Assimilation of Scatterometer Winds Into Surface Pressure Fields
Using a Variational Method

JACK HARLAN, JR., AND JAMES J. O'BRIEN

Mesoscale Air-Sea Interaction Group, Florida State University, Tallahassee

A variational formulation was used to assimilate Seasat-A scatterometer (SASS) surface wind measurements near and during a severe storm in the North Atlantic into conventional National Meteorological Center sea level pressure fields. An estimate of the relative vorticity at every point on a grid was calculated using each of these two data sets. A solution to a modified geostrophic stream function is found subject to the constraints that (1) the relative vorticities calculated from the data agree as closely as possible with the relative vorticities from the variational solution, and that (2) the average kinetic energy is a minimum. Results are obtained which support the idea that averaged satellite data can be treated as synoptic data. Direct substitution rather than a time-weighted insertion made from SASS winds generally resulted in more accurate pressure analyses. In addition, this relatively simple model provides surface pressure fields which agree extremely well with surface truth and the results of other investigators who required additional sources of input data into more complex models. It will be possible to obtain improved wind field maps from future scatterometer pressure fields in mid-latitudes.

INTRODUCTION

Accurate weather forecasting over the ocean has long been hampered by the sparsity of observations made at sea. The inadequacy of the data, both in time and space, creates a handicap for numerical weather prediction models. Conventional data can now be supplemented with satellite data which are available at much higher spatial resolution, although they are asynoptic.

The scatterometer radar on board the Seasat-A satellite provided wind vector data for approximately 100 days in 1978. These winds had a resolution of approximately 100 km, while meeting the preflight specifications of ± 2 m s$^{-1}$ or $\pm 10\%$ for wind speed and $\pm 20\%$ for wind direction [Lame and Born, 1982]. Even though it has recently been shown [Woiceshyn et al., 1986] that the geophysical algorithms present in the wind retrieval system of the Seasat-A scatterometer (SASS) has some deficiencies for certain circumstances (for example, low wind speeds over colder water), the SASS winds still remain the most complete and accurate wind data set available for the time period during Seasat's operation. Apart from errors in the geophysical algorithm, there is a directional ambiguity or "alias" present in the radar backscatter measurements. Four equivalent solutions for direction are typical. Numerical techniques have been used to dealias these vectors. Hoffman [1982] used a variational method to objectively dealias the SASS data. However, the method of Wurtele et al. [1982] provided the dealiased wind vectors used in this study. Their method is a subjective method which relies on pattern recognition of the wind direction field.

Yu and McPherson [1984] dealiased the SASS winds in experiments which demonstrated a significant difference between forecasts made using SASS data and those made without data in the southern hemisphere where little conventional data are available. They were unable to conclude whether or not the difference was an improvement.

Because the problem of determining which surface pressure analysis is correct when using different sources of input data, that is, with SASS data versus without SASS data, several studies have centered on the storm which occurred on September 10, 1978 to September 11, 1978 in the North Atlantic, causing extensive damage to the Queen Elizabeth II ocean liner. This storm (hereinafter called QE II) is referred to as a "bomb" by Sanders and Gyakum [1980] because of the incredible rate at which its low pressure center deepened. It changed approximately 60 mbar to a minimum pressure of around 945 mbar in 24 hours. Because the National Meteorological Center (NMC) failed to provide an accurate prediction of the location or intensity of this storm and since Seasat flew directly over the storm, this rather strong storm provides an opportunity to ascertain the effect of satellite scatterometer-derived winds on the surface pressure analysis. Fortunately, the surface truth for the storm is provided by the barograph tracing of the freighter Euroliner, which is believed to have passed through the center of the fully developed storm on September 10, 1978, at 1200 UT [see Gyakum, 1983, Figure 1].

The potential impact of SASS winds on the prediction of the QE II storm is pointed out by Cane and Cardone [1982]. They illustrate the correct location and intensity of the storm, superimposed by a satellite swath which occurs at very nearly the same time as the analysis of September 10, 1978, at 1200 UT. Duffy and Atlas [1986] were the first to assimilate the scatterometer data into a numerical weather prediction model to obtain an improved surface pressure field. Anthes et al. [1983] made use of SASS data in an extensive set of model experiments attempting to predict the QE II storm. However, since there are numerous input parameters and sources for data to these experiments with large-scale numerical weather prediction models, no clear assessment of SASS's impact alone is obvious.

