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Abstract State-of-the-art coupled global climate models

are evaluated for their simulation of the Atlantic Warm

Pool (AWP). Historical runs from 17 coupled climate

models included in the Fifth Phase of the Coupled Model

Intercomparison Project (CMIP5) serve as the basis for this

model evaluation study. The model simulations are directly

compared to observations and reanalysis data to evaluate

the climatological features and variability of the AWP

within each individual model. Results reveal that a select

number of models—namely the GISS-E2-R, CSIRO-

Mk3.6, and MPI-ESM-LR—are successful at resolving an

appropriately sized AWP with some reasonable climato-

logical features. However, these three models exhibit an

erroneously broad seasonal peak of the AWP, and its var-

iability is significantly underestimated. Furthermore, all of

the CMIP5 models exhibit a significant cold bias across the

tropical Atlantic basin, which hinders their ability to

accurately resolve the AWP.

Keywords Atlantic Warm Pool � CMIP5 � Tropical North

Atlantic Climate

1 Introduction

The Atlantic Warm Pool (AWP) is a component of the

Western Hemisphere Warm Pool (Wang and Enfield 2001,

2003) in the Intra-Americas Seas (IAS) region of the Tropical

North Atlantic (TNA) basin. Much like warm pools in other

regions of the globe, the AWP influences both the local and

the remote climate. However, unlike other warm pool systems

(i.e., the Western Pacific Warm Pool) the AWP is not defined

in each season of the year. The AWP, which exists entirely

north of the equator, is not defined during the cooler boreal

winter months, as the sea surface temperatures (SSTs)

throughout the IAS remain well below the threshold of

28.5 �C that is used to define the bounds of the AWP. The

AWP typically emerges during the late spring months as the

Gulf of Mexico and the Caribbean Sea warm. The AWP then

evolves into a well-developed region of warmer waters well in

excess of 28.5 �C during the boreal summer and early fall

(Wang et al. 2006). This seasonal variation is thought to exist

because of differential clear-sky radiation flux (Lee et al.

2007), coastal upwelling, the influence of the North Atlantic

Subtropical High (NASH), Caribbean low-level jet (CLLJ;

Wang and Lee 2007), and local meridional circulations, as

well as rainfall patterns over South America and the sub-

sequent discharge into the region from the Amazon and Ori-

noco Rivers (Misra and DiNapoli 2012; Vizy and Cook 2010).

In addition to seasonal variability, the AWP also

exhibits interannual and longer scale variability with

respect to its areal extent and its intensity (e.g., Wang and

Enfield 2001; Wang et al. 2008). In some years (e.g., 1937,

2005), the summertime AWP may become anomalously

large, stretching from the Gulf of Mexico well into the

central Atlantic, while in other years (e.g., 1913, 1984), a

smaller summertime AWP may be confined to only a

portion of the Gulf of Mexico. Such variability in the size

of the AWP is thought to be connected to modes of vari-

ability in the global climate system such as the Atlantic

Multidecadal Oscillation (AMO), the North Atlantic

Oscillation (NAO), or the El Niño-Southern Oscillation

(ENSO) (e.g., Covey and Hastenrath 1978; Enfield and
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Mayer 1997; Czaja et al. 2002; Wang and Enfield 2003;

Enfield et al. 2006; Wang et al. 2008; Liu et al. 2012).

Furthermore, variability of the AWP is thought to have

effects on the surrounding TNA climate. Anomalously

large AWPs are thought to weaken the dominant NASH

(Wang et al. 2007). Therefore, wind patterns throughout

the Atlantic basin, including but not limited to the CLLJ

and the Great Plains low-level jet (GPLLJ), are also

influenced by the AWP (Wang et al. 2007). Through its

influence over regional wind and SST patterns, the AWP is

also well known to influence the variability of smaller scale

features, such as atmospheric convection and North

Atlantic tropical cyclones (e.g., Wang et al. 2006, 2011;

Wang and Lee 2007). More specifically the AWP, by its

definition, exceeds the convective SST threshold

(*26–27 �C) needed to support large-scale organized

convection that elicits a Gill-type atmosphere response

(Wang et al. 2007). As such, large-scale convection will

not occur in the absence of a large area of warm sea surface

temperatures such as the AWP (e.g., Hoyos and Webster

2011). Therefore, examining the fidelity of a climate model

in simulating the AWP is important to understanding the

TNA climate system.

Despite advancements in climate modeling in the past

decade, realistic simulations of the TNA climate have

remained elusive (e.g., Davey et al. 2002; Chang et al.

2007; Richter and Xie 2008; Grodsky et al. 2012). The

coupled ocean-atmospheric general circulation models

(GCMs) used in the fourth assessment (AR4) of the

Intergovernmental Panel on Climate Change (IPCC) con-

tained multiple biases in their simulations of the TNA (e.g.,

Richter and Xie 2008; Liu et al. 2012). Some of the biases,

specifically the tropical wind biases in CCSM3, are thought

to be a result of erroneous simulations of Amazon rainfall

and its teleconnection to the TNA (Chang et al. 2008).

Considering the importance of the AWP to TNA variabil-

ity, it is not surprising that many of the models included in

IPCC’s AR4 failed to reproduce the observed AWP; some

even placed an erroneous cold pool in the IAS (Misra et al.

2009). On the eastern side of the TNA, the majority of

these same models also failed to reproduce the eastern

equatorial Atlantic cold tongue because of a warm bias in

the tropical South Atlantic extending to the Angolan and

Namibian coastlines (Liu et al. 2012). The failure to

reproduce the cold tongue is a common performance flaw

in coupled GCMs, resulting in the reversal of the equatorial

Atlantic climatological SST gradient (Richter and Xie

2008; Richter et al. 2012).

