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ABSTRACT

An atmospheric general circulation model (AGCM) is coupled to three different land surface schemes

(LSSs), both individually and in combination (i.e., the LSSs receive the same AGCM forcing each time step

and the averaged upward surface fluxes are passed back to the AGCM), to study the uncertainty of simulated

climatologies and variabilities caused by different LSSs. This tiling of the LSSs is done to study the uncertainty

of simulated mean climate and climate variability caused by variations between LSSs. The three LSSs produce

significantly different surface fluxes over most of the land, no matter whether they are coupled individually or

in combination. Although the three LSSs receive the same atmospheric forcing in the combined experiment,

the inter-LSS spread of latent heat flux can be larger or smaller than the individually coupled experiment,

depending mostly on the evaporation regime of the schemes in different regions. Differences in precipitation

are the main reason for the different latent heat fluxes over semiarid regions, but for sensible heat flux, the

atmospheric differences and LSS differences have comparable contributions. The influence of LSS un-

certainties on the simulation of surface temperature is strongest in dry seasons, and its influence on daily

maximum temperature is stronger than on minimum temperature. Land–atmosphere interaction can dampen

the impact of LSS uncertainties on surface temperature in the tropics, but can strengthen their impact in

middle to high latitudes. Variations in the persistence of surface heat fluxes exist among the LSSs, which,

however, have little impact on the global pattern of precipitation persistence. The results provide guidance to

future diagnosis of model uncertainties related to LSSs.

1. Introduction

One of the largest uncertainties in climate simulations is

from the representation of land processes, because there

are few observations to calibrate or constrain them. Dif-

ferent land surface schemes (LSSs) use quite different

parameterizations to describe the complex hydrological,

biogeophysical, and biogeochemical processes. To inves-

tigate the uncertainties in the behavior of LSSs and their

influence on climate simulations, the Project for Inter-

comparison of Land Surface Parameterization Schemes

(PILPS) was established (Henderson-Sellers et al. 1995,

1996; Pitman and Henderson-Sellers 1998; Pitman et al.

1999). PILPS compared offline simulation from over

20 LSSs at several different locations and found that, even

when forced by the same atmospheric forcing and pro-

vided the same parameter settings, different LSSs can still

give significantly different surface fluxes. When these LSSs

are coupled to the atmospheric general circulation models

(AGCMs), their different behaviors will bring uncer-

tainties into the simulated climate. Realizing this, PILPS

compared the simulation results from some of the LSSs as

a component of the Atmospheric Model Intercomparison

Project (AMIP; Gates 1992; Phillips 1994) GCMs (Qu and

Henderson-Sellers 1998; Henderson-Sellers et al. 2003;

Irannejad et al. 2003). However, as the LSSs are coupled

to different AGCMs, this comparison was inconclusive.

More than a decade ago, there was a European project

with the aim of determining the uncertainties linked to

land surface processes in climate change simulations
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(Polcher et al. 1998). Four GCMs, each coupled to two

different LSSs, were used to explore the uncertainties in

the simulation of present and future climate (Crossley

et al. 2000; Gedney et al. 2000). Their main conclusion

was that the choice of LSSs has a significant contribution

to the simulated hydrological cycle and surface tem-

perature, and its contribution to the simulation of cli-

mate change is even larger than that of the present

climate. Most of the GCMs in this study were not cou-

pled to completely independent LSSs, because they only

altered some hydrological processes in the LSS. Likewise,

Desborough et al. (2001) performed coupled model sim-

ulations with different land surface energy balance con-

figurations of a single LSS. There are other similar

comparison studies (e.g., Leplastrier et al. 2002; Pitman

et al. 2004; Bagnoud et al. 2005) that have shown the

sensitivity of climate simulation to the degree of LSS

complexity.

Timbal and Henderson-Sellers (1998) examined the

sensitivity of a regional weather forecast model to cou-

pling to several LSSs. They found significant differences

in surface fluxes and atmospheric response, but these

integrations were very short and there was no chance

for the atmosphere to equilibrate to the various land

schemes. Xue et al. (2004, 2006) compared the simula-

tions of monsoons with an AGCM coupled to two LSSs

of different complexities, and found significant shifts in

rainfall patterns. Cornwell and Harvey (2008) created

a simple land scheme that mimics the behavior of many

more complex schemes. They determined that for soil

moisture, approximately half of the variability among

the three atmosphere–ocean climate models was due to

the different land schemes, and half came from different

climatologies of the AGCMs. These studies are useful to

investigate the role of different land surface parame-

terizations, but their results do not represent the general

uncertainties among existing LSSs because of the sub-

jectively specified changes or simplifications, short du-

ration, and/or the small sample size.