In this paper a variational formulation is used to assimilate the asynoptic Seasat wind data into the NMC's synoptic surface pressure field over the North Atlantic Ocean for the 24 hours before, during, and following the QE II storm's greatest intensity on September 10, 1978, at 1200 UT. We are interested in producing surface fields that might be used for ocean prediction. We recognize that four-dimensional assimilation is more appropriate for numerical weather prediction.

First, we describe the data sets and the methods used to convert that data to a stream function and relative vorticity estimates (section 2). This is followed by the illustration of the
Fig. 1a. North Atlantic study region, including Seasat data points (dots) and NMC grid points (crosses). The square represents a typical area from which the SASS vorticity estimate is obtained for the center grid point of the square. For September 9, 1978, at 1200 UT (OBS 7).

Fig. 1b. Same as Figure 1a but without square and for September 10, 1978, at 0000 UT (OBS 8).
Fig. 1c. Same as Figure 1a for September 10, 1978, at 1200 UT (OBS 9).

Fig. 1d. Same as Figure 1a for September 11, 1978, at 0000 UT (OBS 10).
apparent superiority of SASS winds in the storm region (section 3), a description of the assimilation of the SASS data using a variational formulation (section 4), and the adjusted surface pressure fields (section 5). Finally, section 6 contains the summary and conclusions.

2. DATA BASE AND DATA ANALYSIS TECHNIQUES

The data sets to be assimilated are the Seasat scatterometer-derived surface winds and the NMC sea level atmospheric pressure field. The SASS winds have had the wind direction ambiguity removed by the technique described by Wurtele et al. [1982]. There are approximately 5 days of data from September 6, 1978, at 0000 UT to September 10, 1978, at 1200 UT. The SASS data consist of the following: the time of the observation (in seconds from January 1, 1978), the location of the observation in latitude and longitude, the speed of the wind in meters per second, and the direction of the wind in degrees measured clockwise from north. The NMC pressure field is the result of the application of an objective analysis scheme of in situ observations, using a four-dimensional data assimilation model. This field is then interpolated to several different grids. In our case the grid is a polar stereographic projection [Jenne, 1970], with a grid length of 381 km in each direction (at 60°N latitude). It is well recognized in meteorology that we can benefit from smaller grid sizes than 381 km, especially for intense storms over the ocean. However, in this pilot study we were forced to use the available analysis. A square measuring 18 x 18 grid units was selected from this grid for study. This square corresponds to most of the North Atlantic Ocean (Figures 1a–1e). NMC uses any in situ observations within ±3 hours of the analysis time as input to the objective analysis scheme (that is, synoptic is defined as ±3 hours). Consequently, the SASS wind data set is reduced to those observations within ±3 hours of each NMC observation time for all 15 days of dealiased SASS wind data.

Because the NMC analyses are available every 12 hours, there are 30 NMC analyses corresponding to the 15 days of SASS data. This paper will be concerned with five of these analyses, corresponding to the 48 hours before and including the QE II storm, which occurred on September 11, 1978 (Figures 2a–2e). It should be stressed that the NMC analysis for OBS 9 had a low of 980 mb, not 998 mb as in Figure 2c. (The term OBS 9 refers to observation number nine. The figure legend gives the date). The 998 mb value occurred because of smoothing when a fine-resolution grid was interpolated to the coarser NMC octagonal grid. Figures 1a–1e illustrate the satellite data points for each of the five NMC analysis times. Chronologically, the Seasat data runs from south to north and east to west.

Since we have two different data sets, one being surface pressure and the other being surface winds, a natural choice to relate these two data sets is relative vorticity. Using the SASS and NMC data sets described above, two relative vorticity estimates were calculated for each interior point of the NMC grid. It was necessary to calculate the two estimates by different techniques. This is because of the fact that the NMC data are on a regular grid and the SASS data are irregularly spaced.

For the NMC data, a geostrophic stream function

\(Q(x, y) = \frac{P(x, y)}{\beta f} \)
Fig. 2a. NMC surface pressure analysis for September 9, 1978, at 1200 UT (OBS 7).

Fig. 2b. NMC surface pressure analysis for September 10, 1978, at 0000 UT (OBS 8).
Fig. 2c NMC surface pressure analysis for September 10, 1978, at 1200 UT (OBS 9).

Fig. 2d. NMC surface pressure analysis for September 11, 1978, at 0000 UT (OBS 10).
was defined where P_N is the NMC surface pressure, ρ is density, and f is the local Coriolis parameter. It follows then that
the geostrophic relative vorticity at each NMC grid point is

$$\zeta(x, y) = \nabla^2 \varphi$$

This is carried out using finite difference approximations. Section 4 contains a complete description of this stream function
and the geostrophic relative vorticity estimates that result from it.

