameter 

δ – coefficient of squeezing (b / R )  

! – small parameter equal to !Rd / f  750 

!  – viscosity coefficient (in numerics) 

!"  – difference between densities of the lower and upper layers of water 

!  – density of the lower oceanic layer 

! – angle of squeezing visibility from the center of the eddy (Fig. 1) 

! – streamfunction 755 
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Table 1. Parameters and results of theoretical and numerical estimation of the eddy 835 
center migration speed in the eddy–wall encounters on a β-plane. Here and in 
Tables 2 and 3, indices i and a mean initial and averaged values, and E and N 
mean estimated (using a theoretical model) and numerical values.  

 

Table 1. Parameters and results of theoretical and numerical estimation of the eddy center migration speed  

     in the eddy-wall encounters on a !-plane. Here and in the next two tables, indices i and a mean initial  

     and averaged values, and E and N mean estimated (using theoretical model) and numerical values.  
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H, m ! ,  
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 s
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 !
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 !  C

N
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km day
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C
E
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km day
-1

 

C
N
/C

E

 

tangent 100 110 0 350 1 0.25 0 0.15 0.33 0.45 

 100 110 500 350 1 0.25 0 0.70 1.36 0.52 

wodonization 100 130 500 350 1 0.36 0.21 2.75 3.41 0.81 
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Table 2. Parameters and results of theoretical and numerical estimations of image effect  
     in the eddy–wall encounters on a β-plane. 
 

Table 2. Parameters and results of theoretical and numerical estimation of image effect  

     in the eddy-wall encounters on a !-plane 
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100 300 350 1 0.23 429 97 0.39 9.89 7.97 1.24 

100 500 350 1 0.17 429 73 0.45 14.02 12.07 1.16 
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Table 3. Parameters and results of theoretical and numerical estimations of viscous 895 
image effect. 

 
Table 3. Parameters and results of theoretical and numerical estimation of viscous image effect 
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velocity 
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linear 

 

100 

 

300 

 

- 

 

50 

 

1 

 

0.334 

 

429 

 

143.2 

 

0.11 

 

1.09 

 

0.80 

 

1.36 

  100 300 - 100 1 0.252 429 108.2 0.24 3.45 3.17 1.09 

  100 300 - 150 1 0.190 429 81.48 0.31 3.23 4.32 0.75 

  100 300 - 250 1 0.135 429 57.80 0.32 2.55 3.39 0.75 

  100 300 - 500 1 0.114 429 49.0 0.38 3.18 4.01 0.79 

  100 500 - 50 1 0.458 429 196.5 0.26 5.64 7.84 0.72 

  100 300 - 50 0.2 0.084 85.8 36.06 0.24 3.45 3.17 1.09 

  100        300 - 100 0.2 0.067 85.8 28.70 0.36 1.64 2.39 0.69 

  100 300 - 500 0.2 0.028 85.8 11.96 0.47 1.64 1.83 0.90 

 smoothed 100 300 1 50 1 0.513 109.7 56.3 0.30 2.09 2.58 0.81 

  100 300 4 50 1 0.472 235.3 111.1 0.33 4.64 6.01 0.77 

  100 300 1 100 1 0.339 109.7 37.17 0.29 1.82 1.63 1.12 

  100 300 4 100 1 0.317 235.3 74.72 0.31 2.82 3.73 0.76 

  100 300 1 500 1 0.113 109.7 12.43 0.33 0.82 0.87 0.94 

  100 300 4 500 1 0.114 235.3 26.72 0.27 1.06 1.16 0.91 

 Gaussian 200 1000 - 500 - 0.40 141 56 0.42 2.5 4.47 0.56 

cyclonic linear 100 500 - 50 -1 -0.89 -209 -184.4 0.50 20.0 113.4 0.18 

  
 