Because the land–atmosphere system is nonlinear, un-

certainties from LSSs can be amplified or reduced during

land–atmosphere interaction. Qu and Henderson-Sellers

(1998) compared the scatters from LSS offline simula-

tions and those from AMIP simulations in which these

LSSs are coupled to AGCMs. Their analysis at two lo-

cations shows that the range of scatter from the coupled

AMIP simulations is larger than that from the offline

simulations. However, Irannejad et al. (2003) developed

pseudo-LSSs (PLSSs) by multivariable linear regressions

of the AGCM outputs, and found that driving the PLSSs

with the same atmospheric forcing at three river basins

can increase the spread of annual latent heat (LH) flux

compared to the coupled AGCM simulations. These

contradictory conclusions may be caused by the AGCM

differences in AMIP simulations or an insufficient num-

ber of study locations.

In this study, we show results from an AGCM coupled

to three state-of-the-art LSSs. Instead of investigating

the impact of a certain parameterization change, we try

to investigate the composite uncertainties of the three

LSSs and their influence on climate simulation. We also

explore the influence of land–atmosphere coupling on

the simulation uncertainties. Our focus will be on the

global geographic variations of model uncertainties and

land–atmosphere feedbacks, which generally have not

been addressed in previous studies. In summary, the

purpose of this study is threefold: first, to investigate

current uncertainties in the behavior of LSSs; second, to

investigate how much these uncertainties can influence

atmospheric simulation through land–atmosphere inter-

action; and third and most importantly, to have a better

understanding of the mechanisms of land–atmosphere

coupling. All three purposes are addressed in this paper,

while the companion paper (Wei et al. 2010, hereafter

Part II) expands upon the third purpose.

2. Models and experiments

a. AGCM

The AGCM used is a recent version (version 3.2) of the

Center for Ocean–Land–Atmosphere Studies (COLA)

AGCM (Misra et al. 2007), which is based on the previous

version (Kinter et al. 1997). It has 28 vertical sigma levels,

and the horizontal resolution is T62 (;1.98 3 1.98). The

model uses the relaxed Arakawa–Schubert deep con-

vection scheme (Moorthi and Suarez 1992), the nonlocal

boundary layer vertical diffusion scheme (Hong and Pan

1996), the longwave radiation scheme of the National

Center for Atmospheric Research (NCAR) Community

Atmosphere Model, version 3 (CAM3; Collins et al.

2002), and the cloud radiation scheme of the NCAR

Community Climate Model version 3 (CCM3; Kiehl

et al. 1998).

b. LSSs

Three LSSs are coupled to the AGCM in this study:

a new version of the Simplified Simple Biosphere Model

(SSiB; based on Xue et al. 1991; Dirmeyer and Zeng 1999),

the recently released Community Land Model (CLM),

version 3.5 (Oleson et al. 2004, 2008), and a recent version

of Noah land model (version 2.7; Ek et al. 2003). These

models have been widely used in weather and climate

research.

This version of SSiB has some improvements over the

previous version, which participated in the Second Global
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Soil Wetness Project (GSWP-2; Dirmeyer et al. 2006)

and the Global Land–Atmosphere Coupling Experiment

(GLACE; Koster et al. 2006). Principally, the number of

soil layers in the root zone has increased to four, and

a three-layer snow model (Stieglitz et al. 2001) has been

coupled to SSiB to replace the original simple snow pa-

rameterization. The new version uses the same schemes

as that of CLM (Oleson et al. 2004) to calculate soil ther-

mal conductivity and soil temperature. Preliminary results

show that the new version has corrected a dry bias over

much of the globe when coupled with the COLA AGCM,

and the snow cover is better simulated.

Version 3.5 of CLM also has many important improve-

ments compared to the previous version (CLM version

3), which participated in GLACE. The modifications

include a new surface dataset, new parameterizations for

canopy integration and interception, frozen soil, soil wa-

ter availability, and soil evaporation, a TOPMODEL-

based scheme for surface and subsurface runoff (Niu et al.

2005), a groundwater model for determining water table

depth (Niu et al. 2007), and the introduction of a factor

to simulate nitrogen limitation on plant productivity.

CLM3.5 exhibits significant improvements in its hydro-

logical cycle, which result in wetter soils, less plant water

stress, increased transpiration and photosynthesis, and an

improved annual cycle of total water storage and runoff.

See Oleson et al. (2008) for a detailed description of the

improvements.

The Noah land model is an improved version of the

Oregon State University (OSU) land model (Pan and

Mahrt 1987) developed in the 1980s, but with significant

changes (Koren et al. 1999; Ek et al. 2003). The model

has four soil layers and the root zone depth is spatially

varying (depending on vegetation classes) rather than

fixed as in the OSU model. The cold season physics have

been dramatically improved, including frozen soil physics

and snowpack physics. There are also refinements to the

formulation of soil evaporation, ground heat flux, can-

opy conductance, surface runoff and infiltration, and soil

thermal conductivity. In comparison to the OSU model,

the forecast skill of surface temperature and the simula-

tion of some regional climatology and variability are

significantly improved when Noah model is coupled to an

AGCM (De Haan et al. 2007). This is an updated release

of the Noah model that was used in GSWP-2, and its

simulation skill of soil moisture was found to be among

the best of the models (Guo and Dirmeyer 2006).

