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Abstract 19 

 In this study we contrast four centennial long meteorological datasets comprising of 20 

two sets of observations (Climate Research Unit [CRU] and Parameter-elevation Regressions 21 

on Independent Slopes Model [PRISM]) and two atmospheric reanalysis (20th Century 22 

Reanalysis [20CR] and Florida Climate Institute-Florida State University Land-Atmosphere 23 

Regional Reanalysis version 1.0 [FLAReS1.0]) to diagnose the El Niño and the Southern 24 

Oscillation (ENSO) forced variations on the streamflow in 28 watersheds spread across the 25 

Southeastern United States (SEUS). We force three different lumped (calibrated) 26 

hydrological models with precipitation from these four sources of centennial long datasets 27 

separately to obtain the median prediction from 1800 (= 3 models x 600 simulations per 28 

model per watershed per season) multi-model estimates of seasonal mean streamflow across 29 

the 28 watersheds in the SEUS for each winter season from 1906 to 2005. We then compare 30 

and contrast the mean streamflow and its variability estimates from all three of the centennial 31 

climate forcings.  The multi-model strategy of simulating the seasonal mean streamflow is to 32 

reduce the hydrological model uncertainty. We focus on the boreal winter season when 33 

ENSO influence on the SEUS climate variations is well known.  34 

 We find that the atmospheric reanalysis over the SEUS are able to reasonably capture 35 

the ENSO teleconnections as depicted in the CRU and PRISM precipitation datasets. Even 36 

the observed decadal modulation of this teleconnection by Atlantic Multi-decadal Oscillation 37 

(AMO) is broadly captured.  The streamflow in the 28 watersheds also show similar 38 

consistency across the four datasets in that the positive correlations of the boreal winter 39 

Niño3.4 SST anomalies with corresponding anomalies of streamflow, the associated shift in 40 

the probability density function of the streamflow with the change in phase of ENSO and the 41 

decadal modulation of the ENSO teleconnection by AMO is sustained in the streamflow 42 
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simulations forced by all four climate datasets (CRU, PRISM, 20CR, and FLAReS1.0). 43 

However the ENSO signal in the streamflow is consistently much stronger in the southern 44 

watersheds (over Florida) of the SEUS across all four climate datasets. But during the 45 

negative phase of the AMO there is a clear shift of the ENSO teleconnections with 46 

streamflow, with winter streamflows in northern watersheds (over the Carolinas) exhibiting 47 

much stronger correlations with ENSO Niño3.4 index relative to the southern watersheds of 48 

the SEUS. This study clearly indicates that the proposed methodology using FLAReS1.0 49 

serves as viable alternative to reconstruct 20th century SEUS seasonal winter hydrology that 50 

captures the interannual variations of ENSO and associated decadal variations forced by 51 

AMO. However it is found that the FLAReS1.0 forced streamflow is far from adequate in 52 

simulating the streamflow dynamics of the watershed over the SEUS at daily time scale.  53 
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1. Introduction 54 

 Rapid demographic changes (Ting et al. 2009; Carlson 2011) along with prevalent 55 

robust climate variations (Ropelewski and Halpert 1986, 1987; Kiladis and Diaz 1989; Misra 56 

et al. 2009; Misra and DiNapoli 2012) in the Southeastern United States (SEUS) pose a 57 

challenging task for managing fresh water resources. The impact of El Niño and the Southern 58 

Oscillation (ENSO) on the climate of the SEUS and its modulation by the influence of low 59 

frequency phenomenon like the Atlantic Multi-decadal Oscillation (AMO; Enfield et al. 60 

2001; Tootle et al. 2005; Knight et al. 2006) and the Pacific Decadal Oscillation (PDO; 61 

Gershunov and Barnett 1998, Hidalgo and Dracup 2003) has been studied in some detail.  62 

The importance of hydrologic data and its variability in planning and formulating 63 

policies for water resources management including irrigation, environment flow, reservoir 64 

management has resulted in growing interest in finding the link between hydrologic 65 

variability and natural climate variability such as ENSO phenomena (e.g., Zorn and Waylen 66 

et al., 1997; Cayan et al., 1999; Poveda et al., 2001; Schmidt et al., 2001; Rasanen and 67 

Kummu 2012). Such teleconnections are widely exploited in making streamflow forecasts 68 

(e.g. Gutierrez and Dracup 2001; Chiew et al., 2003; Tootle and Piechota 2004). For 69 

example, Gutierrez and Dracup (2001) concluded that ENSO based streamflow forecasts for 70 

reservoir and hydro-electric power distribution operation in Colombia was far superior over 71 

traditional streamflow forecasts that did not take ENSO into account. Such relationships are 72 

detectable in many regions with varying degree of success including North America where 73 

the correlation between peak season streamflow and ENSO are significantly persistent 74 

(Dettinger et al., 2000). Moreover many studies report a contrasting strength of ENSO 75 

teleconnections over western Hemisphere between that in the recent decades and during the 76 

period from 1920 to 1950 (also Waylen et al. 1993; Rasanen and Kummu 2012).  For 77 

instance, Schmidt et al. (2001) indicate that ENSO has a strong influence on rainfall and 78 
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streamflow in the SEUS during winter season. However, their study indicates that the 79 

response of streamflow to ENSO in Panhandle Florida and South Florida is not uniform. 80 

It is well known that warm (cold) ENSO events are characterized by colder and wetter 81 

(warmer and drier) boreal winter and spring seasons in the SEUS (Ropelewski and Halpert 82 

1987; Kiladis and Diaz 1989). The magnitudes of these anomalies however decrease as one 83 

moves northwards within the SEUS. In this study, further analysis is carried on the impacts of 84 

ENSO and its modulation by the low frequency phenomenon (AMO and PDO) on the rainfall 85 

and streamflow over several watersheds across the SEUS and their characterization in 4 86 

different century long precipitation datasets.   87 

To achieve our objectives, we have examined the teleconnections from multiple 88 

datasets including those from independently analyzed rainfall observations and atmospheric 89 

reanalysis. The streamflow is estimated from multiple hydrological models (all of which are 90 

calibrated using an independent dataset of rainfall observations which is not used in the 91 

intercomparison) to account for model uncertainty.  Due to uncertainty in data, parameter and 92 

structure of hydrological model, the uncertainty in hydrological prediction is significant 93 