Recently, a new set of integrations from the state-of-the-

art collection of coupled models has been produced in

support of the Fifth Phase of the Coupled Model Inter-

comparison Project (CMIP5; e.g., Taylor et al. 2012) and the

IPCC’s upcoming assessment report (AR5). Understanding

how these CMIP5 models have improved in their simula-

tions of the AWP region compared to their previous itera-

tions will have implications on the potential realism of the

tropical-subtropical western hemisphere climate system.

Therefore, the goal of this study is to assess how well the

historical runs of the CMIP5 models simulate the AWP’s

climatology and its different modes of variability with

respect to twentieth-century observations and reanalysis.

2 Data and methods

2.1 CMIP5 models

The broad selection of CMIP5 models used in this study

comprises 17 coupled climate models, developed by 14

institutions across 10 countries (Table 1). The focus of this

study is to evaluate these model integrations with respect to

observations and reanalysis. Therefore, the core of this

analysis relies on historical runs from each model forced by

observed twentieth-century emissions. The length of each

historical simulation varies slightly from model to model,

but in general each model runs from the mid-to-late nine-

tieth century to the first few years of the twenty-first cen-

tury. Only one (r1i1p1) monthly mean ensemble member

from each of the models is analyzed in this study for the

sake of simplicity.

The ocean surface temperature fields in each model

(designated by the CMIP5 as ‘tos’) are examined first to

properly assess how each model reproduces the AWP.

From the SST fields, we create a monthly AWP area index

(AWPAI), measured by the enclosed area of the 28.5 �C

contour in the northwest Atlantic (0�N–45�N; 100�W–

40�W). Such an index is useful in determining the sum-

mertime size and variability of the AWP, as well as its

seasonal cycle in each simulation. It is possible that the

28.5 �C SST contour is not the best method for defining the

AWP within the model simulations if they have a basin-

wide cold bias. However, using a lower temperature

threshold becomes problematic because the CMIP5 mod-

els, like the CMIP3 models before them (Richter and Xie

2008), fail at producing the observed Atlantic cold tongue

in the equatorial Eastern Atlantic. Therefore, lowering the

temperature threshold for the AWP below 28.5 �C would

likely include warm waters in the equatorial Atlantic,

which are not part of the traditionally defined AWP in

observations.

To supplement this analysis, a number of other oceanic

and atmospheric fields are also examined including, but not

limited to, ocean potential temperature (‘thetao’), atmo-

spheric temperature (‘ta’), sea level pressure (‘psl’),

meridional winds (‘va’), and zonal winds (‘ua’). All of

these fields within the CMIP5 models, including the SST
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data mentioned above, have been linearly detrended.

Analysis of this expansive set of model data will help to

determine whether the models are capturing the observed

physical processes that control the AWP.

2.2 Observations and reanalysis

The third version of the Extended Reconstructed Sea Sur-

face Temperature analysis (ERSSTv3; Smith et al. 2008)

serves as the observational baseline for analysis of the SST

fields in the models. ERSSTv3 is generated using in situ

SST data and statistical methods to reconstruct global SSTs

from sparse data at a spatial resolution of 2� longitude by

2� latitude. The ERSST v3 data are available as monthly

means from 1854 to present; however, only the years

1909–2005 are used in the present analysis to avoid the

period of sparse data in the early part of the record.

Therefore, to ensure consistency, all analysis in the

upcoming sections will focus on this 1909–2005 interval,

which is the longest period of time in which observations

and model data for this study overlap.

The CMIP5 results are validated with the National

Center for Environmental Prediction’s (NCEP) and the

Department of Energy’s (DOE) Reanalysis-2 project (R-2;

Kanamitsu et al. 2002). For the purposes of this study,

1979–2011 monthly means from R-2 of sea level pressure

and 925 hPa u- and v-winds are used for a direct com-

parison to the monthly means of the historical CMIP5 runs.

The European Centre for Medium-Range Weather

Forecasts’ (ECMWF) ERA-40 reanalysis dataset (Uppala

et al. 2005) was also considered, but ultimately left out of

the present analysis. Both the ERA-40 and the R-2 datasets

have very similar 925 hPa wind and mean sea level pres-

sure fields over the North Atlantic, which suggests that

using ERA-40 as a second reanalysis dataset, in addition to

R-2, would not add much value to the results. A recent

intercomparison study of AWP variability in atmospheric

reanalysis by Misra et al. (2012) confirms this by noting

that atmospheric response to AWP in R-2 was comparable

to other modern reanalyses (e.g., Saha et al. 2010;

Rienecker et al. 2011).

3 Results

3.1 Overview of AWP climatology in 17 CIMP5

models

The average size of the AWP (defined by the 28.5 �C SST

contour) during its peak season of August–September–

October (ASO) from 1909 to 2005 is just over 2.8 mil-

lion km2 in the ERSSTv3 observations. Statistics from the

observed and model-derived ASO averaged AWPAI are

shown in Table 2. Only the CSIRO-Mk3.6 and the GISS-

E2-R produce an average ASO AWP comparable in size to

the observations. The GISS-E2-R is noteworthy for being

the only model to produce an AWP larger than the obser-

vations on average. Conversely, this means that most of the

models underestimate the average size of the summertime

AWP. In 15 of the 17 model simulations (*88 %), the

ASO averaged AWP has an areal extent less than half of

the observed 2.8 million km2.