SSiB and Noah are ‘‘second generation’’ LSSs (e.g.,

Sellers et al. 1997), built around the explicit description

of soil and vegetation processes involved in closure of

the surface energy and water budgets. CLM is ‘‘third

generation,’’ including the explicit representation of the

role of carbon and nitrogen in modulating energy and

water fluxes, although the carbon and nitrogen cycles

are not enabled in our experiments. There are many

specific differences among these LSSs in the parame-

terization and calculation of particular processes. In

addition, the three LSSs have different numbers of soil

layers and soil depths, and each uses its own soil and

vegetation datasets. These different model boundary

conditions cannot be easily changed to be the same be-

cause each LSS is developed with its own datasets of

land cover and soil (Pitman et al. 2009). Therefore, the

simulated differences among the LSSs are caused by

differences in both model parameterizations and speci-

fied boundary conditions. The model integration and

coupling are all conducted at a T62 spectral resolution

with a common land–sea mask. The integration time

step is the same for the LSSs and the AGCM (12 min).

There is no tuning or nudging in the coupling for all of

the models.

c. Experiments and methods

Two experiments are performed. In the first experiment

(I), three LSSs are coupled to the AGCM individually and

three separate integrations are performed. In the second

experiment (C), an innovative coupling method is used to

couple the three LSSs to the AGCM in combination

(parallel) with a shared atmosphere. At each grid point

and at every time step, the LSSs receive the same atmo-

spheric forcing from the AGCM and the average surface

fluxes from the LSSs are passed back to the AGCM. In

fact, the same code is run for both experiment I and C

integrations. The difference is effectively in the weights

applied to the fluxes calculated by each LSS. Running

with any single LSS is equivalent to assigning the fluxes

from that scheme a weight of 1.0 and 0.0 for the other

two. In experiment C, each LSS receives an identical 1/3

weight, so each LSS has an equal opportunity to impact

the atmosphere. This approach is analogous to that used

in mosaic schemes (e.g., Koster and Suarez 1992), except

that the tiles are complete LSSs and not just separate

vegetation classes. From the perspective of the atmo-

sphere, experiment C is simply a coupling to a fourth LSS

with its own unique climatology and sensitivities. De-

pending on the degree of nonlinearities in the system, the

equilibrium state that is reached should be different from

the average of the three integrations in experiment I. The

water and energy are conserved in experiment C (see the

appendix).

The approach of experiment C is motivated by the

success of ensemble multimodel approaches, such as the

‘‘interactive ensemble’’ for coupled ocean–atmosphere

models (Kirtman and Shukla 2002) and multimodel en-

sembles for offline LSSs (Dirmeyer et al. 2006). Such

multimodel approaches can give demonstrably better
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simulations of key aspects of the climate system than

individual models can attain. From the perspective of the

land, experiment C is similar to running three land model

offline experiments with the same atmospheric forcing,

but here the atmosphere is affected by the average feed-

back from the LSSs. In this paper, we are comparing the

behavior among the three LSSs in experiment C in the

same way one would compare three offline integrations.

We do this to understand the behavior of each scheme in

this common modeling framework.

All of the simulations start from 1 April 1982 and end

on 1 January 2005 (nearly 23 yr). The last 18 yr of data

are used for analysis. The atmospheric initial condition

is from National Centers for Environmental Prediction

(NCEP)–NCAR reanalysis, and land initial conditions

are from long-term offline runs forced by the 40-yr Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-40; Uppala et al. 2005),

except that the precipitation is corrected according to

observations (Rudolf et al. 1994). Observed weekly sea

surface temperature (Reynolds et al. 2002) is prescribed

in all of the experiments.

3. Differences in model climatology

a. Surface energy and water fluxes

1) CLIMATOLOGY DIFFERENCES

Surface energy and water exchange is the key to un-

derstanding land–atmosphere interaction. We first look

at the intermodel climatology differences of surface fluxes

and their significances. Let us assume that x1 and x2 are

the n-yr average of a variable from any two cases, and s1
2

and s2
2 are the interannual variances of the variable. Then,

the test statistic,

t
1,2

5
x

1
� x

2

�
�

�
�

s2
1

n
1

s2
2

n

� �1/2
, (1)

follows the Student’s t-test distribution with n 2 1 de-

grees of freedom (Wilks 2006). In our case, n 5 18, x
1

and x2 are the 18-yr averages of the June–August (JJA)

mean for two different models, and s1
2 and s2

2 are the

interannual variances of the JJA mean. This test examines

the significance of intermodel climatology differences rel-

ative to their interannual variability. At each grid point, we

can calculate the average t for the three configurations as

t 5(t
SSiB,CLM

1 t
SSiB,Noah

1 t
Noah,CLM

)/3. (2)

Then, we can obtain the average confidence levels of

their differences (left column of Fig. 1). Also shown, in

the right column of Fig. 1, are their coefficients of vari-

ation (CV; i.e., the standard deviation divided by the

mean) across the three models, which measure the in-

termodel climatology differences relative to their means.