(Gupta et al., 2003; Beven 2005). Refsgaard (2007) discusses methods to account for 94 

uncertainties in hydrological prediction. Generalized Likelihood Uncertainty Estimation 95 

(GLUE) (Beven and Binley 1992) framework, a widely used method is used in this study to 96 

account for uncertainties in hydrological simulation associated with the parameter and 97 

structure of the selected models (see Bastola et al., 2011).  98 

 The rest of the paper is organized as follows. The datasets used in the paper are 99 

described in Section 2, followed by a description of the hydrological models in Section 3.  100 

Section 4 discusses the results and the concluding remarks are summarized in Section 5. 101 

 102 

2. Data 103 
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 Two sets of atmospheric reanalysis (20th Century Reanalysis (20CR; Compo et al. 104 

2011) and Florida Climate Institute-Florida State University Land-Atmosphere Regional 105 

Reanalysis version 1.0 (FLAReS1.0; DiNapoli and Misra 2012; Misra et al. 2013) and two 106 

independent rainfall observational datasets viz., the Climate Research Unit (CRU; Mitchell 107 

and Jones 2005) and Parameter-elevation Regressions on Independent Slopes Model 108 

(PRISM; Daly et al. 1994) are used in the present study. The 20CR dataset has a spatial 109 

resolution of 200km x 200km and spans from 1871 to present. The 20CR has several 110 

ensemble members. However for this study we choose to pick one member of the ensemble. 111 

The FLAReS1.0 data is a dynamically downscaled version of such a member at 10km grid 112 

resolution. Furthermore, dynamically downscaled datasets is a manifestation of non-linear 113 

interactions of the small spatial scales and high frequency variability, which is influenced by 114 

the large-scale lateral boundary forcing (Misra 2006; Misra et al. 2013). As shown in 115 

DiNapoli and Misra (2012) and Misra (2013) such downscaled datasets can differ in 116 

important and significant manner from the large-scale reanalysis especially at diurnal scales 117 

and even in removing artificial discontinuities prevalent in 20CR. Therefore FLAReS1.0 and 118 

20CR although are not totally independent datasets are still worth comparing. FLAReS1.0 119 

was generated using the Regional Spectral Model (Kanamitsu et al. 2010) for downscaling. 120 

The FLAReS1.0 spans a period of 108 years from 1901 through 2008. Misra et al. (2013) 121 

indicate that by dynamic downscaling 20CR, the artificial discontinuity observed in 20CR 122 

owing to inhomogeneity in the density of observations around the 1940’s is significantly 123 

reduced by the internal variations of the regional climate system in FLAReS1.0. Furthermore, 124 

DiNapoli and Misra (2012) and Misra et al. (2013) indicate that FLAReS1.0 simulates the 125 

decadal variations of winter precipitation, extreme events of winter freeze, precipitation 126 

associated with tropical cyclone landfall and diurnal variations of precipitation with 127 

reasonable fidelity. 128 
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 The CRU data is gridded rainfall observations (from rain gauge stations) available 129 

globally over land with a horizontal spacing of 50km x 50km and it spans over a time period 130 

of 1901 through 2006 (Mitchell and Jones 2005). For the CRU data, reference series were 131 

constructed by using data from neighbouring stations as proxy for grids with no observation 132 

stations. The station anomalies are interpolated to a 50km grid and merged with the published 133 

1961-1990 series (Mitchell and Jones 2005). The PRISM dataset is another alternative 134 

rainfall observational dataset on a finer scale of 4 km grid resolution (Daly et al. 1994). Using 135 

a regression method, PRISM estimates the gridded precipitation from a point data source. 136 

The digital elevation model (DEM) is used to account for the effects of topography on 137 

precipitation. The PRISM data is available only over the continental US. The domain of 138 

interest for our analysis in this paper is the SEUS extending from 99°W to 75°W and 24°N to 139 

37°N. From all of the above mentioned sources data were selected for a common period of 99 140 

years at monthly interval spanning from December 1906 through November 2005. For 141 

calibrating the hydrological models we made use of the unified daily US precipitation 142 

analysis of the Climate Prediction Center (CPC) at 50km grid resolution (Higgins et al. 143 

2000), which is available from 1948 onwards. Although CPC uses similar rain gauge 144 

observations as CRU and PRISM, they display some significant differences in their variations 145 

and seasonal mean (not shown) owing to their varied gridding methodologies. We therefore 146 

regard the CPC rainfall dataset as a pseudo-independent rainfall analysis data from CRU and 147 

PRISM, which is used in the calibration of the hydrological models. The CPC rainfall data 148 

makes use of quality controlled rain gauge data from a variety of sources including the 149 

National Oceanic and Atmospheric Administration’s (NOAA’s) National Climate Data 150 

Center (NCDC), daily co-op stations, river forecast centers data, and NCDC’s hourly 151 

precipitation database to generate this analyzed precipitation dataset. The CPC rainfall is 152 

available at daily interval unlike CRU and PRISM, which is available at monthly interval. 153 
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However to be consistent in our comparisons, rainfall from all sources were used at monthly 154 

interval. 155 

The Extended Reconstructed Sea Surface Temperature (ERSSTv3; Smith et. al. 156 

2004), based on the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) 157 

release 2.4 is used for the calculation of the Niño3.4 SST seasonal anomaly index.  158 

  159 

3. Hydrological model 160 

Conceptual hydrological models are widely used to simulate hydrological response at 161 

watershed scales (Bastola et al. 2011; Kasiviswanathan et al. 2013; Hughes 2013). Such 162 

models use a range of simplifications to model a very complex and spatially distributed 163 

hydrological processes. Consequently, the process-based parameters of such models cannot 164 

be solely estimated based on their physical basis and must be estimated through model 165 

calibration. The experience of model calibration has defied the notion of existence of single 166 

set of best model parameters. The empirical evidence supporting the equifinality i.e., 167 

existence of a large model parameters set that result in equally acceptable model performance 168 

is overwhelming (Beven 1992; Freer et al. 1996). Therefore in the past two decades 169 

uncertainty analysis has become an integral part of hydrological modeling. In this study, the 170 

uncertainty in hydrological models stemming from model parameters and model selection is 171 

accounted for by using three different models and suite of their behavioral model parameters, 172 

using GLUE framework. 173 

The hydrological simulation presented in this study builds on the work of Bastola and 174 