Similarly, a majority of the models underestimate the

interannual variations of the AWPAI (Table 2). The

observed AWP can grow large some years, extending

westward into the central Atlantic whereas in other years,

the AWP can be essentially undefined all year long. For

example in 1913, the observed AWP covered less than

0.05 million km2, whereas in 2005, the AWP covered more

than 6.6 million km2. Only the GISS-E2-R, MPI-ESM-LR,

GISS-E2-H, CSIRO-Mk3.6, and HadGEM2-ES can pro-

duce AWPs larger than 3 million km2. However, with the

exception of the GISS-E2-H, those five models tend to

have a well-defined ASO averaged AWP of at least

Table 1 A list of CMIP5 models and their respective modeling

institutions which are analyzed in this study

Institution Model

Beijing Climate Center, China Meteorological
Administration

BCC-CSM1-1

Canadian Centre for Climate Modelling and
Analysis

CanESM2

Centre National de Recherches Meteorologiques/
Centre Europeen de Recherche et Formation
Avancees en Calcul Scientifique

CNRM-CM5

Commonwealth Scientific and Industrial Research
Organisation in collaboration with the Queensland
Climate Change Centre of Excellence

CSIRO-
Mk3.6

Institute for Numerical Mathematics INM-CM4

Institut Pierre-Simon Laplace IPSL-
CM5A-LR

Atmosphere and Ocean Research Institute
(The University of Tokyo), National Institute
for Environmental Studies, and Japan Agency
for Marine–Earth Science and Technology

MIROC5

Met Office Hadley Centre HadGEM2-ES

Max Planck Institute for Meteorology MPI-ESM-LR

Meteorological Research Institute MRI-CGCM3

NASA Goddard Institute for Space Studies GISS-E2-H

GISS-E2-R

NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3

GFDL-
ESM2G

GFDL-
ESM2M

National Center for Atmospheric Research CCSM4

Norwegian Climate Centre NorESM1-M
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100,000 km2 each year from 1909 to 2005, meaning they

are unable to reproduce the occasionally observed extre-

mely small AWPs. The other 12 models fail to produce the

larger AWPs. For example, the largest single ASO AWP in

each of these 12 models is still smaller than the mean

observed ASO AWP. Such an under-representation of the

AWP in more than half the models ultimately suggests that

many of the models have a cold bias across the Atlantic

Basin.

Past works (e.g., Clement et al. 2005) found that the

global tropics have a skewed SST distribution, in terms of

percent of total area. ASO observations show that the North

Atlantic basin region (0�N–45�N; 100�W–40�W) also has a

skewed SST distribution (Table 3). More than 70 % of the

northwest Atlantic Ocean has SSTs between 26 and 29 �C.

Only 16.6 % of the northwest Atlantic, by area, has SSTs

between 20 and 26 �C, and only about 4 % of the basin has

SSTs warmer than 29 �C, with the area covered by SSTs

greater than 30 �C being negligible.

The majority of the models fail to reproduce the

observed summertime Atlantic SST distribution correctly

(Table 3). Some models (e.g., MIROC5, CSIRO-Mk3.6,

IPSL-CM5-A) have a more normal looking distribution,

without the skewness that is observed in the ERSSTv3

distribution. Most of the models, however, are hindered by

a significant cold SST bias. As a result, all of the models

over-represent the 24–25 and 25–26 �C bins, and all

models except the GISS-E2-R under-represent the

28–29 �C bin. Since the AWP is defined by SSTs greater

than 28.5 �C, the 28–29 �C and the 29–30 �C bins are the

most relevant to this study. Table 2 indicates that the

CSIRO-Mk3.6, GISS-E2-R, and the MPI-ESM-LR have

the largest AWPs. Unsurprisingly, a significant portion

(19–31 %) of the simulated TNA ocean in these models

exhibits SSTs [28 �C (compared to 30.4 % in observa-

tions). The CSIRO-Mk3.6 is different from the other two

models as it does not have a skewed distribution, and it

overestimates the area covered by SSTs[30 �C as a result.

As previously mentioned, the AWP has a distinct sea-

sonal cycle. Wang et al. (2006) noted that the AWP should

be well defined only in the summer months, with a rela-

tively sudden onset and dissipation. This is seen in the

ERSSTv3 observations (Table 4), as the area of the AWP

ramps up in July, reaches its peak in September, and rap-

idly diminishes in November. As a result of the cold biases

in many of the CMIP5 models, the majority of models

underestimate the size of the climatologically averaged

AWP during all of the summer and fall months, and some

models (INM-CM4; NorESM1-M) have essentially no

traditionally defined AWP. The erroneous peak season

AWP magnitudes are not the only glaring issue in the

models representation of the AWP’s seasonal cycle. In 10

of the 17 models (*59 % of the CMIP5 models), the AWP

reaches its peak size in August, which is 1 month too early

when compared to observations. Second, most of the

models fail to reproduce the changes in the AWP’s size

during its abrupt onset in the early summer and its dissi-

pation in the late autumn. Many of the colder models

(BCC-CSM1-1, CCSM4, CanESM2, GFDL-CM3, INM-

CM4, IPSL-CM5A-LR, NorESM1-M) weaken their mod-

est AWPs much too quickly to the extent that by October,

less than 20 % of the AWP’s area remains with respect to

its peak monthly size (compared to 41 % in the observa-

tions). The models less hindered by a cold bias, however,

have an entirely different problem in that they fail to

exhibit the sharp changes in the AWP’s seasonal cycle.

