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ABSTRACf

An objective technique for adjusting wind dJl,ta, such that the total mass divergence in a volume of the
atmosphere is zero, is developed. The adjustment is obtained by applying a least-squares smoothing with a
Lagrangian multiplier to constrain the total mass divergence to a specified amount. The computational
details are derived and the method is applied to several examples. Both for theoretical wind profiles and
for actual data, a very satisfactory adjustment is achieved without destroying the physical information
contained in the data.

1. Introduction

In the computation of an energy budget for a large
bounded atmospheric volume, one is faced with the
problem of adjusting actual data such that the calcu-
lated mass divergence in the atmospheric volume is
zero. One common method of attack is to use the line-
integral method, which involves the wind component
normal to the boundary sides of the volume. The bound-
ary conditions are zero vertical velocity at the bottom
and top of the atmosphere, and the net vertically inte-
grated horizontal divergence equals zero. That is,

i Pt f dp v"dl-=O, (1)

P, g

where v" is the velocity component normal to the bound-
ing line element dl, dp is an increment of pressure, and g
is the acceleration of gravity. The inner integral repre-
sents the horizontal divergence at a given level, and the
outer integral represents the vertical integration. Since
we are working in pressure coordinates the vertical
velocity is actually dP/dt = CAI. This is not necessarily
equal to zero at the bottom of the atmosphere. However,
under the assumption of mass balance, the boundary
condition of CAI=O at the surface (~1(xx) mb) is not
unrealistic. In order to obtain w, the vertical velocity
using height as the vertical coordinate, the approxima-
tion CAI~-pgw was used.

In calculating the integral on the left-hand side of (1)
with observed winds, one often finds that mass balance
under the above constraints is not obtained. The pro-
cedure which has been used by several investigators, e.g.,
Riehl (1958), Riehl and Ma.lkus (1958), and Pahnen
et at. (1958), has been to average the normal component
of the wind around the perimeter and then qualitatively

adjust the wind in a subjective but physical way in
order to obtain mass balance in the entire volume. The
necessary adjustment is usually applied in regions where
there is a large gap between stations.

The purpose of this paper is to outline a general ob-
jective technique for smoothing actual data in a con-
sistent manner such that the total mass divergence in a
large volume of the atmosphere is zero for the adjusted
normal components of the wind data. Basically, the
procedure is to modify by use of a Lagrangian multi-
plier a least-squares smoothing of the data for each
pressure level. The technique appears to give satisfac-
tory results for complicated theoretical functions of v..,
theoretical functions with random error superimposed
on the known values, and for an actual group of. atmo-

spheric soundings.
f

2. The objective adjustment scheme
Consider an arbitrary volume of the atmosphere A

(Fig. 1) around whose perimeter G we have a small num-
ber M of sounding stations, say on the order of 10. JJet
us assume that the wind data for L levels at the M sta-
tions has been analyzed and we have available estimates
of v. at each station for each pressure level. The problem
is to derive an objective scheme for adjusting the fl.. data
such that the total mass divergence is a preset value a.
In practice, the value of a will be zero, but no loss of
generality occurs by permitting a to be arbitrary but

specified.
The objective scheme is based on only two assump-

tions: 1) the investigator has firnl physical grounds for
specifying a, and 2) the data v.. at each pressure level I
may be adequately represented by a polynomial P"
which is of degree N -1. where N:$: M. The first assump-
tion clearly depends on the time and space scales of the

American Meteorological Society
Printed in U. S. A.



334 JOURNAL OF VOLUME 7APPLIED METEOROLOGY

where A is the Lagrangian multiplier. Golub (1965) dis-
cusses the solution of least-squares problems with con-
straints. The brackets, which contain the coefficient of
A, are a finite representation of (1) since we have
data only at discrete points. WL; are the integration
weights for the integration around G, and WP, are the
integration weights for the integration over pressure. In
practice, two applications of the repeated trapezoidal
rule will suffice as a quadrature formula.

As indicated, S is a function only of ail and A. H we
define the sum N L asFIG. 1. The surface G encloses an arbitrary volume A. The

crosses indicate the location of M upper-air sounding stations from
which are available data on fI- at L pressure levels.

(5)
L

NL= L n(l),
1-1

then there are N L ail's to determine and one x. S is mini-
mized by differentiating (4) NL+l times. This yields
the linear set of N L+ 1 equations:

atmospheric phenomena which occupy the region A.
The second assumption is less restrictive.