The following four variables, each from two experiments

(except precipitation, which is identical for the three LSSs

in experiment C), are shown: surface net radiation (Rnet),

precipitation (P), sensible heat (SH) flux, and LH flux.

Generally speaking, LSS difference is the most im-

portant factor causing the simulated differences in land

surface state and fluxes (e.g., Kato et al. 2007; Irannejad

et al. 2003). Beyond that, precipitation and radiation are

two most important forcings (e.g., Guo et al. 2006a; Wei

et al. 2008b). LH and soil moisture are most strongly

affected by precipitation, while SH is most strongly af-

fected by radiation (Kato et al. 2007; Wei et al. 2009). It

is useful to keep these points in mind when analyzing the

results.

The left column of Fig. 1 shows that almost all of the

land area has very significant intermodel differences for

the variables. Precipitation difference is a little less sig-

nificant over some high-latitude regions, probably be-

cause of the larger internal variability there. Although

the differences are all significant, the percentage un-

certainties (relative to their means) are quite different.

The CVs for Rnet are small for both experiments, and

most of the uncertainties are from net longwave radia-

tion (not shown). For experiment C, Rnet uncertainties

(caused by differences in albedo, emissivity, and surface

temperature) can be regarded as the only uncertainty in

forcing to the LSSs because downward fluxes are the

same. The CVs of surface heat fluxes (SH and LH fluxes)

are much larger than those of Rnet, with most of the

land area exceeding 20%. This happens for both ex-

periment I (different precipitation for LSSs) and ex-

periment C (same precipitation), indicating that a large

divergence in surface heat fluxes can be caused by the

different surface energy partitions of the LSSs, even when

precipitation is the same. Similar results are found in

offline land model simulations (e.g., Liang et al. 1998;

Pitman et al. 1999; Dirmeyer et al. 2006).

The patterns of CV for SH(I) and SH(C) are very sim-

ilar, with SH(I) having larger amplitudes than SH(C).

This indicates that the LSS differences largely determine

the pattern of SH uncertainties, while these uncertainties

can be amplified by radiation, precipitation, and other

differences caused by land–atmosphere feedback. On the

other hand, the patterns of CV for LH(I) and LH(C) are

different, with the pattern of LH(I) very similar to that of

P(I), suggesting the dominant influence of precipitation.

We also examined the intermodel CVs of SH and LH for

more than a dozen GSWP-2 models. Their patterns (not

shown) are similar to that of SH(C) and LH(C) in Fig. 1,
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implying that the three LSSs represent the uncertainties

among many current LSSs fairly well.

2) EXPERIMENT I VERSUS EXPERIMENT C

Let Var(I) and Var(C) be the inter-LSS variances of

average fluxes from land to atmosphere in experiments I

and C, respectively. That is the variance across three

different model climatologies. Intuitively, one might ex-

pect Var(I) to be larger than Var(C) because the LSSs

receive the same atmospheric forcing in experiment C but

not in I. This is generally true in Fig. 1. Thus, Var(I) is the

intermodel variance that is caused by LSS differences and

land–atmosphere feedback, while Var(C) is the variance

caused by LSS differences only. Their difference Var(I) 2

Var(C) represents the variance caused by land–atmosphere

feedback. Then, the ratio

F 5
Var(I)�Var(C)

Var(I)
(3)

FIG. 1. (left) The mean confidence level of the JJA intermodel climatology differences among the three coupled

models (see text for detailed description). (right) The intermodel coefficient of variation of the JJA climatologies

across the three models. Each row is for a variable: Rnet, P, SH, and LH. Hereafter, the ‘‘I’’ and ‘‘C’’ in the brackets

mean from experiments I and C, respectively.
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represents the percentage of intermodel variance caused

by land–atmosphere feedback, and 1 2 F represents the

percentage of variance caused by LSS differences. If

Var(I) $ Var(C), 0 # F # 1. However, if Var(I) , Var(C)

(F , 0), a negative feedback between land and atmo-

sphere is implied and we cannot estimate the relative

contributions of LSS differences and land–atmosphere

interactions to the variance.

Figure 2 shows F averaged over JJA for SH and LH.