Four models—CSIRO-Mk3.6, GISS-E2-R, GISS-E2-H and

HadGEM2-ES—have well-defined AWPs of over

200,000 km2 into November (compared to 70,000 km2 in

the observations). The development of the AWP is much

too gradual in these models in comparison to the sudden

onset in the observations. The HadGEM2-ES in particular

overestimates the average size of the warm pool during the

spring and winter months, when the AWP is expected to be

undefined.

3.2 AWP biases and errors in selected models

A more detailed analysis of a subsample of models (5 of

the 17), featuring models that exhibit the most reasonable

Table 2 Statistics, in 106 km2, from the 1909–2005 model-derived

and observed AWP areal index time series plotted in Fig. 1

Mean Median SD Maximum Minimum

Observations

ERSST v3 2.817 2.593 1.350 6.670 0.046

Models

BCC-CSM1-1 0.127 0.074 0.141 0.527 0.000

CanESM2 0.338 0.250 0.392 2.250 0.000

CCSM4 0.464 0.297 0.479 2.620 0.000

CNRM-CM5 0.303 0.248 0.199 1.087 0.089

CSIRO-Mk3.6 2.337 2.345 0.696 3.772 0.716

GFDL-CM3 0.297 0.192 0.329 1.574 0.000

GFDL-ESM2G 0.251 0.179 0.197 0.914 0.023

GFDL-ESM2M 0.279 0.232 0.191 1.122 0.037

GISS-E2-H 0.637 0.307 0.728 3.921 0.000

GISS-E2-R 2.984 2.755 0.995 6.013 0.963

HadGEM2-ES 0.834 0.656 0.554 3.558 0.229

INM-CM4 0.001 0.000 0.003 0.017 0.000

IPSL-CM5A-LR 0.028 0.000 0.047 0.174 0.000

MIROC5 0.151 0.105 0.149 0.939 0.022

MPI-ESM-LR 1.360 0.991 1.081 4.125 0.118

MRI-CGCM3 0.249 0.243 0.164 1.026 0.000

NorESM1-M 0.000 0.000 0.001 0.007 0.000
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AWP climatology, is presented in this subsection. The

mean ASO SST fields from the observations and each of

the five models are shown in Fig. 1. The first two models

included in this discussion, GISS-E2-R and CSIRO-Mk3.6,

have the most realistically sized climatological AWP, but

they have two very different SST distributions in the

tropical North Atlantic. Next, the MRI-ESM-LR is con-

sidered for its somewhat reasonable AWP climatology and

seasonal cycle. The HadGEM2-ES is included in this sec-

tion as it (erroneously) has a detectable AWP in all

12 months of the year on average. Lastly, the widely used

CCSM4 is included in this analysis to examine why some

models do not have an appropriately sized AWP.

The observed AWP emerges in the western part of the

Gulf of Mexico and the Caribbean Sea and spreads east-

ward and to a lesser degree northward. From Fig. 1, it

appears that the GISS-E2-R is the most realistic in terms of

not only size but also position of the AWP. The large AWP

in the CSIRO-Mk3.6, on the other hand, is located in the

central Gulf of Mexico and the Caribbean Sea. The other

three models (MRI-ESM-LR, HadGEM2-ES, and CCSM4)

have smaller AWPs, but the 28.5 �C contour, when present,

tends to be located in close proximity to land, whether it be

the Gulf Coast, Central America, or the Caribbean Islands.

The differences between the SST fields in each of the

five models and the observations are shown in Fig. 2.

Table 3 Frequency distribution of 1909–2005 ASO averaged SSTs across the Atlantic Basin in one-degree bins

Each value is shown in percent area of the total domain (0�N–45�N and 40�W–100�W), and is accompanied by a bar graph. The bins that

contribute to the AWP (SST [ 28.5�) are shown in red
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Somewhat surprisingly, the GISS-E2-R has a cold bias

across much of the North Atlantic and the Gulf of Mexico.

However, the GISS-E2-R does have a weak warm bias over

the Caribbean, where most of its large AWP is located. The

CCSM4, MPI-ESM-LR, and HadGEM2-ES all have a

predominant cold bias, as expected by their cold TNA SST

distribution (Table 3). Ultimately, these three models have

a cold bias of up to 2 �C across much of the IAS region,

thus limiting the size of the AWP region. The CSIRO-

Mk3.6 is interesting as it has a significant cold bias across

most of the basin, yet it also has a sizable AWP. The

reasonably sized AWP in the CSIRO-Mk3.6 is consistent

with the small regional warm bias around the Caribbean

Islands, which is already one of the warmest parts of the

observed TNA. As shown in Table 3, the biases in the

CSIRO-Mk3.6 ultimately lead to a more normal SST dis-

tribution. In addition, as alluded to earlier, the GISS-E2-R,

CCSM4, MPI-ESM-LR, and Had-GEM2-ES also exhibit

signs of a warm bias in the eastern Atlantic where the

Atlantic cold tongue is expected to be, thus affecting the

SST distribution and the SST gradient across the equatorial

Atlantic. With exception to the CSIRO-Mk3.6, this tropical

eastern Atlantic Warm bias extends southeast to the South-

west African coastline. Such an expansive warm bias indi-

cates that the issues within the models are more complex

than a simple westerly wind bias in the equatorial Atlantic.

As previously mentioned, the AWP is connected to the

North Atlantic Subtropical High, whereas a large AWP is

Table 4 Average monthly AWP areas (in 106 km2) from 1909 to 2005 based on various CMIP5 models and ERSSTv3 observations

Each cell in the table is color coded (cool colors indicate a small AWP; warm colors indicate a large AWP) in order to show the average seasonal

evolution of the AWP’s areal extent
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associated with a weakened NASH (Wang 2007). Figure 3

shows mean ASO sea level pressure across the Atlantic

basin in the NCEP-DOE R-2, as well as deviations from the

reanalysis data for each model. Here, the HadGEM2-ES

seems to have the most reasonable pressure field of the five

models when compared to the reanalysis data (Fig. 3e).