Misra (2013) who calibrated the hydrological models for watersheds of SEUS using the 175 

GLUE framework. The brief outline of the method used is as follows: 176 

a) Specify the range and distribution of model parameter. Bastola and Misra (2013) 177 

used uniform distribution from a specified range of values to define the prior 178 
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distribution of model parameter. 179 

b) Specify the likelihood measure (e.g., Nash Sutcliffe Efficiency, NSE) and a 180 

threshold value (e.g., NSE > 0.5 as behavioral model parameter) to contrast 181 

behavioral from un-behavioral model parameters. 182 

c) Retain the simulation from behavioral model parameter identified in (b) and rank 183 

and produce likelihood weighted model output.  184 

In this study, the 600 behavioural model parameters for the selected watershed and 185 

hydrological model are taken from Bastola and Misra (2013). The behavioral model 186 

parameters were selected based on the NSE as likelihood function. For the simulation of the 187 

streamflow in this paper, all the 600 behavioural model parameters for each of the three 188 

models are used in this study within in the GLUE framework to account for uncertainties 189 

associated with the hydrological simulation. The multi-model estimate of the seasonal mean 190 

streamflow is then computed as the median of the 1800 simulations (= 600 simulations per 191 

watershed per model x 3 hydrological models) per season. The models used in this study are 192 

the Hydrological MODel (HyMOD; Wagener et al. 2001; Boyle 2001), the Nedbør-193 

Afstrømnings model (NAM; Madsen 2000) and the TANK model (Sugawara 1995). The 194 

HYMOD accounts for two different components in the hydrology of the watersheds. The fast 195 

component comprises of surface processes like runoff while the slower component comprises 196 

of subsoil processes like infiltration and interflow. Hence the HyMOD uses a non-linear tank 197 

connected to two tanks, each parameterizing the two processes of different rates. NAM 198 

(Madsen 2000) uses the base flow as a separate component and the surface and the interflow 199 

as a separate component in the simulation of the streamflow. The water content in different 200 

yet interconnected storages like surface zone storage, root-zone storage and ground water 201 

storage, are accounted for in NAM model (Madsen 2000) to simulate different component of 202 

the hydrological cycle. The TANK model uses four tanks arranged vertically in series, each 203 
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pertaining to model a specific process like surface runoff, intermediate runoff, subsurface 204 

runoff and base flow (Sugawara 1995). These models are standard tools frequently used in 205 

hydrological studies. The parameters of these models are usually estimated through model 206 

calibration where the difference between model simulated value and observation are 207 

minimized with respect to some objective criteria e.g., Nash Sutcliffe Efficiency (NSE; Eqn 208 

1), Volume error (VE; Eqn 2). 209 

 210 

where Qi, Qobs,i is the simulated and the observed flow, n is the total number of points. 211 

The timestep used for all three hydrological models is daily. As the four dataset used in this 212 

study are monthly dataset, the weather generator is used to disaggregate monthly total to 213 

produce daily sequence of rainfall.  In this study, the weather generator model (WGEN) 214 

following Richardson and Wright (1984) is used. Readers are referred to Wilks and Wilby 215 

(1999) for a review of weather generators. The WGEN uses first order Markov model to 216 

simulate the wet/dry day status and it uses two-parameter gamma distribution to model the 217 

precipitation amount in wet days. Use of WGEN to generate daily rainfall sequence involves 218 

four parameters i.e., probability of wet day following a wet day and wet day following a dry 219 

day, and two-parameters related to gamma distribution that synthesize the distribution of 220 

rainfall amounts, which are usually estimated from historical data. These four parameters for 221 

each of the selected watersheds were derived on the basis of 30 years of historical data (1948-222 

1977). Subsequently, these parameters are scaled on the basis of monthly rainfall total to 223 

produce daily rainfall sequence from 1905-2005. To scale the parameter of WGEN, the 224 

method outlined by Wilks (1992), which is based on monthly change in mean and variance of 225 

rainfall is used. In order to scale the parameters, the change factor (Eqn 3) in precipitation is 226 
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first derived for each month 227 

 228 

where CF i,j,k is the change factor for precipitation (for say, CRU precipitation) for ith year, jth 229 

month and kth watershed and  is the climatologically average precipitation for jth month 230 

and kth watershed derived from historical rainfall data from 1948 to 1977. Disaggregation of 231 

rainfall data from monthly to daily time scale is done by scaling parameter of weather 232 

generator. As noted earlier, WGEN requires the specification of four parameters viz., shape 233 

and scale parameters of the two-parameter gamma distribution parameters related to the 234 

probability of wet day following wet and dry day following dry day to model the sequence of 235 

rain and no rain events. Therefore, adapting these parameters to account for future changes 236 

requires four constraints to solve for the four parameters. One of the constraints is derived 237 

from change in mean value of rainfall and the remaining three constraints are relaxed through 238 

assumptions i.e., the probability of wet day following wet day and dry day following dry day 239 

are assumed constant and the change in variability of rainfall is assumed proportional to 240 

change in the mean (see Wilks 1992). 241 

 Calculations of the different metrics involved (for example, correlations and 242 

composites) are done in the native grid of the datasets. The results of the analysis are tested 243 

for statistical significance using the bootstrapping method (McClave and Dietrich 1994; 244 

Efron and Tibshirani 1993). The idea of the boot-strapping is to create sub-samples of the 245 

exact same size as the original dataset to form a distribution of the metric to be tested (e.g. 246 

correlation, composite anomalies). The concept of boot-strapping which is a non-parametric 247 

test, tests the significance of a given metric against the null hypothesis that quantitative value 248 

of the given metric can arise from a random distribution of the time series. For example, 249 

when we test for the significance of the correlations in Figs. 4, 5, 8, and 9 to ENSO index, we 250 
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compare the correlations therein to the distribution of the correlations obtained from 100,000 251 

sub-sampled pairs of time series of the ENSO index with say streamflow for a given 252 

watershed. These 100,000 pairs of time series have been obtained by randomly shuffling the 253 