 900 
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Figure 1.  Schematic diagram of the study model. The eddy propagating westward 
encounters the meridional wall. Subsequently, the leaking along the wall occurs and 905 
the eddy squeezes gradually. The “wiggly” arrow shows the direction of the squeezing 
eddy propagation. The value of propagation velocity 

  
C

x
(t) is strongly reduced 

compared to the eddy propagation speed in the open ocean. Segment ABC is the 
squeezed area; b is its “deepening”; PQRS is the integration contour. PP

1
is the cross 

section of the leakage whose width is l.  910 
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Figure 2. Structure and introduced notations for (a) anticyclonic and (b) cyclonic eddies. 
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 915 

Figure 3. Evolution of an eddy encountering a meridional wall with NSBC (left panels) 
and FSBC (right panels). Parameters are  R = 100 km,   H = 500  m, 

 
! = 2.3"10

#11 m 
!1 s 

!1 , and  ! = 1 initially. The scales on the coordinate axes are given 
in kilometers; the lines of constant upper-layer depth are spaced by 50 m, starting from 
550 m. Maximal depth is given inside the eddy contours. The eddy begins movement 920 
when the distance between its center and the wall is 200 km.  
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Figure 4. Decaying of eddies whose radii are 50 km and  ! = ±1  initially: “lens” (red 925 
lines), anticyclonic eddy with   H = 50  m (yellow lines), anticyclonic eddy with  
  H = 500  m (blue lines), cyclonic eddy with   H = 500  m (green lines), and cylindrical 
eddy in the limit of H !" (magenta lines). (a) Ratio 

  
R / R

0
 versus time; (b) ratio 

  
V / V

0
.   

 930 
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Figure 5. Dependence of 
  
I

1
/ !R2( ) = G

1
(" )  (red curve), 

  
I

2
/ !R4 / 2( ) = G

2
(" ) (blue 

curve), and 
  
I

3
/ !R6 / 3( ) = G

3
(" )  (green curve) on δ.  Here  ! = 0  corresponds to the 

initial moment of the encounter (touching),  ! = 1  corresponds to complete 
transformation into a wodon.  935 

 

 

 

 

 940 

 

 

 

 

 945 
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Figure 6. Idealized wodonization of eddies whose radii are 50 km: lens (red lines), 
anticyclonic eddy with   H = 500  m (blue lines), and cyclonic eddy with   H = 500  m 
(green lines). (a) Evolution of   ! = b / R  (solid lines). For comparison, the straight 950 
dashed lines show the movement of eddies in the open ocean (with constant speed 

 
C

xi
). (b) Decrease in volume (

  
V / V

0
). 
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 955 

Figure 7. Schematic plot for the estimation of the image effect. The segment AC1B is the 
mirror reflection of ACB. A projection of the orbital speed v

!
on the horizontal axis 

( v
I 0

) shows the imaginary “speed” of particles inside the segment ACB, which is 
blocked and “turned back” by the wall. According to the momentum conservation, we 
equate the ratio of this speed and the real velocity of the entire truncated eddy to the 960 
ratio of the volumes of the entire eddy and the segment ACB.  
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 970 
Figure 8. Evolution of an eddy tangent to a meridional wall on an f-plane with NSBC 

(left panels) and FSBC (right panel). Parameters are  R = 100 km,   H = 300  m,  ! = 1 
initially. The lines of constant upper-layer depth are uniformly spaced by 50 m, 
starting from 350 m.  

 975 
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Figure 9. The same as in Figure 8 but for   H = 500  m. The lines of constant upper-layer 
depth are spaced by 50 m, starting from 350 m but skipping 500 m. It is seen that the 
main eddy propagation speed is significantly larger than for   H = 300  m, and 980 
companion cyclonic vortices appear.  
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Figure 10. Evolution of an eddy with Gaussian orbital velocity structure tangent to a 

meridional wall on an f-plane, in the FSBC case. The snapshots are given for a 
40-day period, starting with the 60th day. The left panel shows the vector-985 
velocities of the eddy particles.  

 