All calculations of the assimilation method are performed
on the NMC grid, therefore an estimate of the relative vorticity
using SASS winds is needed at each NMC grid point. In
order to do this a square surrounding each grid point was
defined which contained the nearest SASS data. One of these
squares may contain 0 to about 40 SASS data points (Figure
1a). It is important to note that the satellite does not pass
directly over every NMC grid point in the study region during
the 6-hour time window.

These SASS data, then, define a region over which the vorticity
must be calculated. From Stokes theorem,

$$\iint \zeta \cdot \hat{n} \, dA = \int_C u \cdot dr$$

$$\zeta = \frac{\bar{u}}{\delta A}$$

where ζ is the average vorticity vector normal to the surface
δA, and \bar{u} is the average tangential velocity along the curve C,
which has a perimeter length l [Pedlosky, 1982].

If we have the SASS data set of wind speed and direction
located at a specific set of latitudes and longitudes, the numerator
of the above expression can be calculated for each NMC
grid point. Due to the complexity of finding the exact polygon
whose perimeter would enclose all the SASS data points, a
quadrilateral was chosen whose vertices are the SASS points
nearest to the corners of the square. If fewer than four points
exist, SASS vorticity is not calculated. In a four-dimensional
data assimilation analysis the iterative procedure would
spread the influence of available SASS data across the grid.
The same thing happens here, as will be seen. If we know
the area of the region within a square for which there is SASS
data and the location of each of these points and the mag-
nitude and direction of the wind at those points, we can calcu-
late the average relative vorticity normal to the surface of that
region.

3. COMPARISON OF SEASAT WINDS AND GEOSTROPHIC
WINDS

One can easily find the zonal and meridional components
of the geostrophic wind from the surface pressure field. The sim-
plest method of determining the surface wind field from the
geostrophic wind field is by a reduction-rotation model in
which the geostrophic wind is reduced by a constant factor
and rotated counterclockwise a constant number of degrees.
This reduction-rotation method is a simple model of the de-
crease in velocity and turning of the boundary layer as the
surface is approached.
Outlook-rotated geostrophic winds for entire 6-hour time window and entire study:
(a) for OBS 8, $r^2 = 0.21$; (b) for OBS 9, $r^2 = 0.31$; (c) for OBS 10, $r^2 = 0.74$; (d) for OBS 11,
In order to obtain a relationship between the SASS surface winds and the winds produced by the application of the reduction-rotation model to the NMC geostrophic winds, it was necessary to interpolate and transform from the NMC grid points to the SASS locations. The interpolation was bi-quadratic for the interior points and bilinear near the boundaries.

For each of the five NMC observation times the optimum reduction and rotation constants were determined using a least squares formula minimizing

$$\phi = \| V_g - R_1 V_s \exp(i R_2) \|^2$$

where V_g and V_s are the geostrophic and SASS winds, respectively, R_1 is the reduction constant, and R_2 is the rotation constant. The average reduction is 0.83 (± 0.09) and the average rotation is 27.6° (± 2.5) cyclonically. These values agree well with the observed reduction constants of 0.60–0.90 and rotation constants of 15°–30° [Clarke and Hess, 1975]. As is pointed out by Clarke and Hess [1975] and Hass and Wagner [1971], the rotation and reduction factors vary with latitude and with the prevailing stability conditions.

There are more sophisticated models [e.g., Brown, 1978], available for producing surface winds from synoptic pressure fields [Oberland et al., 1980]. In a comparison with in situ surface winds, Thomas [1983] found the winds of Brown’s model to have no significant improvement over the reduction-rotation model. Therefore in order to demonstrate our assimilation technique the reduction-rotation method should be adequate, even though we recognize that more sophisticated models might be useful, especially during explosive cyclogenesis such as in the QE II case.

Using the reduction and rotation constants obtained by the least squares technique, scatter plots were made of the Seasat winds versus the reduced-rotated NMC geostrophic winds for each of the five analyst times from September 9, 1978, at 1200 UT to September 11, 1978, at 1200 UT. Plots are made for the entire North Atlantic region under study for vector magnitude (Figures 3a–3e) as well as for subsets of this region whose boundaries have been chosen so as to include only the QE II storm (or its precursor) (Figures 4a–4e).

Although the reduction-rotation factors have been determined to minimize the error between the SASS surface winds and the pressure-field-derived winds, it is apparent from Figure 3 that the SASS winds are higher than the NMC winds at low wind speeds (<10 m s⁻¹). This is in agreement with the generally accepted observation that SASS overestimates low wind speeds (<10 m s⁻¹) [Jones et al., 1982]. The companion observation is that SASS underestimates high winds (> ~20 m s⁻¹) [Jones et al., 1982].