(99) years of the original data of the ENSO Niño3.4 index and streamflow for a given 254 

watershed. The correlations in say Fig. 5 is then compared with this distribution of 255 

correlations obtained from the sub-sampled, randomly shuffled time series. If the sample 256 

correlation (in Fig. 5 for example) is in either tail end of the distribution then it is regarded to 257 

be statistically significant and the null hypothesis that the sample correlations can be 258 

randomly obtained is dismissed. So for example in Fig. 5, when the correlations reside in the 259 

regions of lesser than the fifth percentile or greater than the ninety-fifth percentile, it is 260 

recognized as a statistically significant correlation at 10% significance level (denoted by the 261 

circles outlined with thick lines). 262 

 263 

4. Results 264 

 In this study, the impact of ENSO and decadal variations e.g., AMO and the PDO on 265 

the winter rainfall and streamflow over 28 watersheds spread out in the SEUS is studied. The 266 

choice of these 28 watersheds follows from Bastola and Misra (2013). The watersheds are 267 

located in the states of Florida, Alabama, Georgia, and the Carolinas. These watersheds are a 268 

subset of the MOPEX US watershed database (Schaake et al., 2006; Duan et al., 2006). The 269 

name of the river basin, its USGS ID and the location of the selected river gauging station are 270 

shown in Table I. 271 

 272 

4.1. Fidelity of streamflow in the models 273 

 Before further proceeding into the analysis of the streamflow, an assessment of the 274 

hydrological models would be useful. Two indices which are often used for the evaluation 275 
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purpose are defined in Section 2, namely the Nash-Sutcliff Efficiency index (NSE) and 276 

volume error (VE). The NSE and VE were calculated for the winter streamflows simulated 277 

with 20CR and FLAReS1.0 and validated against the corresponding simulated streamflow 278 

forced by the observed rainfall of CRU (left column) and that of the PRISM simulated flow 279 

(right column). These indices are based on 99 years of flow. The NSE as defined in eqn. (1) 280 

is plotted for all the watersheds in Fig. 1 and the VE is plotted in Fig. 2. These values are also 281 

listed for individual watersheds in Table II. Fig. 3 gives a quantitative summary of both (Figs. 282 

1a and c and 2a and c).  According to the definition, an ideal simulation will have a NSE 283 

value of 1 and a VE of 0. The NSE for most of the watersheds in the southern parts of the 284 

SEUS (viz. Alabama, Florida and parts of Georgia), is close to zero (Figs. 1-3; Table II), 285 

while in the northern watersheds it is negative (Figs. 1 & 2). The two atmospheric analysis 286 

(20CR and FLAReS1.0) display large negative NSE compared to the simulated flow forced 287 

either by CRU or PRISM. However, watersheds which have greater negative values of NSE 288 

overlay the regions where the precipitation is insignificantly correlated with ENSO, and so 289 

are of lesser concern. VE is actually a fractional bias with lower values anticipated for good 290 

hydrological simulation. Northern watersheds in the Carolinas, northern Georgia and northern 291 

Alabama display some of the largest VE (Fig. 2) in both the reanalysis.  In fact, the parts of 292 

the Florida and southern Alabama and southern Georgia have a lower VE (Figs. 2 and 3). A 293 

large fraction of the 28 watersheds in Fig. 3 show that for most of the river basins, the VE is 294 

clustered around 0 to 0.6 and the NSE mostly clustered around 0 (Fig. 3; Table II). It may be 295 

noted that 20CR has reduced variance in rainfall than FLAReS1.0 (not shown), which results 296 

in reduced variance in the corresponding streamflow from 20CR that produces a higher NSE 297 

and lower VE scores than FLAReS1.0 (Figs. 2 and 3). 298 

 299 

4.2. The ENSO teleconnection 300 
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 To get an overview of the influence of the different phases of the ENSO on the SEUS, 301 

a correlation for the regional precipitation with the Niño3.4 SST seasonal mean index for 302 

winter seasonal mean (December through February [DJF]) rainfall anomalies is shown in Fig. 303 

4. The seasonal mean Niño3.4 SST index anomalies is calculated by removing its 99 year 304 

mean instead of a method adopted by CPC where a centered 30 year mean is updated every 5 305 

years. There are two reasons for removing a 99-year mean instead of method adopted by 306 

CPC.  Firstly, the CPC provides indices dating back only to 1950. Secondly, this alternative 307 

definition of ENSO removes the confusion of calculation of the centered mean in the most 308 

recent 15 years of computation. The ENSO classification based on this definition of the 309 

Niño3.4 SST seasonal anomaly index instead of that by the CPC lead to negligible 310 

differences. When tallied with the data provided by CPC from 1950 through 2005, only 4 311 

years (viz., 1953, 1959, 1984 and 2005) out of 55 years turns out to be neutral years as per 312 

the definition used here, which otherwise is labeled as El Niño or a La Niña year. With this 313 

classification, there are 28 El Niño, 26 La Niña and 45 Neutral years. The moderation of an 314 

ENSO event to a neutral event by this definition actually turns out to pose more strict limits 315 

to attain statistical significance of the results to detect ENSO teleconnections. It is important 316 

to point out that all the correlations (reported in the subsequent section) were carried out with 317 

respect to the seasonal anomaly Niño3.4 index for the winter as the ENSO has a seasonal 318 

peak in the boreal winter months. 319 

 The correlations between the DJF precipitation from reanalysis and observations with 320 

the winter seasonal mean Niño3.4 SST index indicate a positive correlation band over most 321 

parts of Florida and the southern parts of Alabama, Georgia and South Carolina (Fig. 4).  In 322 

comparison to the correlations with the observed rainfall (Figs. 4a and b), the 20CR dataset 323 

(Fig. 4c) captures the ENSO teleconnection with rainfall over Florida quite well but does a 324 

comparatively poor job in representing this teleconnection in the other four states of our 325 
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SEUS domain (Alabama, Georgia and the Carolinas). FLAReS1.0 (Fig. 4d) too displays a 326 

similar feature as 20CR with the ENSO teleconnections prevalent over Florida while it is 327 

relatively weak in the northern states of the SEUS. It should be noted that both CRU (Fig. 4a) 328 

and PRISM (Fig. 4b) display similar ENSO teleconnections, with positive correlations being 329 

strongest over the peninsular Florida and slightly weaker but statistically significant positive 330 

correlations appearing along the coast from the Carolinas to the southern tier of states up to 331 