The NASH, however, does appear to be farther south in the

HadGEM2-ES compared to the reanalysis data, as evident

by the higher pressures in the Caribbean and the lower

pressures in the North Atlantic.

The CSIRO-Mk3.6 has lower sea level pressure in the

western Atlantic with respect to the NCEP-DOE R-2. The

low pressure bias leads to a weaker NASH, which is con-

sistent with a larger AWP. However, the CSIRO-Mk3.6 has

an apparent low pressure bias over land (of 4 hPa or more

over areas like South America), which in turn may be

responsible for the lower pressure in the AWP region.

Likewise, the MPI-ESM-LR has a weaker than expected

NASH that has been shifted to the northeast (Fig. 3d).

Unlike the CSIRO-Mk3.6 and MPI-ESM-LR, the GISS-

(a) (b)

(c) (d)

(e) (f)

Fig. 1 Climatological

1909–2005 ASO Average SST

(�C) in the Atlantic Basin from

(a) detrended ERSST v3

observations and (b–e) various

detrended CMIP5 models. The

mean 28.5 �C isotherm (heavy
black line) is placed over the

shaded SSTs to highlight the

size and location of the AWP in

each individual model
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E2-R has a more extreme low pressure bias of 2 hPa or

more that, curiously, extends throughout the entire TNA

(Fig. 3b). The significantly weaker NASH is consistent

with the larger AWP that exists in the GISS-E2-R.

In contrast, the CCSM4 has a high pressure bias over

much of the North Atlantic Ocean during the summer

months (Fig. 3c), indicating a stronger NASH, which is

consistent with the model’s small AWP (Table 2). How-

ever, the ties between the AWP and the NASH are more

complicated, as the atmosphere–ocean interactions affect

each other. Grodsky et al. (2012) found that the CCSM4

exhibits a stronger climatological NASH and a stronger

climatological polar low. Thus, the pressure gradient in the

Atlantic increases, which is then associated with an

increase in wind speed, an increase in latent heat loss, and

cooler SSTs.

The differences in climatological ASO 925-hPa winds

between R-2 and the five CMIP5 models in the TNA region

are shown in Fig. 4. Immediately, it is evident that the

increased easterly winds are most pronounced in the

Caribbean region for the CCSM4, which is consistent with

the model’s small AWP bias. Similarly, the HadGEM2-ES,

which has a more reasonable NASH, has stronger easterly

winds in the Caribbean, possibly due to the southward bias

in the position of the NASH (Fig. 4e). Stronger winds in

the Caribbean and a weaker AWP in the HadGEM2-ES and

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Differences in

climatological 1909–2005 ASO

averaged sea surface

temperature (�C) in the Atlantic

Basin between various models

(b–f) and the ERSSTv3 is data

plotted in (a). Once again the

28.5 �C isotherm is placed over

the shaded SSTs in panel (a).

The domain of these plots is

from 0–45�N and 40–100�W
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CCSM4 are consistent with the findings in past works that

suggest the AWP is associated with a suppressed CLLJ in

the region (Wang and Lee 2007). Ultimately, the compli-

cated feedback between the NASH, the winds, and the

AWP appears to be at the center of the cold SST bias in the

IAS region for the CCSM4, HadGEM2-ES, and a number

of the other CMIP5 models not specifically discussed in

this section.

On the other hand, in the MPI-ESM-LR, it is evident

that the strength of the 925-hPa easterly winds in the

Caribbean, including the CLLJ, is diminished (Fig. 4b).

The weaker winds in the IAS are consistent with the

northeastward shift of NASH in the MPI-ESM-LR.

Furthermore, the anomalously weaker winds in the MPI-

ESM-LR are likely associated with its simulated AWP,

which is larger than the AWPs in most other models. The

more extreme pressure biases of NASH in the GISS-E2-R

are associated with an even weaker pressure gradient force,

and thus significantly weaker easterlies in the Caribbean

(Fig. 4b). It is likely that because of these biases the GISS-

E2-R is able to support the most realistically sized AWP.

3.3 Analysis of AWP variability in selected models

Building upon the discussions of AWP climatology in the

CMIP5 models, this section focuses on analyzing the

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Differences in

climatological 1909–2005 ASO

averaged sea level pressure

(hPa) in the Atlantic Basin

between various models

(b–f) and the NCEP-DOE

Reanalysis data plotted in (a).

The domain of these plots is

from 0–45�N and 40–100�W
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variability of the AWPAI in the same five CMIP5 models

emphasized in Sect. 3.2. Figure 5 shows the time series of

the ASO AWPAI for each of the five models compared to

the ERSSTv3 observations. In the most basic sense, the

GISS-E2-R and MPI-ESM-LR appear to exhibit an

appropriate magnitude of variability, compared to the SD

of the AWPAI time series. The HadGEM2-ES, CSIRO-

Mk3.6, and CCSM4, however, have an AWPAI SD less

than half the magnitude of the observed AWPAI SD

(Table 2), indicating that these models (as well as the

majority of the other models) do not exhibit enough

interannual and larger scale variability. Thus, the size of

the AWP in each of these models incorrectly remains rel-

atively consistent each year.