Aside from the ease of computing polynomials on a
digital computer and because in classical analysis the
remainder term in a Taylor series may be expressed in
closed fonn, there is an additional theoretical advantage
for choosing the class {P..} for adjusting the wind data.
The above advantages of this class would be for naught
if there were no analytic basis on which we could achieve
arbitrarily high accuracy with polynomials. We assume
the reader is familiar with the result (Courant and
Hilbert, 1963) that the set of functions {P..} is complete
over any interval [a,b], i.e., for any piecewise continuous
functionj(x) given any E>O, there exists an n and co..
efficients ao, aI, . . " a. such that

{ k= 1(1)11(1),

Z-I(l)L,
(6)

AI ..( I> AI

2 }:::: V ilXj.= 2 }:::: ail}:::: X,"'-IXj'
;-1 i-l;-1

M

+XWP,}:::: WLj:t'j',
;-1

(7)
L .(1) Jf

L WP, L ailL WL~ji=ag.
&-1 0-1 ';-1

In a matrix form (6) and (7) can be written

AU=Q, (8)

where UT=[a11, au, "', a"(1).1, a12, "', a,,(L).L, >.J
(read U7' as U transpose). Q has as elements the left-
hand side of (6) and ago The coefficient matrix A is the
symmetric matrix

i: ar1J < f.
...1

(2)

r;
r

rB~l ...
R,.B~I.

(9)A=
RLBLI'L

Lr1~ST ... rL'l'o)

where BI is a square matrix, RI a square null matrix,
rl a column vector, and B" R, and r, are of order n(l).
BI is symmetric and has the form

~(x)O (X)I... (X)"(')-I"'
(x) 1 (X)2

Since sines and cosines also form a complete set, there
is a result analogous for them. In this regard, the reader
may substitute the class of Fourier functions for {P.}
if their cyclic nature has special advantage. The result
(2) assures us that we can achieve arbitrarily good
least-squares approximations using linear combinations
of polynomials.

Let us number the Stations l(l)M and denote the
distance between Station 1 and Stationj as Xi where the
distance has been normalized by G, i.e., the distance
xi51. Let V il denote V., i.e., the normal component of
the horizontal wind for Station j and pressure levell.
If ,p. is an appropriate polynomial for level l in the
form

Bl

~

(3)
"

,p ,,(XJ) = 1: ailXii-1,

...1 l ~)A(Z)-l .. .(X)2A(Z)-.

where the notation (x)r meansand we wish to find ail in the least-squares sense under
the constraint that the total mass divergence IX be as
specified, then. we must minimize a function S, where

AI

(x)r= E Xf.
';"'1

L M'

S(ail,>..)-- I: I: (V jl-,p.)I
1-1 /-1 Any available matrix subroutine may be used to solve

(9) and determine U.
It is pertinent to discuss the choice of n for each level.

The most appropriate least-squares polynomial approxi-
(4)
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FIG. 2. Outline of the State of Florida and adjacent region. The irregular polygon ~re-
sents the cr~sectional area of the volume considered. The circles represent the stations
used in the analysis.

mation to a function must have two characteristics: 1)
it must be of sufficiently high degree so that the approxi-
mating polynomial provides a good approximation to
the real function, and 2) it must not be of such a high
degree that it fits the observed data too closely 'in the
sense that the noise or errors in the observed data are
retained in the least-squares approximation. If th«r least-
squares approximation has these two properties, then it
may be said to smooth the ob$erved data in the sense
that the information available on the true function in
the observed data is retained but the noise has been
smoothed out.

In the case of a limited number of wind soundings, we
are reluctant to apply "strong" smoothing since we fear
that a physically significant portion of the information
contained in the data will be Jost. AS we shall see in the
examples presented, it is possible to make small adjust-
ments in the wind profiles and obtain zero mass diver-
gence by choosing a sufficiently high degree polynomial.

In some energy budget studies it is desirable to regard
certain stations and /orlevels to be more reliable (and,
therefore, unalterable) than other regions in the atmo-
spheric volume. This may be particularly true for the
lowest levels in the atmosphere (S. Hastenrath, per-
sonal communication). The objective technique, out-
lined above, is easily adjusted to allow for these addi-
tional constraints. If the data at a particular level are
regarded as unalterable, we simply choose n(l) for that
level to be M. In this case the fitted curve must go
through each data point at that level. If the data for a
particular station, say No.3, are regarded as unalter-
able, then we replace JP.(Xj) in (3) with

3. Theoretical examples

The objective technique will be illUstrated using sev-
eral examples including a few real data adjustments.
First, we shall apply the technique to known theoretical
wind profiles to test the concept. These specific profiles
will be nondivergent except for superimposed random
error.