Over most land areas, 0 # F # 1. However, there are still

some areas with F , 0. SH should have the same inter-

model variance as LH if Rnet and the relatively small

ground heat flux are the same for the LSSs. However,

Rnet differs considerably among the models over some

high-latitude and dry regions [Rnet(I) and Rnet(C) in

Fig. 1]. This is why the F values of SH and LH differ most

over these regions (Fig. 2).

To investigate the cause of the different spread changes

(positive and negative F), we selected northern Eurasia

and Sahel as two regions with strongly contrasting values

of F (blue boxes in Fig. 2). Figure 3 shows the time series

of LH, net shortwave radiation at surface (SWnet), total

cloud cover, and precipitation over these two regions. It is

evident that, compared to experiment I, the LHs in ex-

periment C strongly converge in Sahel but diverge in

northern Eurasia, consistent with the value of F. In the

Sahel, the interannual time series of LH are negatively

correlated with those of SWnet, but are positively cor-

related with those of cloud cover and precipitation. This is

a semiarid, moisture-limited area, where evapotranspi-

ration (ET) is nominally below the potential rate, so LH

is strongly controlled by the land surface states, especially

soil wetness, which is largely determined by rainfall. In

experiment C, each LSS experiences the same rainfall,

which leads to similar soil wetness and LH. In northern

Eurasia, however, the correlation between SWnet and

LH is positive for most of the time series. The soil mois-

ture is plentiful in this region and the control on LH is

mainly the availability of radiation at surface. The most

significant change of LH is for CLM, when the LH

FIG. 2. The ratio F [see Eq. (3)] for the 1987–2004 average JJA (top) LH and (bottom) SH

fluxes. The regions enclosed by blue boxes are for further analysis in Fig. 3.
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decreases greatly in experiment C compared to experi-

ment I. The reason for the reduction is the decrease of net

radiation at the surface caused by increased cloud cover.

The soil is actually wetter, but this does not play a domi-

nant role. The same mechanism applies to the Noah

model. For SSiB, the condition is a little different. The

small increase of LH in experiment C is accompanied by

a small decrease of SWnet and a slight increase in pre-

cipitation. This indicates that different LSSs can have

various thresholds between atmosphere control and soil

moisture control over evaporation, even when under the

same forcing. This increases the complexity of the problem.

FIG. 3. The simulated 1987–2004 JJA average LH, SWnet, total cloud cover, and P for (left) the Sahel and (right)

northern Eurasia. The areas of the two regions are marked by blue boxes in Fig. 2.
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To summarize, in most regions the evaporation re-

gime determines how the spread of LH among the LSSs

changes. In regions where soil wetness is important for

LH, such as arid and semiarid regions, the spread of LH

can be larger when individually coupled, mostly caused

by the different precipitation over land. In regions where

soil is wet enough that ET is not stressed, the spread of

LH decreases when individually coupled, which is mostly

caused by the radiation changes associated with cloud

cover changes.

The above mechanism can explain most of the distri-

bution of F(LH) in Fig. 2. However, this mechanism

cannot explain the negative values of F(LH) over south-

ern Amazon, southern Africa, and northern Australia,

which are all dry regions in the Southern Hemisphere.

Given the same atmospheric forcing in experiment C, the

LSSs have large divergences in LH relative to their mean

[LH(C) in Fig. 1], indicating the large differences in the

behavior of the LSSs over these regions. Coupling them

to the AGCM individually can actually decrease the

divergence. This is probably due to a negative feedback

in experiment I: higher LH / lower surface tem-

perature / lower precipitation / lower LH. This

feedback does not happen over North Africa, where

the precipitation amount is similarly low, because of

the much higher temperatures. Therefore, the large

difference in LSS behavior combined with a negative

ET–precipitation feedback could be the reason for the

negative values of F(LH) over these regions. On the

other hand, the model bias in precipitation can influence

the value of F(LH), for example, South Asia is too dry

in the models, which may lead to unrealistic high values

of F(LH).

For the colored area (F . 0) in Fig. 2, F(LH) has

much larger values than F(SH). This is because LH is

more strongly influenced by precipitation, and the LSSs

receive different precipitation in experiment I but the

same precipitation in C. The largest values of F(LH) are

generally over semiarid regions, where precipitation

uncertainties strongly influence LH. Therefore, in ex-

periment I, most of the intermodel difference of LH

over semiarid areas is caused by the different precip-

itation over land. The uncertainties caused by LSS dif-

ferences are generally small in these regions [LH(C) in

Fig. 1]. For SH, only approximately half of the inter-

model divergence is caused by the different forcings

over land and the other half is from LSS differences. The

similarity of the patterns between F(LH) and P(I) (Fig. 1)

FIG. 4. The standard deviations of Tmin, Tmax, and DTR climatologies across the three LSSs in experiment C for

(left) JJA and (right) DJF.
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and between F(SH) and SH(C) (Fig. 1) support this

conclusion.

b. Extreme temperature and its diurnal range

Maximum and minimum surface temperatures (Tmin

and Tmax) and diurnal temperature range (DTR 5

Tmax 2 Tmin) are important indicators of climate change.