It is important to note that in the JASIN study of Jones et al. [1982], the SASS winds were compared with very reliable and accurate ground truth wind vectors at precise locations. In this study the geostrophically derived surface winds are certainly not as accurate as the SASS winds, as a result of numerous approximations. Pierson [1981] made similar scatter plot comparisons to those presented here, using conventional ship data consisting of anemometer measurements and Beaufort estimates of the surface winds taken during the QE II storm, which are actually time averages of the wind. He concluded that the conventional wind estimates were on average too low for high wind speeds. The scatter plots of Figures 4a–4e can similarly be interpreted as evidence that the geostrophic winds provide too low an estimate for the surface wind speed for high wind speeds. If we accept the fact that the NMC surface pressure analysis for at least two of these analysis times have too high a pressure in the storm region, it follows that the geostrophic wind speeds corresponding to the storm would be expected to be too small.

4. ASSIMILATION TECHNIQUE BY A VARIATIONAL PRINCIPLE

Satellite data are synoptic and therefore present a problem if we try to assimilate them with conventional meteorological data sets. In this section a technique is described which enables this assimilation, using a vorticity estimate from each data set at every point on a grid. As is pointed out by Pierson [1983], the ship reports and data buoys used to compute the wind field and, subsequently, the pressure field for the NMC surface pressure analysis introduce mesoscale perturbations into the synoptic scale field due to their short averaging times. Pierson’s [1983] concept of “equivalent averaging time,” which relates temporal averaging to spatial averaging, states that the equivalent time it takes for an eddy to be advected by the mean wind over a distance D is given by

$$T_e = (D/u)^{1/2}$$

A scatterometer wind field with a resolution of approximately 100 km and a mean wind of 10 m s⁻¹ would be equivalent to an averaging time of about 2.8 hours. Therefore scatterometer winds are a more accurate representation of the synoptic scale wind field than the ship and data buoy winds used by NMC. The SASS time is considered to be synoptic for any time within ± $T_e/2$. Therefore if, for example, the SASS time is 1.3 hours from the NMC analysis time, it is given a weight of 1.0. Since the SASS winds data set was reduced at the outset to include only those winds ± 3.0 hours from the NMC analysis time, the smallest weight given to any SASS vorticity would be

$$F = 1.0 - \frac{D}{0.4}$$

Most weights therefore will be greater than 0.50.

We still have the problem of synoptic sampling, since the time at which the scatterometer spatial averaging is done differs from the NMC analysis time. In order to insert this data into the NMC surface pressure field, the Seasat data is weighted with respect to time. This is in contrast to the NMC procedure of considering all the ship and data buoy reports occurring within the ± 3.0-hour window as being synoptic for a given analysis time. Improvements in the overall synoptic surface pressure field might be possible by assimilating the Seasat data, using a method that weights data with respect to the data’s nearness to the NMC analysis time. Because of the irregular coverage by the satellite, a smooth surface pressure field would be difficult, if not impossible, to achieve if only satellite data were used to obtain the synoptic pressure field. Thus we need a weighting technique that allows the use of both the original NMC pressure field and the SASS data.

From conventional NMC pressure analyses, p_n, one can construct a stream function

$$Q_p(x, y) = p_n(x, y)$$

where N denotes NMC, p is density at the surface, and f is the Coriolis parameter. These fields also vary with time, but the time dependence is parametric and not crucial to the present
Fig. 4. Same as Figures 3 but for a subregion encompassing only the storm region: (a) for OBS 7, $r^2 = 0.04$; (b) for OBS 8, $r^2 = 0.01$; (c) for OBS 9, $r^2 = 0.00$; (d) for OBS 10, $r^2 = 0.08$; (e) for OBS 11, $r^2 = 0.42$. Note different scale sizes.
This is the method of strong constraints [Sasaki, 1970]. Each term on the right-hand side of (5) is summed over all the grid points i and j. If H_{ij} is squared, Sasaki calls this the method of weak constraints. In the following we explain each term of (5).

The first term is our model, H_{ij}, at each grid point, multiplied by a Lagrangian multiplier λ_{ij}. In this study our model is

$$H_{ij} = \nabla^2 Q_{ij} - \zeta_{ij}$$

Both Q_{ij} and ζ_{ij} will be determined; that is, they will be the best pressure field and vorticity field which can satisfy the constraints. The last two terms are the constraints.