To highlight and evaluate the various modes of AWPAI

variability within these five models with respect to the

observations, spectral analyses are performed on these time

series (Fig. 5) using a combination of the ensemble

empirical mode decomposition (EEMD; Wu and Huang

2009) and the maximum entropy method (MEM; Ghil et al.

2002). The EEMD method is used to decompose the time

series into a number of intrinsic mode functions (IMFs),

which essentially decompose the total variability of the

time series into distinct modes of temporal variability. For

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Differences in

climatological 1909–2005 ASO

averaged 925 hPa Winds in the

Atlantic Basin between various

models (b–f) and the NCEP-

DOE Reanalysis data plotted in

(a). The wind vectors are color
coded by wind speeds (m/s).

Note the difference in

magnitudes between panel
(a) and the other five panels.

The domain of these plots is

from 0–45�N and 40–100�W
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the purpose of this study, the focus is on interannual scales

of variability in the AWPAI, which is largely (but not

entirely) accomplished by adding the first three IMFs and

placing that sum through an MEM spectrum analysis using

the Singular Spectrum Analysis–Multitaper Method Tool-

kit (SSA-MTM; Ghil et al. 2002). As will be shown in the

ensuing discussion, the spectrum of AWP variations in

the CMIP5 models show considerable disparity. Therefore,

the first three IMFs in each of the models encompass a

wide band of variations, making the low-pass filtering

necessary to obtain a clearer picture of the low-frequency

variations of the AWP. The resulting spectrum (Fig. 6) of

this low-pass filtered dataset highlights the most dominant

modes of variability from interannual time scales in the

observations and the models.

The spectrum analysis of ERSSTv3-derived AWPAI has

relative maxima occurring at periods of 2.6, 3.8, and

6.4 years (which easily passes the red noise test; not

shown), suggesting that the AWPAI is influenced by

oscillations of these periodicities. Furthermore, the peri-

odicity of these modes of variability suggests that the AWP

may share teleconnections with ENSO and the NAO,

among other climate oscillations in the North Atlantic and

global tropics. Such connections with ENSO and the NAO

is supported by past works (e.g., Covey and Hastenrath

1978; Enfield and Mayer 1997; Czaja et al. 2002; Enfield

et al. 2006; Liu et al. 2012) and are explored in greater

detail later in this section.

In the spectral analysis, the CSIRO-Mk3.6 compares

most favorably with respect to the observations, as it also

has three spectral maxima with periods between 2.5 and

6.5 years. The correlation between the observed power

spectrum and that of the CSIRO-Mk3.6 is highly signifi-

cant at r = 0.87. The CCSM4’s AWPAI power spectrum

also is relatively similar to the observations with three

maxima in the 2–10 year range and a correlation with the

observed spectrum of r = 0.63. However, the power

spectrums from the MPI-ESM-LR, HadGEM2-ES, and

GISS-E2-R do not compare as favorably as those from the

CSIRO-Mk3.6 or CCSM4. The GISS-E2-R is of particular

concern, as it compares favorably to the rest of the models

in terms of AWP size, but fails to replicate the observed

modes of variability with a correlation near r = 0 and a

maximum of spectral power at a longer period of

15.5 years.

Figure 7 shows correlations between the ASO-averaged

AWPAI at zero-, one-, and two-season lags (AWP lagging)

with global SSTs in the models and ERSSTv3 observa-

tions. Unsurprisingly, in the observations the AWPAI is

most well correlated with SSTs in its residing IAS region.

Correlations between the ASO AWPAI and IAS SSTs are

highly significant at two- and one-season lags or the

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
0

5

 GISS−E2−R

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
0

5

 CCSM4
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0

5

 MPI−ESM−LR

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
0

5

 HadGEM2−ES
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(a)

(b)

(c)

(d)

(e)

Fig. 5 Annual time series

measuring the ASO averaged

AWPAI for ERSSTv3 (black
line repeated in each panel)
observations and various

CMIP5 models (blue line). The

index measures the areal

coverage of the 28.5 �C SST

isotherm in units of 106 km. The

area of this isotherm is

calculated within the domain of

0–45�N; 40–100�W, excluding

the waters of the eastern North

Pacific in this region
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preceding May–June–July (MJJ) and February–March–

April (FMA) seasons, respectively, suggesting the impor-

tance of the intrinsic component of the AWP variations in

the observations. More importantly the AWPAI in ASO is

uncorrelated with the equatorial eastern Pacific SST vari-

ations at zero lag as pointed out in earlier studies (Lee et al.

2008; Misra et al. 2012).

However, Equatorial Eastern Pacific (EPAC) and

equatorial Indian Ocean SST anomalies in preceding FMA

and MJJ have a weak but statistically significant correlation

with the ASO AWP variations, suggesting a potential,

albeit weak, teleconnection to ENSO. However, any sig-

nificant correlation between variations of the AWPAI and

EPAC SSTs at zero lag (concurrent ASO) is limited to only

the adjacent eastern North Pacific warm pool.

The ability to simulate the connections between AWPAI

and Atlantic SSTs varies greatly from model to model. As

expected, all five models have a high positive correlation

(r [ 0.6) between the ASO AWPAI and the collocated IAS

SSTs at zero lag. However, the models poorly simulate the

connections between the AWPAI and Atlantic SSTs at one-

or two-season lags. The GISS-E2-R, CCSM4, HadGEM2-

ES, and MPI-ESM-LR have significant correlations with

preceding SSTs across the IAS as expected, but their

magnitudes are under-represented, especially in the

HadGEM2-ES. The CSIRO-Mk3.6 simulation is the most

puzzling, as the AWPAI is more closely connected with

preceding eastern Atlantic SSTs than it is with the collo-

cated IAS SSTs.