Texas. 332 

The six watersheds in the SEUS, two in Florida (viz., the Peace River and the St. 333 

John's River basins) and two in Alabama (viz., the Choctawhatchee River and Escambia 334 

River basin) and two in Georgia (viz., Ogeechee River and Oclockonee River basin) can be 335 

expected to maintain these observed ENSO forced atmospheric teleconnections in their 336 

streamflow since they lie in the region of strongest correlation of the precipitation with ENSO 337 

(Fig. 4). It should be noted that some of the watersheds spread across the states of Alabama 338 

and Georgia have their outlets in Florida where the streamflow is measured. Such watersheds 339 

will have their streamflow likely more influenced by the rainfall anomalies in Alabama and 340 

Georgia rather than that over Florida. 341 

The correlation of the resulting winter seasonal mean streamflow with the 342 

corresponding Niño3.4 SST index is shown in Fig. 5. The CRU rainfall forced streamflow 343 

captures the positive correlation in the southern region of the SEUS and negative correlation 344 

higher up in the northern portion of the SEUS (Fig. 5a). The results from PRISM (Fig. 5b) 345 

compare well with the results from CRU (Fig. 5a) especially so for the southern watersheds 346 

in the domain. The 20CR (Fig 5c) captures the ENSO signal in Florida and Alabama but fails 347 

to capture more of the signal further north as depicted in Figs. 5a and b. However, most of the 348 

watersheds located in the northern portion of the SEUS do not show any statistically 349 

significant correlation in either the observed or the reanalysis forced rainfall datasets. 350 
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In fact in contrast to Fig. 4, the ENSO teleconnections of the streamflow in Fig. 5 351 

display many inconsistencies between the four datasets. For example the strength of the 352 

correlations in South Florida in CRU (Fig. 5a) and PRISM (Fig. 5b) are different. Likewise 353 

the strength of the correlations over the southern watersheds differ between the reanalysis 354 

ENSO forced streamflow variations (Figs. 5c and d). A reason for this diversity in the 355 

streamflow response to ENSO could be due to the fact that the relation between precipitation 356 

and streamflow is not linear in these watersheds (Oh and Sankarasubramanian 2012). Many 357 

of the watersheds in the middle and northern part of the SEUS domain fall in the region 358 

where the rainfall is insignificantly correlated with ENSO or the watersheds spans a region of 359 

diverse ENSO teleconnections (positive and negative correlations with ENSO index). In a 360 

related study, Sankarasubramanian et al. (2001) showed that the streamflow in the SEUS 361 

watersheds exhibit a strong rainfall elasticity meaning that there is a disproportionate 362 

response in streamflow to changes in rainfall. Similar conclusions were drawn in Schaake 363 

(1990) and Nash and Gleick (1991). From these studies there is a growing consensus that 364 

lower elasticity is exhibited by regions where humidity and energy are seasonally out of 365 

phase (Budyko hypothesis) and in regions with high humidity index or lower values of 366 

potential evapotranspiration. 367 

To understand the change in the probability distribution of the rainfall due to ENSO, 368 

the rainfall for the winter season is ranked and divided in three groups of equal size i.e., lower 369 

tercile, middle tercile and higher tercile each containing 33 years of data. Hence, the lower 370 

tercile corresponds to the years with lower values of rainfall, the medium tercile 371 

corresponding to the central region of the probability density of the rainfall and so on. 372 

Subsequently, within each tercile, a fraction of years featuring a particular ENSO event is 373 

calculated. A fraction of warm or cold ENSO event in lower and higher tercile for the four-374 

rainfall dataset (Fig 6) shows a shift in the probability density function of rainfall. El Niño 375 
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years are featured with a distribution in rainfall with a shift towards the higher ranges. Hence, 376 

events with higher values of rainfall are more frequent in El Niño years accompanied by less 377 

frequent lower values of rainfall. The opposite happen for years, which feature a La Niña, 378 

where we see a shift towards the lower ranges in the rainfall. This is true for all the four 379 

datasets analyzed here (viz., (a) CRU, (b) 20CR, (c) FLAReS1.0 and (d) PRISM). The neutral 380 

years and the middle tercile are not shown as they are statistically insignificant. 381 

 To verify whether such a shift also occur in the streamflow distribution, the 382 

streamflow from the hydrological models are ranked and divided in to the three tercile 383 

categories. Subsequently, the fraction of cold and warm ENSO event in each category is 384 

analyzed (Fig. 7). The results for the streamflow are in good agreement with the results of the 385 

rainfall. The direction of shift in the probability density function (PDF) of the streamflow is 386 

consistent with the shift in the distribution of rainfall for most of the watersheds in the SEUS 387 

and most importantly they seem to be consistent across all 4 datasets. 388 

 389 

4.3 Interdecadal variations of the ENSO teleconnection 390 

The Atlantic Multi-decadal Oscillation (AMO) is a mode of sea surface temperature 391 

(SST) variability in the northern Atlantic Ocean with a period of around 60 years 392 

(Schlesinger and Ramankutty 1994). The positive phase of the AMO is chosen to be from 393 

1930 through 1959 and the negative phase is from 1965 through 1989 394 

(http://www.esrl.noaa.gov/psd/data/timeseries/AMO/). As seen in earlier works (Enfield et. 395 

al. 2001; Mo 2010; Misra et. al. 2012), a positive (negative) phase of the AMO suppresses 396 

(enhances) the ENSO teleconnections on the SEUS winter rainfall. In the negative phase of 397 

AMO, the ENSO teleconnection on DJF rainfall (as depicted by the positive correlations) 398 

appears to spread slightly northward and westward of northern Florida in CRU (Fig. 8a) and 399 

PRISM (Fig. 8c). Furthermore the negative correlations over Tennessee that appear during 400 
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the positive phase of AMO disappear during the negative phase of AMO. These features of 401 

the modulated ENSO teleconnection by AMO is broadly captured in the 20CR (Fig. 8e and 402 

Fig. 8f) and FLAReS1.0 datasets (Fig. 8g and Fig. 8h). In fact the negative correlations over 403 