Observational data show that clouds and associated pre-

cipitation and soil moisture variations are the main

cause for the variation of DTR over land (Karl et al. 1993;

Dai et al. 1999). The increased cloud cover can sharply

dampen the downward solar radiation during daytime

and decrease Tmax, and the associated precipitation and

wet soil can strongly decrease Tmax by promoting evapo-

transpiration. Both effects act to decrease the DTR.

Other associated effects, like increased atmospheric water

vapor, can increase both nighttime and daytime temper-

ature and has little consequence for DTR. Within these

feedback processes, the role of land processes is enclosed

but is difficult to separate by analyzing observational data.

Model experiments can separate the action processes and

also provide more data for analysis. For example, Zhou

et al. (2007, 2008) demonstrated by GCM experiments

that vegetation removal and associated soil aridation can

increase Tmin much faster than Tmax and also decrease

DTR. Of course, model uncertainties exist.

Figure 4 shows the standard deviations of Tmax, Tmin,

and DTR across the three LSSs in experiment C. Be-

cause different LSSs have different definitions and cal-

culation methods for surface temperature, we compare

the radiative temperature (skin temperature) of the LSSs.

The latter should be very similar to surface tempera-

ture in amplitude and variability. Because the atmo-

spheric forcing is the same, the standard deviation

across the three LSSs is an indicator of the LSS un-

certainties. Thus, Fig. 4 actually shows the influence of

the LSS uncertainties on Tmax, Tmin, and DTR. It can be

seen that the influence on Tmax is much larger than on

Tmin, and most of the uncertainties in DTR are from

Tmax. The standard deviations evolve seasonally over most

monsoon regions, with higher values during dry seasons.

This is largely consistent with the evolution of LH un-

certainties over these regions [LH(C) in Fig. 1, other

seasons are not shown], indicating the importance of LH

uncertainties on surface temperature and DTR over these

regions. The large uncertainties over the northern Ama-

zon basin seem to be related to the SH uncertainties

[SH(C) in Fig. 1].

Figure 5 shows the standard deviations from experi-

ment I. It differs from Fig. 4 in that each LSS now interacts

with the atmosphere individually. By comparing the two

figures, we can see the effect of land–atmosphere coupling

FIG. 5. Same as Fig. 4, but for experiment I.
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on the uncertainties in surface temperature and DTR

simulations. Compared to Fig. 4, Fig. 5 shows smaller

uncertainties in the tropics, but larger uncertainties from

the middle to high latitudes. The pattern of the JJA un-

certainties in Fig. 5 is very similar to that of precipitation in

Fig. 1, which suggests the dominant role of precipitation

and cloud uncertainties. The decreased temperature un-

certainties in the tropics could be related to a negative

feedback there in experiment I: higher surface temper-

ature / stronger convection / more precipitation and

cloud / more ET and less radiation / lower surface

temperature (Cook 1994; Zeng and Neelin 1999). This

feedback affects Tmax more than Tmin. The increased

temperature uncertainties in JJA over middle latitudes

may be realized by a typical positive feedback: less pre-

cipitation and cloud / drier soil / less ET / higher

surface temperature and less precipitation. In December–

February (DJF), the increase of the uncertainties in Tmin

and Tmax over high latitudes should be mainly from the

complex snow–atmosphere–cloud feedback (Cess et al.

1991, 1996; Yang et al. 2001), which has large uncertainties

among the models. However, this feedback seems to have

weaker effect on DTR uncertainties, implying that it has

a similar effect on both Tmin and Tmax.

In summary, the uncertainties of LH among the LSS

strongly influence surface temperature, especially Tmax.

The influence is stronger in dry regions/seasons when

LH has larger uncertainties. This influence of LSS un-

certainties can be weakened in the tropics through a

negative feedback, but can be strengthened in middle to

high latitudes through a positive feedback (if warm) or

the snow–atmosphere–cloud feedback (if cold).

4. Differences in model variability

a. Memory of land surface fluxes

Land surface influences climate variability mainly

through its relatively long memory. The soil and vege-

tation can preserve the signal of past anomalous pre-

cipitation and temperature and exert their influence on

current atmosphere (e.g., Koster and Suarez 1996, 2001;

Wei et al. 2006; Hu and Feng 2004). Of all the different

state and flux variables of land, LH may be the most im-

portant, because it directly connects to both the water and

energy balance. Figure 6 shows the JJA lag-1-day auto-

correlation of LH and its two components: vegetation

transpiration and ground evaporation. Another compo-

nent, canopy interception, generally has a memory less

than a day and is not shown. We use data from experi-

ment C to eliminate the possibility that the different

memories are caused by different atmospheric forcing, so

the memories of the LSSs can be compared.