Likewise, the models appear to have mixed results with

regards to simulating ENSO’s teleconnections with the

AWP. The GISS-E2-R, the MPI-ESM-LR, and to a lesser

extent the CSIRO-Mk3.6, tend to over-exaggerate ENSO’s

impact over the ASO AWP, especially at zero lag. The

CCSM4 seems to handle the ENSO-AWP teleconnections

most reasonably, with statistically significant correlations

between variations of ENSO and the AWPAI at one- and

two- season lags, and little to no correlation at zero-season

lag. Unlike the other models, HadGEM2-ES has very little

connection between the AWP and SSTs in the equatorial

EPAC at two-, one-, and zero-season lags.

Table 5 contains correlations between the ASO AWPAI

and various preceding and overlapping seasonal Niño3

measurements. These results further suggest that ENSO

conditions in the spring and winter months have a signifi-

cant relationship with the size of the summertime AWP

later that year. The correlation between observed winter

Niño3 and the following ASO AWPAI is significant to the

95 % CI. However, the correlations erode during the

overlapping seasons, such that the correlation between

June–August and September–November Niño3 SSTs and

the ASO AWPAI are insignificant. Once again, with the

exception of the HadGEM2-ES, the models exhibit too

strong of an ENSO-AWP signal, which becomes statisti-

cally significant into the overlapping seasons for the GISS-

E2-R and MPI-ESM-LR. A recently submitted paper noted

that ENSO signals are much too strong in most of the

CMIP5 models (Michael et al. 2012), which may help to

explain their exaggerated influence over the AWP region.

Figure 8 shows the same correlations between global

seasonal SSTs and the ASO AWPAI in the models and in

the observations as Fig. 7, except at one- and two-season

leads. The correlations between the AWPAI and TNA

SSTs remain significant in the observations and reanalysis

at one- and two-season leads, or the following November–

December–January (NDJ) and FMA seasons, respectively,

indicating that the AWP size affects the region’s SSTs long

after its demise in the late Northern Hemisphere autumn.

However, it is evident that all five models underestimate

the AWP’s ability to influence succeeding TNA SSTs into

the following winter, as the correlations are weak across

the region at one- or two-season leads. The AWPAI has

little significant correlation with the EPAC at one- or two-

season leads in the observations and reanalysis, suggesting

that the AWP has little bearing on the following winter’s

ENSO conditions in observations. This is supported by the

correlations in Table 5, which indicate that the AWPAI is

not significantly correlated to the late fall Niño 3 index in

most cases. However, Fig. 8g, h reveal that the MPI-ESM-

LR does have a significant positive correlation between the

AWP and succeeding winter SSTs in the deep tropical

Pacific Ocean.

The influence of the AWP’s variations is not limited to

SST responses, however. For example, Lee et al. (2008)

showed that convection from variations in the AWP can
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Fig. 6 Maximum entropy spectrum (M = 10) of the 1909–2005

areal AWP index. To focus on variability from interannual-decadal

time scales, the power spectrum is calculated for the sum of the first

three IMFs of the AWP index, obtained through an ensemble

empirical mode decomposition (EEMD)
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affect tropospheric temperatures by generating a Gill-type

atmospheric response. This is similar to the well-known

atmospheric warming response to warm ENSO events, in

which the ENSO SST anomalies lead the tropospheric

temperature anomalies by several months (Yulaeva et al.

1994; Chiang and Sobel 2002).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 7 The correlation of 1909–2005 ASO averaged AWP area with

(a) preceding February–March–April (FMA), (b) preceding May–

June–July (MJJ), and (c) contemporaneous ASO global SSTA from

ERSSTv3 observations. The remaining panels are similar to (a, b and

c) but for five CMIP5 models (GISS-E2-R; CCSM4; MPI-ESM-LR;

HadGEM2-ES; CSIRO-Mk3.6). Only statistically significant values at

95 % CI according to t test are shown
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Figure 9 shows correlations between the ASO AWPAI

and seasonal weighted tropospheric (250–850 hPa) tem-

perature averages at one- and two-season leads (succeeding

NDJ and FMA, respectively). In the observations, a sig-

nificant correlation exists between variations of the ASO

AWPAI and the succeeding averaged tropospheric temper-

atures in the global tropics, most notably over the Atlantic,

Northern Africa, and Indonesia. The MPI-ESM-LR,

GISS-E2-R, and CSIRO-Mk3.6 correlations are more sig-

nificant and widespread than those seen in the observations.

It is quite possible that these correlations are reflecting the

well-known tendency for El Niño events to create warm

atmospheric anomalies in the global tropics (Yulaeva et al.

1994), as these models over-exaggerate the correlations

between ENSO and the AWP. This hypothesis is supported

by the overly significant positive correlations between the

summertime AWPAI and the preceding winter/spring Niño

3 indices in Table 5. If the warming of the tropical tropo-

sphere in the MPI-ESM-LR, GISS-E2-R, and CSIRO-Mk3.6

were a result of simply local TNA warming, the lag corre-

lations in Table 5 would likely be insignificant. The CCSM4

appears to exhibit reasonable correlations between these

temperatures and the AWPAI, whereas the HadGEM2-ES

has weaker correlations throughout the globe at all leads.

4 Conclusions

Overall, we found that the CMIP5 models, as a whole,

exhibit significant flaws in simulating the AWP climatology.