Tenessee during positive phase of AMO are well (poorly) captured in 20CR (FLAReS1.0) in 404 

Fig. 8e (Fig. 8g). But the westward and northward extension of the correlations during the 405 

negative phase of AMO is reasonably well (poorly) captured in FLAReS1.0 (20CR) in Fig. 406 

8h (Fig. 8f). 407 

A similar analysis is performed on the modulation of ENSO forced winter seasonal 408 

mean streamflow variations by AMO. With the change from a positive phase of the AMO to 409 

the negative phase, there is a clear shift in the streamflow variability in the northern 410 

watersheds of the SEUS, which displays a stronger positive correlation in the northern 411 

watersheds to the ENSO index (Fig. 9). This result is quite robust as there is a general 412 

agreement on this feature across all four climate datasets. In fact the streamflow in some of 413 

these northern watersheds of the SEUS change their sign in their correlations with the ENSO 414 

index in moving from positive to negative phase of AMO. This is very clearly observed in 415 

CRU (Figs. 9a and b), PRISM (Figs. 9c and d) and FLAReS1.0 (Figs. 9g and h). But not as 416 

much in 20CR (Fig. 9e and f). 417 

On the other hand, the watersheds in south Florida show insignificant change in the 418 

ENSO teleconnections to the change in the phase of AMO. This is consistently observed in 419 

all four climate datasets with the growing strength of the teleconnection between streamflow 420 

and ENSO index as one moves north from south Florida. Despite the lack of robust ENSO-421 

rainfall teleconnection in the northern watersheds of the SEUS that is modulated by AMO 422 

(Fig. 8) the elasticity of the streamflows in the SEUS watersheds and the fact that the 423 

streamflow at the outlet is an aggregate response to rainfall over the entire watershed explains 424 

the appearance of the significant correlations in Fig. 9. Furthermore the lack of significant 425 
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correlations in south Florida in Fig. 9 runs in contrast to Enfield et al. (2001) who found that 426 

during opposite phases of the AMO, the inflow in Lake Okheechobee which is regarded as 427 

the reservoir of the south Florida water supply, changes by as much as 40%. This study 428 

illuminates that this variability of inflow in Lake Okheechobee forced by AMO seems to be 429 

independent of ENSO variations in the winter. As mentioned earlier since the watersheds of 430 

SEUS are characterized with high value of elasticity and streamflow at the basin outlet is an 431 

aggregated response to rainfall over the watershed, there is a stronger ENSO teleconnections 432 

in the streamflow in some watersheds in Alabama, Georgia, and South Carolina as compared 433 

to rainfall. 434 

 435 

5. Conclusions 436 

 In this study, the association of ENSO variability with rainfall and streamflow during 437 

the boreal winter season over 28 watersheds located in the SEUS is examined across four 438 

different centennial long datasets. The rainfall from the two of the four datasets is considered 439 

as observed datasets analyzed on regular grids while the other two are model generated 440 

atmospheric reanalysis. While the main objective was to inter-compare the ENSO 441 

teleconnections on SEUS hydrology, a larger goal was to establish if the model generated 442 

atmospheric reanalysis could be a viable alternative to the observed rainfall datasets to 443 

discern these low frequency variations in SEUS hydrology. An affirmative answer to the 444 

latter would help in reposing more faith in such reanalysis attempts of the SEUS hydrology.  445 

 A multi-model strategy was adopted to simulate the streamflow using rainfall from 4 446 

different datasets (CRU, PRISM, 20CR, FLAReS1.0). 20CR is the global atmospheric 447 

reanalysis at 250km° grid resolution (Compo et al. 2011). FLAReS1.0 is a dynamically 448 

downscaled atmospheric reanalysis from 20CR at 10km grid resolution (DiNapoli and Misra 449 

2012).  The hydrological models were calibrated and validated for the period of 1949-1970 450 
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using an independent set of rainfall (CPC) observations. The monthly mean rainfall datasets 451 

were disaggregated to the time step of the hydrological models (daily) using a weather 452 

generator (WGEN; Richardson and Wright 1984).  Our analysis clearly indicates that the 453 

streamflow simulation errors stemming from the hydrological models are not insignificant. 454 

These errors largely stem from the erroneous forcing of the atmospheric reanalysis 455 

precipitation in comparison to rainfall from either CRU or PRISM. These errors are larger in 456 

the northern watersheds of the SEUS compared to the southern watersheds in Florida. 457 

 In this study we have focused on ENSO teleconnections on the winter hydrology of 458 

the SEUS as it is well known to be robust and therefore an ideal metric to evaluate the fidelity 459 

of a dataset. Our analysis reveals that ENSO teleconnections with winter rainfall in the SEUS 460 

are comparable in all four datasets. The influence of ENSO variability is stronger in the 461 

southern parts of the SEUS domain compared to the northern part. This is also reflected in the 462 

ENSO teleconnections of streamflow. The variability of streamflow in the southern 463 

watersheds (over Florida) show stronger relationship than the northern watersheds in the 464 

SEUS. Similarly the shift in the PDF of the intensity of rainfall and streamflow with change 465 

in ENSO phase show consistency across all four centennial long datasets. 466 

 Another important feature that is analyzed in this paper is the decadal modulation of 467 

ENSO teleconnection by AMO (Enfield et al. 2001). In all four climate datasets, the winter 468 

streamflow in the northern watersheds in the SEUS show a stronger positive correlation with 469 

the ENSO index during negative phase of AMO. In fact in some of these watersheds, the 470 

correlations of the winter streamflow variations with ENSO index change their sign from 471 

negative to positive correlations from positive to negative phase of AMO. These robust 472 

decadal modulations of ENSO teleconnections with streamflow in the northern watersheds of 473 

SEUS are possible despite insignificant variations of rainfall with ENSO owing to the non-474 

linear relationship (elasticity) between rainfall and streamflow (Sankarasubramaniam et al. 475 
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2001). Furthermore the disparity between ENSO-rainfall and ENSO-streamflow 476 

teleconnections (in Figs. 8 and 9 respectively) also stem from the fact that the streamflow at 477 

watershed outlets represent the aggregate response of rainfall over the entire watershed, 478 

which happen to span a diverse region of ENSO-rainfall teleconnection in the northern 479 

regions of the SEUS. This study clearly highlights the importance of centennial long datasets 480 

to resolve these important teleconnections in the SEUS. 481 

Our study reveals that FLAReS1.0 reproduced verifiable correlation of streamflow 482 

with Niño3.4 SST index in winter, consistent shifts in the distribution of streamflow with 483 