The V_{ij} are the data misfits or, in this case, they might be called vorticity discrepancies.

$$V_{ij} = \zeta_{ij} - [F_{ij} \zeta_{ij} + (1 - E) \zeta'_{ij}] = \zeta_{ij} - \zeta_{ij}$$

If the weighted vorticities from the data exactly agree with the variational solution, then V_{ij} will be zero. The symbol K_E is a Gauss precision modulus. It is a free parameter in the solution. It may be chosen to be a function of space. Usually, it depends inversely on the error variance of each data point. In our study it will be taken as a constant. This will be discussed later.

The last term is a “penalty function.” Some readers may prefer to call this a weak constraint added to the problem. Our approach is to call it a penalty or smoothing function. Without its inclusion the only answer is direct in section; that is, $\lambda = 0$ everywhere, and ζ is substituted for ζ, where available. In general, G is some quadratic function of the pressure field. In effect, it is the smoothing operator necessary for horizontal blending of the data fields. The parameter K_e is another coefficient to be discussed later. It should be noted that larger K_e will introduce more horizontal smoothing.

There are many choices of penalty functions. We choose to require the geostrophic kinetic energy to be minimized where

$$G(Q_{ij}) = \frac{1}{2} [\mu^2 + v^2] = \frac{1}{2} \nabla Q_{ij} \cdot \nabla Q_{ij}$$

It will be shown that this leads to a Laplacian smoother applied to the data. Many other choices are possible, but this one leads to tractable equations to solve.

If we find a minimum of S, in essence we are solving the problem: Find Q_{ij} and ζ_{ij} on the grid subject to the condition that the data misfits are as small as possible and the constraint that the average kinetic energy is a minimum and the adjusted pressure field and vorticity satisfy the model. We have two free parameters, K_e and K_e, but as will be shown, we really only have one free parameter, the ratio $K = K_e/K_e$.

The problem is now to minimize the residuals by minimizing the function S. Optimization of S is obtained when the variations with respect to its variables, λ_{ij}, ζ_{ij}, and Q_{ij}, vanish. We find

$$\frac{\partial S}{\partial \lambda_{ij}} = H_{ij} = 0$$

$$\frac{\partial S}{\partial Q_{ij}} = \lambda_{ij} + \lambda_{ij} - K \zeta_{ij} = 0$$

$$\frac{\partial S}{\partial \zeta_{ij}} = \lambda_{ij} + \lambda_{ij} - 2K \zeta_{ij} = 0$$

$$\frac{\partial S}{\partial Q_{ij}} = \lambda_{ij} + \lambda_{ij} - 2 \zeta_{ij} = 0$$

$$\frac{\partial S}{\partial \zeta_{ij}} = \lambda_{ij} + \lambda_{ij} - 2 \zeta_{ij} = 0$$

$$\frac{\partial S}{\partial \lambda_{ij}} = \lambda_{ij} + \lambda_{ij} - 2 \zeta_{ij} = 0$$

Equation (11) yields two results with respect to arbitrary but small variations (δQ) of Q: (1) Arbitrariness of δQ inside the domain, implying $\nabla^2 \lambda = K \nabla^2 Q$; and (2) Arbitrariness of normal derivative of δQ on the boundary, implying $\lambda = 0$ on boundary. Therefore the most general solution to (11) is

$$\lambda_{ij} = K_e (Q_{ij} - Q_{ij})$$
Fig. 5b. Same as Figure 5a but for OBS 8.
We can explore the ratio of the penalty function to the data misfit by noting that from (7) and (14) we have

\[V_{ij} = K(Q_{ij} - Q_{0ij}) \]

Substituting (16) into (5), the second term of (5) becomes

\[\sum \sum \frac{1}{2} K(Q_{ij} - Q_{0ij})^2 \]

The ratio of the third term in (5) to the new first term of (5) (that is, (17)) is

\[R(K) = \frac{\sum \sum (\nabla Q \cdot \nabla Q)_{ij}}{\sum \sum K(Q_{ij} - Q_{0ij})^2} \]

This is the ratio of the penalty function to the data misfit. When \(R(K) \) is 1.0, there is an exact balance between the two constraints mentioned above. If \(R \) is smaller than 1.0, more variation in the resultant \(Q \) field is allowed, since kinetic energy is not minimized as much. Conversely, if \(R \) is greater than 1.0, more smoothing is done to the \(Q \) field. One might decide to partition the error between the two constraints. Such a choice leads to a very smooth solution.