Case A 1. Consider a quadratic polynomial representa-
tion in the horizontal with a sinusoidal vertical distri-
bution

V jl= (5-8Xj+8X?) sin[2r(lpl-lpL)/(lpl-lpL)], (13)

where lpl is the lth pressure level, lpL the highest pressure
level, and lpl the lowest level Since (13) is nondivergent
and quadratic at a particular level, the objective tech-
nique is checked by using (13) with n(I)=3, 1= 1 (1)L.
No alteration in V jl occurs and the numerical technique
is checked for errors.

Case A2. Consider (13) plus a random error with maxi-
mum amplitude of :%:0.10V jl from a boxcar population.
Then we may define two standard errors 0-: first, the
standard deviation 0- B associated with the difference be-
tween the data as in (13) and the data plus error; second,
the standard deviation 0-, associated with difference be-
tween the data in (13) and the least-squares obtained

I
value. As expected, the computer results show 0-,<0-.,
which indicates the ability of the technique to reduce
the noise in the data with random error.

Case B. Consider a nonpolynomial horizontal distri-
bution and the same vertical distribution. Let

V il= 10 sin (rxj+r/2) sin[2r(lp- IPL)/(lpl-lpL)]. (14)

Again we superimpose :%: 10% error from a boxcar dis-
tribution using a random number generator. When n= 4,

x.)--', (12)
.

zP..(Xj) = L aiZ(Xj"
8-1
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~
Now since the dot product commutes,

V1obB+V1oaA=V1o (bB+aA)=V1ofuV, (17)

where n is the unit nom1al to a line joining the mid-
points of sides a and b and having magnitude No Thus,
the normal component for Station 1 is obtained, V 1. =
V 10 D, and the normal components for Stations 2 through
4 are obtained in the same manner °3

a-
FIG. 3. Quadrilateral with Stations 1-4 at the vertices, sides a, b,

c, d and unit vectors a, b, c, d~

i.e., the degree of polynomial is 3 for every level, 0',<0'8

even though V;I is not polynomial in character. How-
ever, a very adequate approximation to (14) is obtained.
Cases Ai, A2, and B are not described in detail since we
felt that atmospheric scientists would be more interested
in actual application to real atmospheric data. These

follow in the examples.

5. Actual data cases

The actual atmospheric soundings selected for study
were the mean July winds for the period 1957-1965 and
for <Xro and 1200 GMT. The 1965 data for Eglin AFB
were missing; nevertheless, the means based on eight
years of data appear to be consistent with the other
stations. The discus.c;ion will be in terms of the horizon-
tal divergence and associated vertical motions rather
than in terms of normal wind components. The compu-
tations were made for ten levels starting at 100) mb and

going to 100 rob in 100-mb steps.
Case C. In this case the <Xro GMT data were fitted

using a 5th degree polynomial at all levels, i.e., n(l) = 5,
1= 1 (1)L. As with the theoretical wind distributions
mentioned previoUsly, O',.<O'B. Fig. 4 shows the vertical
distribution of horizontal divergence both for the ac-
tual wind and the fitted wind distribution. As can be

w(CM SEt-I)

a;
~
\oJ
~
::)
(/)
(/)
\oJ
~
Q./, V.bdl+ I V.\:dl

~.

(15)

DIVERGENCE 10-8 SEC'

FIG. 4. Case C. The vertical distribution of divergence and
vertical motion for the adjusted and unadjusted data using mean
July con?itions at Iro) GMT, 1957-1965. A 5th degree poly-
nomial was fitted at all levelS.

Let b/2=B, c/2=C, d/2=D, and a/2=A. Thus, after

rearrangU1g (15) becoDles

f v.dl= (YlobB+V1oiA)+(V2.GB+V2,CC) :~
"'

+(V3oCC+V3odD)+CV..dD+V..U). d'6)
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w (CM SEC-'observed, the adjustment is slight at all levels but is
sufficient for mass balance. The computed pressure
change for the actual wind data is 0.1 mb hr-l and for
the fitted data is approximately 10 orders of magnitude
smaller. The associated pattern of vertical motion was
calculated from V. V = 0 and is presented in Fig. 4. This
pattern shows sinking motion below SOO mb and rising
motion from 500-100 mb and is consistent with the ver-
tical distribution of divergence.