ENSO phase and AMO modulation of ENSO effects on streamflow compared to streamflow 484 

simulated with observed gridded precipitation and larger scale reanalysis data. However 485 

despite this fidelity shown by FLAReS1.0 forced simulated streamflow, the errors of the 486 

streamflow simulations as measured by the Nash Sutcliffe Efficiency (NSE) and Volume 487 

Error (VE) are discouraging. This model error shows that there is still a significant challenge 488 

in utilizing the output from climate model in reproducing the streamflow dynamics as it leads 489 

to large systematic errors. Therefore datasets like FLAReS1.0 can prove to be useful to detect 490 

the influence of large scale climate variations on streamflows in small watersheds such as 491 

those over the SEUS, while it can still be far from adequate in simulating the streamflow 492 

dynamics of the watersheds over the SEUS at daily time scale.  493 
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Lists of Tables 631 

 632 

Table I. List of watershed used in the study. 633 

 634 

 635 
SN Stations Longitude Latitude Station Name 
1 2456500 -86.9833 33.7097 Locust Fork at Sayre, AL. 
2 3574500 -86.3064 34.6242 Paint Rock River near Woodville AL. 
3 2296750 -85.5608 33.1167 Tallapoosa River at Wadley AL. 
4 2329000 -81.8761 27.2219 Peace River at Arcadia, FL. 
5 2365500 -84.3842 30.5539 Ochlockonee River NR Havana, FL. 
6 2375500 -85.828 30.776 Choctawhatchee River at Caryville, FL. 
7 2236000 -87.2342 30.965 Escambia River near Century, FL. 
8 2192000 -81.3828 29.0081 St. Johns River NR Deland, FL. 
9 2202500 -82.77 33.9742 Broad River near Bell, GA. 
10 2217500 -81.4161 32.1914 Ogeechee River near Eden, GA. 
11 2347500 -83.4228 33.9467 Middle Oconee River near Athens, GA. 
12 2383500 -84.2325 32.7214 Flint River near Culloden, GA. 
13 2339500 -84.8331 34.5642 Coosawattee River near Pine Chapel, GA. 
14 2387000 -85.1822 32.8861 Chatahoochee River at West Point, GA. 
15 2387500 -84.928 34.667 Conasauga River at Tilton, GA. 
16 2102000 -84.9414 34.5783 Oostanaula River at Resaca, GA. 
17 2118000 -79.1161 35.6272 Deep River at Moncure, NC. 
18 2126000 -80.659 35.845 South Yadkin River near Mocksville NC. 
19 2138500 -80.1758 35.1483 Rocky River near Norwood, NC. 
20 3443000 -81.8903 35.7947 Linville River near Nebo NC. 
21 3451500 -82.624 35.299 French Broad River at Blantyre NC. 
22 3504000 -82.5786 35.6092 French Broad River at Asheville, NC 
23 3512000 -83.6192 35.1269 Nantahala River near Rainbow Springs, NC. 
24 3550000 -83.3536 35.4614 Oconaluftee River at Birdtown, NC. 
25 2156500 -83.9806 35.1389 Valley River at Tomotla, NC. 
26 2165000 -81.4222 34.5961 Broad River near Carlisle, SC. 
27 2414500 -82.1764 34.4444 Reedy River near Ware Shoals, SC. 
28 3455000 -83.161 35.982 French Broad River near Newport, TN. 
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 636 
 637 
 638 
 639 
Table II: The Nash-Sutcliffe Error (NSE) and the Volume Error (VE) for all SEUS 640 
watersheds (listed in Table I) from simulated winter season streamflow forced by 20CR and 641 
FLAReS1.0 and validated against simulated streamflow forced by CRU and PRISM. 642 
 643 
 644 
 645 
 646 

20CR based on 
CRU 

FLAReS1.0 based 
on CRU 

20CR based on 
PRISM 

FLAReS1.0 based 
on PRISM 

SN 

NSE VE NSE VE NSE VE NSE VE 
1 -0.1725 0.3946 0.1547 0.2880 0.1139 0.2831 0.3362 0.1851 
2 0.0279 0.2256 -0.1315 0.2828 -0.1399 0.2444 -0.3494 0.3026 
3 -4.3830 0.9240 -1.7180 0.4216 -4.9002 0.9700 -1.8897 0.4556 
4 -0.3330 0.2131 -0.6778 0.2946 -0.4225 0.2575 -0.8955 0.3420 
5 0.0354 -0.0564 -0.2785 -0.0736 -0.0683 0.0311 -0.3438 0.0123 
6 -0.1491 0.0126 -0.3170 -0.0301 -0.1235 0.0385 -0.1570 -0.0052 
7 -0.3418 0.0641 -0.0596 -0.0419 -0.6563 0.1404 -0.4716 0.0268 
8 -0.3415 0.2696 -0.4076 0.1824 -0.3224 0.2876 -0.4196 0.1992 
9 -1.3809 0.4501 -1.9669 0.5458 -1.6114 0.4976 -2.3619 0.5965 
10 -0.1000 0.2864 -0.3475 0.1977 -0.2313 0.3309 -0.2908 0.2391 
11 -0.6886 0.4137 -0.7884 0.4042 -1.0518 0.4278 -1.1047 0.4182 
12 -0.6318 0.4828 -0.1237 0.1458 -0.6341 0.4402 -0.0403 0.1129 
13 -0.1891 0.2706 0.0407 0.1894 -0.1332 0.2110 -0.0393 0.1336 
14 -0.7540 0.4052 -0.1859 0.2006 -0.6869 0.3644 -0.2306 0.1658 
15 -0.0128 0.2346 -0.2289 0.2256 -0.1092 0.2145 -0.2388 0.2056 
16 -1.2800 0.4869 -1.7059 0.5143 -1.1349 0.3705 -1.2969 0.3958 
17 -1.2274 0.4021 -4.4855 0.8549 -0.8333 0.3310 -3.4920 0.7610 
18 -2.2922 0.5336 -10.2719 1.2527 -1.1491 0.3502 -6.6526 0.9833 
19 -2.0774 0.3472 -6.0056 0.6424 -1.8183 0.3023 -5.0118 0.5877 
20 -0.7503 0.1833 -10.2719 0.9185 -0.6357 0.0785 -8.7930 0.7487 
21 -0.2089 -0.0145 -3.5209 0.4993 -0.4566 -0.2309 -1.6428 0.1700 
22 0.0073 0.0756 -1.1184 0.2571 -0.0859 0.1377 -1.2725 0.3298 
23 0.1152 -0.0103 -1.0533 0.2044 -0.0773 -0.2337 -0.5800 -0.0674 
24 0.0567 0.0776 -1.1036 0.2589 0.0850 -0.0202 -0.7778 0.1446 
25 -0.1314 0.0173 -0.2783 -0.0806 -0.1647 0.0016 -0.1371 -0.0948 
26 -0.4682 0.2781 -3.0278 0.7770 -0.2529 0.2052 -2.3383 0.6756 
27 -0.1944 0.2426 -1.5620 0.4891 -0.1290 0.2237 -1.4988 0.4664 
28 0.1854 0.2086 -0.0506 0.2118 -1.1613 0.4890 -1.1157 0.4929 
 647 
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Fig. 1. Nash-Sutcliff Error for (a-b) 20CR and (c-d) FLAReS1.0 based on (a-c) CRU and (b-d) 