It can be seen in Fig. 6 that, for the total LH, SSiB

generally has the longest memory while Noah has the

shortest memory. This is also true for vegetation tran-

spiration. For ground evaporation, the memory of Noah

is much higher than the other two. To better understand

the reason for these differences, we look at the percent-

ages of each component in total LH (Fig. 7). It is evident

that, compared to the other two models, Noah has much

FIG. 6. The JJA lag-1-day autocorrelations of (left) total LH flux, (middle) vegetation transpiration, and (right) ground evaporation

anomalies. The autocorrelations are calculated for each JJA and then averaged across 1987–2004. Seasonal cycles are removed before

calculating the autocorrelations. Data from experiment C; experiment I shows similar results. (top) SSiB, (middle) CLM, and (bottom)

Noah. The white areas over land are masked out using the same criteria as in Fig. 7. All the shaded areas are over the 95% confidence level.
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larger percentages of LH from interception and transpi-

ration, but a very small percentage from ground evapo-

ration. Therefore, the source of the low memory of LH

in Noah is interception and transpiration. Interception is

a fast process while transpiration is a slow process. The

low memory of LH for Noah in middle to high latitudes

should be caused by the combined effect of relatively high

percentage of interception and the relatively low memory

of transpiration. Over the tropics, the low memory of

Noah should be caused mainly by the high percentage of

interception, because its memory of transpiration is sim-

ilar to the other two models. The memory of SH for Noah

is also lower than the other two models (not shown); SH

and LH are connected in the surface energy balance

equation and usually compensate each other.

b. Precipitation persistence

The memories inherent in the surface heat fluxes

differ greatly among the LSSs. It would be interesting to

examine how the different memories of land surface

fluxes can influence precipitation variability. Figure 8

shows the lag-2-pentad precipitation autocorrelation in

JJA. This method has been used in previous studies and

is based on the assumption that a wetter soil caused by

a storm may last several days and promote future storms

(Koster et al. 2003). However, there is also a possibility

that this persistence of precipitation is caused by the

internal atmospheric dynamics or some other remote

forcing (e.g., SST) and has nothing to do with soil

moisture memory (Wei et al. 2008a). Note that the lag-

2-pentad here and lag-1-day above have no specific

physical meaning. They are just measures of memory

based on the assumption that these processes are red

noise processes. Increasing (decreasing) the time lag will

decrease (increase) the value of autocorrelation, but the

patterns change very little.

It can be seen in Fig. 8 that all of the model simulations

show a largely similar pattern of precipitation persis-

tence, but regional differences between models exist.

The result from the combined simulation is within the

range of the three individually coupled simulations. The

average of the three individual simulations shows pre-

cipitation persistence that is larger than any of the in-

dividual simulations because the averaging tends to

suppress the short-time-scale precipitation variations

that are inconsistent between the models. Although the

memory of surface LH and SH is much lower in Noah, it

does not show an overall lower precipitation persistence

than the other two models in the individually coupled

simulations. This suggests that the land surface heat

fluxes do not play a dominant role in the global pattern

of precipitation temporal variability, but regional im-

pacts may still exist. Compared to the observations, all

simulations here have overestimated the precipitation

persistence in many areas.

In Part II, we examine the connection of this pre-

cipitation persistence with precipitation predictability

and land–atmosphere coupling.

FIG. 7. The mean percentages of the three components in total LH flux during JJA (1987–2004): (left) canopy interception, (middle)

vegetation transpiration, and (right) ground evaporation. Areas where the average total LH is less than 5 W m22 or any flux component is

negative for any of the models are not shaded for all the models. Data from experiment C; experiment I shows similar results. The global

mean value of each panel is shown in the left corner.
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5. Conclusions and discussion

Three LSSs are coupled to an AGCM individually and

in combination to study the uncertainties related to LSSs

in climate simulation. This innovative coupling and com-

parison method has shown great potential for study of

land–atmosphere interaction. By comparing the inter-

model climatology and variability differences from a

set of long-term AMIP-type experiments, we obtain

the following conclusions:

1) There is a marked impact of the choice of LSS on the

model hydrological cycle. The three LSSs give sig-

nificantly different surface fluxes no matter whether

in experiment I (different atmospheric fluxes to LSSs) or

in experiment C (identical atmospheric fluxes to LSSs).

2) The evaporation regime (soil moisture limiting or

radiation limiting) largely determines how the spread

of LH among LSSs may change when they are cou-

pled to an AGCM individually. Where soil moisture

availability limits evapotranspiration, coupling the

LSSs individually to an AGCM tends to increase the

variance of LH among the models compared to offline

simulations with the same atmospheric forcing. How-

ever, in areas where radiation availability determines

LH, these fluxes can converge when LSSs are in-

dividually coupled.