Case Cl. This case is a fit to the same data as in Case C
except that a degree polynomial of n-1 is fitted to the
levels from 1000-500 mb and a lower degree polynomial
from 400-100 mb. That is, this is an attempt to make the
largest adjustments in the upper levels, where the uncer-
tainties in the winds are considered to be the greatest.
Fig. 5 shows the vertical distribution of divergence and
vertical motion. A comparison of Figs. 4 and 5 shows
that the general features are the same. However, the fit
in the lowest levels fot' Case Cl are very close to the
values of divergence obtained from the actual wind data,
while the majority of the adjustment is made at 400 mb
and higher levels. The greatest differences show up in the
adjustments of the normal wind component. When fit-
ting with the lower order polynomial, the tendency is
for the adjustments at individual stations at a given

m
~
I&J
Q:
~
(/)
(/)
I&J
~
Q.

DIVERGENCE 10-' SEC-t

FIG. 6. Case D. The vertical distribution of divergence and
vertical motion for the adjusted and unadjust~ data using mean
July conditions at 1200 GMT, 1957-1965. A 6th degree poly-
nomial was fitted at all levels.

w(CM SEC-I)

level to alternate between more inflow and more outflow.
On the other hand, when the data is fitted with the high-
est order polynomial that one can use, the tendency is
for a small but systematic adjustment at a given level.
That is, one gets either more inflow or more outflow.
Table 1 illustrates this for selected levels.

Since, when one fits the data with a degree polynomial
of N -1, the adjustment is small but systematic at each
level, it was decided to fit all ten levels in this fashion.
This, in effect, allows the constraint to spread the ad-
justment systematically through all levels. The next
case illustrates the results.

m
~
\oJ
a:
:>
(/)
(/)
\oJ
a:
a..

TABLE 1. Inaeases in inflow (negative valu~) and outftow
(positive values) due to adjustments of the normal wind com-
ponent at selected levels using different order polynomials. Values
m m sec-1.

0 2 . .... -4 -z

DIVERGENCE 10-' SEC-I

FIG. 5. Case Cl. The vertical distribution of divergence and
vertical motion for the adjusted and unadjusted data using mean
July conditions at (XXX) GMT, 1957-1965. A 6th degree poly-
nomial was fitted from 1000-500 mb; a 5th degree polynomial
from 400-100 mb.
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Case D. This case is for the mean July 1200 GMTob-
servations. An examination of Fig. 6 shows the vertical
distribution of divergence with height for both the ac-
tual winds and the fitted winds. As can be seen, the ad-
justment is slight but systematic at all levels. The inte-
grated mass divergence for the unadjusted winds is
about 1 mb hr-l in magnitude. The corresponding value
for the adjusted values is about 10 orders of magnitude
smaller. The most dramatic difference shows up in the
vertical motion pattern. At 100 mb the vertical motion
of the unadjusted divergence is about -0.3 cm sec-l,
while the adjusted values meet the boundary condition
of zero. At 500 mb the fitted value of vertical motion
differs by a factor of two from the unadjusted value.
This difference can obviously be of significance when
computing vertical fluxes.

6. Conclusion

A numerical technique has been presented which al-
lows one to arrive at mass balance using a simple least-
squares fit with constraints. This procedure does not
destroy the physical information contained in the actual
data since the adjustments made are slight.

The choice of the degree of polynomial used to fit the
data is left to the discretion of the user. Obviously, the
choice will be dictated by the type of data and the con-
fidence one has in its reliability.

REFERENCES

Courant, R., and D. Hilbert, 1963: Methods of Mathematical
Physics. Vol. 1, New York, InteIscience Publishers, p. 65.

Franceschini, Guy A., 1961: Hydrologic balance of the Gulf of
Mexico. Ph.D. dissertation, College Station, A&:; M College
of Texas.

Golub, G., 1965: Numerical methods for solving linear least
squares problems. Nummsche Math., 7, 206-216.

Riehl, H., 1958: On production of kinetic energy from condensa-
tion heating. National Hurricane Research Project, Rept.
No. 22, 25 pp.

-, and J. S. Malkus, 1958: On the heat balance in the equa-
torial trough zone. Geophysica, 6, 503-538.

Palmen, E., H. Riehl and L. A. VuoreJa, 1958: On the meridional
circulation and release of kinetic energy in the tropics.
J. Meteor., 15, 271-277.