PRISM. Positive values are shown in red and negative values are shown in blue. 

Fig. 2. Volume Error for (a-b) 20CR and (c-d) FLAReS1.0 based on (a-c)CRU and (b-d)PRISM. 

Positive values are shown in red and negative values are shown in blue. 

Fig. 3. Nash Sutcliffe Efficiency (NSE) Index and Volume Error estimated based on CRU as 

reference data. 

Fig. 4. Correlation of DJF Precipitation with Niño 3.4 Index in (a) CRU, (b)PRISM, (c)20CR and 

(d)FLAReS1.0. Only statistically significant regions at 90% level of confidence are shaded. 

Fig. 5. Correlation of DJF streamflow with Niño 3.4 Index in (a) CRU, (b)PRISM, (c)20CR and 

(d)FLAReS1.0. Positive values are shown in red and negative values are shown in blue. Only 

statistically significant regions at 90% level of confidence are shown as thick circles. 

Fig. 6. Fraction of warm or cold ENSO event in tercile division of precipitation for (a-d)CRU, (e-

h)PRISM, (i-l)20CR and (m-p)FLAReS1.0. Only statistically significant regions at 90% level of 

confidence are shaded. 

Fig. 7. Fraction of warm or cold ENSO event in tercile division of streamflow for (a-d)CRU, (e-

h)PRISM, (i-l)20CR and (m-p)FLAReS1.0 data. Fractions which are significantly high (>0.4) are 

marked in red and those low (<0.2) are marked in blue at 90% level of confidence. 

Fig. 8. Correlation of DJF precipitation with the Niño 3.4 Index during (a, c, e, g) positive and (b, d, 

f, h) negative phases of AMO for (a-b) CRU, (c-d)PRISM, (e-f)20CR and (g-h)FLAReS1.0. Only 

statistically significant regions at 90% level of confidence are shaded. 

Fig. 9. Correlation of DJF streamflow with the Niño 3.4 Index during (a, c, e, g) positive and (b, d, 

f, h) negative phases of AMO for (a-b)CRU, (c-d)PRISM, (e-f)20CR and (g-h)FLAReS1.0. Positive 

values are shown in red and negative values are shown in blue. Only statistically significant regions 

at 90% level of confidence are denoted as thick circles. 
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Fig. 1. Nash-Sutcliff Error for (a-b) 20CR and (c-d) FLAReS1.0 based on (a-c) CRU and (b-d) 
PRISM. Positive values are shown in red and negative values are shown in blue. 
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Fig. 2. Volume Error for (a-b) 20CR and (c-d) FLAReS1.0 based on (a-c)CRU and (b-d)PRISM. 
Positive values are shown in red and negative values are shown in blue. 
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Fig. 3. Nash Sutcliffe Efficiency (NSE) Index and Volume Error estimated based on CRU as 
reference data. 
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Fig. 4. Correlation of DJF Precipitation with Niño 3.4 Index in (a) CRU, (b)PRISM, (c)20CR and 
(d)FLAReS1.0. Only statistically significant regions at 90% level of confidence are shaded. 
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Fig. 5. Correlation of DJF streamflow with Niño 3.4 Index in (a) CRU, (b)PRISM, (c)20CR and 
(d)FLAReS1.0. Positive values are shown in red and negative values are shown in blue. Only 
statistically significant regions at 90% level of confidence are shown as thick circles. 
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Fig. 6. Fraction of warm or cold ENSO event in tercile division of precipitation for (a-d)CRU, (e-
h)PRISM, (i-l)20CR and (m-p)FLAReS1.0. Only statistically significant regions at 90% level of 
confidence are shaded. 
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Fig. 7. Fraction of warm or cold ENSO event in tercile division of streamflow for (a-d)CRU, (e-
h)PRISM, (i-l)20CR and (m-p)FLAReS1.0 data. Fractions which are significantly high (>0.4) are 
marked in red and those low (<0.2) are marked in blue at 90% level of confidence. 
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Fig. 8. Correlation of DJF precipitation with the Niño 3.4 Index during (a, c, e, g) positive and (b, d, 
f, h) negative phases of AMO for (a-b) CRU, (c-d)PRISM, (e-f)20CR and (g-h)FLAReS1.0. Only 
statistically significant regions at 90% level of confidence are shaded. 
 
 
 
 
 



 40 

 

 
 
Fig. 9. Correlation of DJF streamflow with the Niño 3.4 Index during (a, c, e, g) positive and (b, d, 
f, h) negative phases of AMO for (a-b)CRU, (c-d)PRISM, (e-f)20CR and (g-h)FLAReS1.0. Positive 
values are shown in red and negative values are shown in blue. Only statistically significant regions 
at 90% level of confidence are denoted as thick circles. 