3) In the individually coupled simulations, most of the

LH uncertainties over semiarid areas are caused by

the precipitation difference and LSS differences have

very little influence. Meanwhile, only approximately

half of the intermodel differences of SH over land are

caused by the forcing difference and the other half is

from LSS differences.

4) The uncertainties of LH among the LSSs have a strong

influence on surface temperature, and it has more in-

fluence on Tmax than on Tmin. The influence is stronger

in dry regions/seasons, where LH has more uncer-

tainty. Land–atmosphere interaction can weaken the

influence of LSS uncertainties in the tropics through a

negative feedback, but may strengthen their influence

FIG. 8. The JJA lag-2-pentad autocorrelation of P across 1987–2004. (a) COLA–SSiB, (b) COLA–CLM,

(c) COLA–Noah, (d) combined experiment, (e) calculated with the average precipitation of the three individually

coupled simulations, and (f) from the observational dataset of GPCP (Xie et al. 2003). The model results are in-

terpolated to the same grid as that of GPCP data (2.58 3 2.58). Values larger than 0.11 are over the 95% confidence

level. Seasonal cycles are not removed in this calculation; removing them can lead to results with similar patterns but

smaller amplitude.
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in middle to high latitudes through a positive feedback

(in warm seasons) or the snow–atmosphere–cloud

feedback (in cold seasons).

5) The memory of LH differs much among the LSSs. The

memory of the Noah model is much lower than the

other two, which is caused by a higher percentage

of canopy interception in total LH and a shorter

memory of vegetation transpiration. However, the

global patterns of precipitation persistence are little

influenced by this, although regional differences ex-

ist. Other external forcings, such as SST and radiation,

play a more important role in this global pattern. All

of the model simulations overestimate the precipi-

tation persistence, which may impact the accuracy of

the simulated land–atmosphere coupling. This is dis-

cussed further in Part II.

Our results provide guidance to future diagnosis of

model uncertainties related to LSSs. The three LSSs may

be considered to be a small but typical sample of our

ability to simulate the system. Our results could be more

representative with a larger sample size, but we believe

the same qualitative results can be obtained with these

three models. Indeed, these three LSSs show similar un-

certainty patterns to those among GSWP-2 models. Note

that we discuss the influence of LSS uncertainties on cli-

mate in this paper, which may be somewhat different

from the general influence of land processes on climate.

The impact discussed here is only related to uncertainties

among LSSs, and the LSSs may have high consistency in

some aspects, whose impact is not highlighted here.

The results obtained here may be affected by the

forcing to LSSs. We use the method of combined cou-

pling in experiment C, in which the forcing to the LSSs

may not always be in the range of the three individually

coupled runs in experiment I. Forcing the LSSs with the

average fluxes and atmospheric conditions from exper-

iment I may give a slightly different result. However, we

believe the large-scale patterns and the mechanisms

related to the interaction processes should be robust for

different forcings.

We only investigate the uncertainties related to LSSs. It

is likely that these results depend somewhat on the

AGCM we used, and the way its PBL and convection

parameterizations respond to variations in surface fluxes

(Guo et al. 2006b). In fact, coupling of these three LSSs

to other AGCMs is underway. By comparing a diverse

sample of coupling configurations we would be able to

better understand the potential interacting processes and

uncertainties, a necessary step to improve the model

simulation of land–atmosphere interaction.
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APPENDIX

Water Balance in Experiment C

On a global and annual average basis, the land surface

water balance equation is

P 5 E 1 DS 1 R, (A1)

where P is precipitation, E is evapotranspiration, DS is

soil moisture change, and R is runoff to the ocean. In

experiment C, the precipitation to each LSS is identical,

so their water balance equations are

P 5 E
SSiB

1 DS
SSiB

1 R
SSiB

, (A2)

P 5 E
CLM

1 DS
CLM

1 R
CLM

, and (A3)

P 5 E
Noah

1 DS
Noah

1 R
Noah

. (A4)

Because the characteristics of the LSSs are different, E

from one LSS may be much larger or smaller than that

from another LSS, which may lead to differences in soil

water storage and runoff between LSSs. Multiplying 1/3

to each side of the Eqs. (A2)–(A4) and summing them,

we get

P 5 (E
SSiB

1 E
CLM

1 E
Noah

)/3 1 (DS
SSiB

1 DS
CLM

1 DS
Noah

)/3 1 (R
SSiB

1 R
CLM

1 R
Noah

)/3. (A5)

This is the water balance equation for the whole system. It

is easy to find that no matter what weight is given to each

LSS, as long as the sum of the weights is 1 and does not

change over time, the water is conserved in the system.

The energy balance in experiment C follows the same

principle and is not shown here.
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