For each of the five observation times in this study (OBS 7–11), the value of \(K \) which produces an \(R \) that is equal to 1.0 was found. This “tuning” value \(K \) was always between \(1.0 \times 10^{-12} \) and \(2.0 \times 10^{-12} \). However, in practice, it was found that a tuning factor in this range resulted in a slightly smoother field than visually desired. Therefore a value of \(R \) of about 1/3 was normally chosen when carrying out the numerical solution of (15). This resulted in retention of more variability.
in the field and consequently prevented smoothing out physical features which were known to be physically correct.

5. RESULTS OF ASSIMILATION OF SEASAT WINDS

The consensus among the meteorological community, regarding the QE II storm, is that the NMC analysis for September 10, 1978, at 1200 UT (OBS 9) (Figure 2c) was in error both in locating the storm center and in estimating its intensity [Gyakum, 1983]. The central pressure of the storm is 980 mbar, located about 42°N 50°W, according to NMC. Gyakum [1983] subjectively assimilated Seasat winds along with the barograph tracing of the Euroliner and extrapolated to the storm center, producing an estimated central pressure of 945 mbar.

As mentioned above, the SASS winds are treated as being synoptic for a 1.3-hour window centered on the actual time of the SASS observation. Recalling that the SASS data were reduced to only those in the ±3-hour time window centered on the NMC analysis time, it becomes evident that the smallest possible weighting for a SASS relative vorticity when the SASS data were reduced to only those in the ±3-hour window centered on the NMC analysis time, it becomes evident that the smallest possible weighting for a SASS relative vorticity is 0.47. Consequently, the average weighting is about 0.75–0.80. Thus by using the weighted SASS vorticities one is already giving a majority of these SASS vorticities more weight than that given to the geostrophic vorticity estimates. In addition, the adjusted pressure fields using weighted SASS vorticities (Figures 5a–5e) do not differ very much from their counterparts which use substitution of SASS vorticities for geostrophic vorticities, that is, \(F_{ij} = 1.0 \) (Figures 6a–6e).

It is possible to see the precursor to the QE II storm 24 hours earlier, on September 9, 1978, at 1200 UT (OBS 7) (Figure 2a). At this point in time, however, there is quite good agreement between the NMC surface analysis, Gyakum’s analysis, and the insertion of Seasat data performed in the present study. For example, the resulting central pressures are 1000 mbar (Figure 2a), Gyakum’s 1004 mbar, and 1000 mbar (Figure 5a). Gyakum obtained a relative vorticity of 1.7 \(\times 10^{-4} \text{ s}^{-1} \), while ours is 1.5 \(\times 10^{-4} \text{ s}^{-1} \). The sequence of adjusted pressure fields is shown in Figures 5a–5e.

The ocean liner Queen Elizabeth II was damaged on September 11, 1978 (OBS 10 and OBS 11). It might be possible that a more accurate NMC surface analysis for the 24 hours before the time of the damage (September 10, 1978, OBS 8 and OBS 9) could have prevented it. As can be seen from Figure 2b, the NMC analysis estimates the low pressure south of Newfoundland to be 1003 mbar. Using subjectively dealiased SASS winds and other sources of input data, Gyakum [1983] obtains a “conservative” estimate of the storm center at this time to be 990 mbar. One might expect a pressure center deeper than 997 mbar obtained after the data insertion done in this study for OBS 8 due to the fact that the surface winds for SASS are much higher than those produced by the reduction-rotation method in the storm area (Figure 5b). The reason for this discrepancy is that the satellite coverage of the storm area was nearly 3 hours away from the NMC analysis time, leading to a weighting of about 0.47 for the relative vorticities calculated from the SASS winds in that region. By changing the weighting function to 1.0 (thus substituting the SASS vorticity for the NMC vorticity), a central pressure of 985 mbar is obtained (Figure 6b).

As was implied above, the NMC analysis for September 10, 1978 at 1200 UT (OBS 9) was the most critical in that it could have anticipated that the severe storm would develop. It should be noted, again, that the final NMC surface analysis calculated a pressure of 980 mbar, not 998 mbar, for the storm center for OBS 9.

The central low pressure of 946 mbar obtained after insertion of the SASS winds (Figure 5c) is a significant improvement over the 980 mbar value from NMC and also agrees with the value obtained by Gyakum [1983]. Gyakum estimated the central pressure of the storm winds by using a finite difference method on a 1° × 1° grid. He obtained a value for the storm center of 5 \(\times 10^{-4} \text{ s}^{-1} \). Although our method produced a value of about 7.5 \(\times 10^{-4} \text{ s}^{-1} \), the resulting central pressure is still the same as Gyakum’s estimate. This is probably due to the influence of neighboring grid points which smoothed out the pressure field as a result of their distance from the storm center and their correspondingly higher pressures.