Most of the 17 models analyzed in this study have a

Table 5 Correlations between 1910 and 2005 August–October

averaged AWPAI and various preceding and concurrent seasonally

averaged Nino3 measurements from the models and observations

ASO AWPAI Nino3

DJF MAM JJA SON

ERSSTv3 0.20 0.29 0.18 0.08

GISS-E2-R 0.36 0.44 0.22 0.19

CCSM4 0.31 0.27 0.07 0.02

MPI-ESM-LR 0.45 0.48 0.29 0.24

HadGEM2-ES 0.18 0.26 0.07 -0.06

CSIRO-Mk3.6 0.48 0.36 0.25 0.15

Values highlighted in italic font are statistically significant at a 95 %

CI

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 8 The correlation of 1909–2004 ASO averaged AWP area with

(a) succeeding November–December–January (NDJ), (b) succeeding

February–March–April (FMA) global SSTA from ERSSTv3 obser-

vations. The remaining panels are similar to (a) and (b) but for five

CMIP5 models (GISS-E2-R; CCSM4; MPI-ESM-LR; HadGEM2-ES;

CSIRO-Mk3.6). Only statistically significant values at 95 % CI

according to t test are shown
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significant cold SST bias in the TNA as a whole. The most

successful models in terms of AWPAI climatology are the

CSIRO-Mk3.6, MPI-ESM-LR, and the GISS-E2-R, as they

have the most realistically sized AWP. These models also

have the most realistic range of AWPAI values and rea-

sonable seasonal cycles. However, they exhibit too broad of

a seasonal peak of the AWP, and have deficiencies in rep-

resenting the variability of the AWP.

More specifically, the GISS-E2-R produces the most

reasonable climatological AWP size and location. The

GISS-E2-R also compares most favorably to the observa-

tions in terms of its range and SD of ASO AWPAI values.

Further examination shows flaws in the GISS-E2-R in way

of its over exaggerated AWP-ENSO connections. In addi-

tion, the GISS-E2-R exhibits a noticeable low pressure bias

especially over the continental regions surrounding the

AWP. This raises the possibility that the GISS-E2-R is

producing a reasonable solution largely because of the

erroneous low pressure bias. The CSIRO-Mk3.6 similarly

has a reasonably sized AWP and more encouragingly, it

captures many of the observed modes of variability as

discerned from spectral analysis. However, the AWP

within the CSIRO-Mk3.6 is in an odd location, isolated

over the Northern Caribbean because a cold bias exists

over the Gulf of Mexico. Furthermore, it has an SST dis-

tribution that is too normally distributed. The CCSM4, on

the other hand, does well in reproducing the various modes

of variability, but it fails in producing an adequately sized

AWP as a result of a significant cold bias. This same cold

bias negatively affects the HadGEM2-ES simulation as

well, as the model fails to reproduce the AWP’s clima-

tology, seasonal cycle, and other modes of variability.

Finally, the MPI-ESM-LR has some success in terms of its

ability to produce some observed aspects of the AWP’s

climatology, but its AWP appears to be driven too much

by ENSO.

Ultimately, the model subsample discussed at length in

Sect. 3 reveals that the CMIP5 models are not entirely

successful in reproducing the observed climatology and

variability of the AWP. Although strides have been made

in improving the climate models with respect to the Pacific

and particularly ENSO, the AWP and the TNA region as a

whole is still misrepresented in many ways. The definition

for the AWP used in observations highlights the problems

associated with these CMIP5 models in the TNA region.

The fact remains that all 17 of the CMIP5 models analyzed

in this study underestimate the percentage of the North

Atlantic basin that is covered by SSTs greater than 27 �C.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 9 The correlation of 1979–2004 ASO averaged AWP area in

ERSSTv3 observations with (a) succeeding November–December–

January (NDJ), (b) succeeding February–March–April (FMA) global

weighted troposphere air temperatures in NCEP-DOE Reanalysis 2.

(c–l) from various CMIP5 models over the years 1909–2004. Only

statistically significant values at 95 % CI according to t test are shown
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The pathological cold bias displayed by the majority of

CIMP5 models relates to a more fundamental issue of

temperatures not reaching a convective threshold needed to

support organized large-scale convection in the Western

Hemisphere. Although some models can capture the local

SST variations and the secular rate of warming of SST

despite the cold bias, these models will not represent the

convective threshold, which is expected to increase in

nature along with SST (Hoyos and Webster 2011). More-

over, by having a cold bias of about 1–2 �C, many of the

models will misrepresent the local meridional overturning

circulations and zonal transport of moisture. Thus, it is

difficult to have confidence in the models’ ability to sim-

ulate the AWP, and the TNA system as a whole, in a future

climate.

Compared to previous models, most notably those inclu-

ded in CMIP3, the CMIP5 models contain many of the same

biases relating to the AWP. For example, Liu et al. (2012)

noted a similar strong cold bias in most of the CMIP3

models, which prevented many of the models from having an

adequately sized AWP based on traditional definition. Fur-

thermore, of the 22 CMIP3 models, only four were able to

accurately depict the seasonal cycle, which as shown in

Table 4, persisted to CMIP5. Like CMIP3, the models

included in CMIP5 exhibited some connections to ENSO

that are observed, but in most cases the relationships between

ENSO and the AWP are too robust in CMIP5. As Liu et al.

(2012) noticed with CMIP3, there appears to be at least one

GCM in CMIP5 that can represent each aspect of climatol-

ogy and variability well. However, no one model succeeds in

representing all, or even most, of the characteristics of the

observed AWP. Therefore, future work, especially studies

focusing in greater detail on the causes of each of the noted

Atlantic biases in the framework of the individual models,

may yield significant improvement for interpreting the

simulations from these and future climate models.
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