By September 11, 1978, at 0000 UT (OBS 10), the low-pressure center of the storm had increased to 980 mbar. The storm at this time was still extremely violent, with winds above 60 knots and wave heights of 50 feet or more [Ewart, 1981]. By this time the NMC analysis had accurately described the severity of the storm, attributing a value of 983 mbar to the storm center (Figure 2d). The SASS data insertion technique provided a similar value of 981 mbar (Figure 5d). One might also notice that a rather large high-pressure system covering the upper right section of Figure 2d has been replaced by a fairly flat region of pressures between 1017 mbar and 1021 mbar (Figure 5d). This is significantly lower than the value of 1030 mbar in NMC analysis. However, the portion of the high-pressure system extending over the lower right half of Figure 6d agrees well with the original NMC analysis. If one considers the SASS wind vectors (Figure 7), it is apparent that the center of the anticyclonic circulation is the same as that indicated by the NMC analysis. The reason for the discrepancy in magnitude of this high-pressure region is not clear.

The last NMC analysis that was subjected to the SASS data insertion was 12 hours later, September 11, at 1200 UT (OBS 11) (Figure 2e). The NMC analysis and the adjusted analysis (Figure 5e) agree well, differing only by a somewhat shallower northern edge of the low pressure. Since the NMC analyses for OBS 10 and OBS 11 are very similar and are considered to be correct and the adjusted analyses are quite different from each other, some explanation is necessary. That is, why does the adjusted pressure field for OBS 11 fail to provide a northern edge that is as steep as the NMC analysis, even though the SASS winds are slightly higher than the reduced-rotated geostrophic winds (Figure 3e). Figure 6e, showing the wind vectors for OBS 11, provides the answer. The SASS vorticity calculations near the storm center include points from two different orbits. It appears that there are several places north of the storm where the direction of adjacent winds differ by about 90°. This would clearly present problems for the SASS vorticity calculations.

The most critical tests for this assimilation technique are OBS 8 and OBS 9, that is, the two analyses corresponding to the 24 hours before the damage occurred to the Queen Elizabeth II. The weights for the SASS vorticities for the storm region of OBS 8 were less than 0.50. This led to a somewhat high value of 979 mbar for the storm, since the NMC value was given a weight of slightly more than 0.50. The fully weighted \(F_{ij} = 1.0 \) pressure field produced a value of 985 mbar, less than Gyakum’s estimate by 5 mbar. There is, how-
Fig. 6a. Adjusted pressure field after substitution ($F_{ij} = 1.0$) of SASS relative vorticities.
Fig. 6d. Same as Figure 6a but for OBS 10.
ever, no surface truth to verify how "conservative" Gyakum's estimate was.

Had the weight for SASS vorticity near the storm center of OBS 9 been 1.0 (that is, had the satellite passed over much later or earlier), the resulting pressure field might have been much higher than the 946 mbar value obtained. This would cause a much less significant improvement in the adjusted pressure field.

These two examples, combined with the fact no marked errors are introduced by the full substitution method for any of the five analysis times, lead one to conclude that the full substitution method is best, that is, we should use the Seasat winds whenever possible.

The most critical parameter in the entire insertion method is the selection of the size of the square in which the SASS relative vorticity estimate is calculated. Since the winds which will be used in this vorticity calculation are chosen so as to be nearest the corners of the square, this is not a surprising result.

For most synoptic scale features, small variations in the size of this square cause at most about 10 mbar differences (Figure 8). For regions of intense gradients (for example, the QE II storm on OBS 9), variations in the size of the square, even small ones, can lead to large changes in the resultant pressure field in the region of the gradient. In these circumstances the choice of the size of the square becomes subjective, with the final choice being that which results in the most accurate agreement with the wind vector field and any other known data. Figure 9 illustrates the effect of selecting a slightly larger size for the square in which the SASS vorticity is calculated for OBS 9. The vorticity calculation at the storm center produced a value of 4.2×10^{-4} s$^{-1}$, but smoothing from neighboring grid points has caused the low center pressure to fill in to a 979-mbar value. This pressure should be lower, based on other results. For example, at the storm center in OBS 10, the low of 983 mbar had a corresponding vorticity of 2.0×10^{-4} s$^{-1}$. Recall that Gyakum's calculation of the vorticity at the storm's peak was 5.0×10^{-4} and had a 945-mbar pressure associated with it. Clearly then, a vorticity of 4.2×10^{-4} s$^{-1}$ should produce a low pressure lower than 979 mbar if the surrounding grid points accurately reflect the pressure gradient, since the scale is the same. Assuming a simple linear relationship between the storm center pressure and the vorticity, a value of 4.2×10^{-4} s$^{-1}$ should lead to a pressure of about 955 mbar.

6. CONCLUSIONS

In order to test the possibility of improving surface pressure analyses using Seasat-A scatterometer winds, it was first determined that the SASS winds were more accurate than winds derived from NMC surface pressure fields in the region of the QE II storm. This was because the NMC pressure field did not exhibit a steep enough gradient in the storm region because there was not enough data available over the ocean.

Sea level pressure fields and Seasat-A scatterometer surface wind measurements were assimilated using variational formulation. Relative vorticity estimates were calculated using each of these two data sets.

The technique used for calculating the relative vorticity estimates using SASS surface winds resulted in improvement of NMC surface pressure fields where they were grossly in error, namely, September 10, at 1200 UT at the QE II storm. However, the technique was dependent on the size of the square chosen in which to perform this calculation. The correct fields
Fig. 7. SASS wind vectors for OBS 10. Note that for clarity, only every other vector has been plotted.

Fig. 8. Same as Figure 6a but for slightly larger-size square.
were chosen subjectively after calculations using different size squares were made. The calculations involved the objective selection of SASS wind vectors nearest to the four corners of the square. However, a higher resolution pressure grid may allow more accurate and less noisy assimilation of SASS winds.

A difference functional is constructed composed of a model which is constrained such that (1) the difference between the geostrophic relative vorticity from the data and the relative vorticity resulting from the variational formulation is minimized and (2) the geostrophic kinetic energy of the resultant pressure field is minimized. It is important to note that the kinetic energy constraint also acts as a smoothing operator.

Each of the relative vorticity estimates calculated from SASS surface winds was given a weight, depending on the nearness in time to the NMC analysis time for which the original pressure analysis was made. This weighting was done in order to test the current NMC practice of considering all data within a ±3.0-hour time window as being synoptic.

The "equivalent time averaging" concept was applied to the SASS observations within the 6-hour time window used by the NMC. This effectively causes more of the observations to "become synoptic" at the NMC analysis time. Consequently, more SASS vorticity calculations acquire a weight of 1.0. For each of the five analysis times investigated in this study, the method of equivalent time averaging produces virtually the same result as treating each SASS observation as asynoptic and subsequently giving a weight which depends on the amount of time it differs from the analysis time. It is important to note, however, that the SASS data coinciding with the QE II storm at its peak (OBS 9), was only a short time from the NMC analysis time. Therefore, it was given a weight of nearly 1.0 with either method. If the satellite had passed over just 1 hour sooner, the weight could have been much less, with the "asynoptic method" resulting in a much more shallow low pressure and a poorer analysis. The equivalent time-averaging method very possibly would still have resulted in a weight of 1.0.

There are not many major differences between setting all the weights equal to 1.0 or retaining them as is. This fact, coupled with the possibility of losing a more accurate analysis of a storm by retaining the weights, forces one to conclude that giving full weight, that is, substituting the SASS relative vorticity estimates wherever they occur, is the most correct method. This agrees with the NMC practice of considering all data within a ±3.0-hour time window as being synoptic. In reality, so many sources of data are available for the analyst that a choice would not actually have to be made between the two data sets. What this study does, perhaps, is support the idea that a great deal of weight could be given satellite scatterometer wind measurements if they were available in real time.

The simple model presented here has been shown to be an effective way of assimilating satellite wind data into surface pressure fields at the ocean surface. The model only requires two sources of input data and can result in similar pressure fields to those obtained by more complex methods. These pressure fields may be very useful in obtaining oceanic wind fields for ocean circulation modeling.

Acknowledgments. This research was supported by NASA under the NASA Traineeship Program in Meteorology and Physical Oceanography at Florida State University and by the Office of Naval Re-
search. We thank Benoit Cushman-Roisin for important discussions on the details of the variational solution. We also acknowledge the helpful comments of two anonymous reviewers. We appreciate the skilled typing of Rita Kuyper and the administrative skill of Ruth Pryor.

REFERENCES

J. Harlan, Jr., and J. J. O’Brien, Mesoscale Air-Sea Interaction Group, Department of Meteorology, Meteorology Annex, Florida State University, Tallahassee, FL 32306.

(Received August 13, 1985; revised February 10, 1986; accepted February 12, 1986.)