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ABSTRACT

For the first time an ocean model is used to assimilate oceanic tomography data
in an upper ocean model of the northeast Pacific with the goal of estimating the
time independent density field, and thus the slow manifold circulation structure.

The assimilation procedure works by minimizing the cost function, which gener-
alizes the misfit between the observations and their model counterparts, in a least-
squares sense, plus a penalty term. This minimization is done consistently with the
constraint that the model dynamics must be exactly satisfied. The model consists
of integrating the model equations forward in time over the period which data are
going to be assimilated. Data misfits between the model and the observation are
then calculated and the adjoint equations of the model are integrated backward
using the data misfits as forcing. It is necessary to determine the gradient of the
cost function with respect to the control variables (the density field). The gradient
is found using the model and adjoint variables and it is used in a minimization
algorithm to determine a new density field. The minimization procedure utilizes a
limited memory quasi-Newton method.

The results indicate that the assimilation procedure works very well. For the
twin experiments, the final estimated density recovers the Levitus density field as
expected and as fast as in 10 iterations. For the experiments with the Navy layered
ocean circulation model (NRLM) output, the density can be estimated through
the assimilation procedures. The estimated density field improves the the Levitus

climatological density data which are biased and makes the subtropical gyre stronger

in the northeast Pacific region.



The proof of the identity between the discretization of the continuous adjoint
equations and the adjoint equations which are from discretized model equations with

the Arakawa C has been carried out.



1. INTRODUCTION
1.1 Overview of Oceanic Data Assimilation

The immensity and geometrical shape of the ocean, combined with difficulties
of observation, make measurements of the ocean both expensive and a formidable
technical challenge. As a result, not only are oceanic data relatively more sparse
than atmospheric data, they are nonuniform. Satellites provide good coverage of
the ocean surface and provide data such as sea surface temperature (S55T) and sea
surface height (SSH), but collection of these data was begun recently to establish
climatic trends. Even much less is known about conditions below the surface. In
the past, most of the oceanic data have been collected along ship tracks, from
moorings, or from drifting buoys. Since the oceanic data were sparse in space
and time, as well as inaccurate, or the sampling was not suited for determining.
oceanic variability of such phenomena as ocean currents,temperature and density, it
has been exceedingly difficult to conduct so-called objective analyses which refers to
procedures that are robust enough to work without human intervention and without
consuming an inordinate amount of computer time (Daley, 1991 and Thiebaux.
1987).

Nevertheless, the body of data available does contain some information about
the climatology of ocean. To make use of this information, there is a need to ex-
tract the maximum amount of information from a measurement and to combine it
with the time evolution of the data analysis system based on past observations. In
addition to observations, the laws of physics provide a basis for numerical models
used to simulate the ocean circulation. Such numerical models can be useful tools

for providing the dynamic predications and carrying temporal information forward.
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Those ocean models can play on important role in reconstructing a realistic pic-
ture of ocean circulation. The technique for extracting and filtering the information
from data has become known as data assimilation. Data assimilation provides an
output analysis which is better than the model alone or just an analysis using the
data. In addition, data assimilation is one way to test and, improve a model. Like
other fields of physical oceanography, oceanic data assimilation has been greatly
influenced by the work of meteorologists. There has been extensive development
of data assimilation methods in meteorology and increasing application of those
in oceanography. The methods of data assimilation are now comprehensively de-
scribed by Ghil and Malanotte-Rizzoli (1991) and Daley (1991). More recently,
Bennett (1992) has summarized the rapid development of inverse methods and data

assimilation in physical oceanography over the last decade. The methods of data

assimilation will be discussed in the next section and in chapter 2 in more detail.

1.2 Ocean Circulation and Modeling

There is both observational evidence and theoretical confirmation that the time-
mean, direct wind-driven circulation over most of the ocean is restricted to the mixed
layer and the upper thermocline of the oceans. However, since density surfaces in the
oceans come in contact with the atmosphere somewhere on the globe, the density of
the ocean water and stratification are determined by air-sea interaction processes.
The deep circulation is forced by either the time-dependent eddy mixing processes
that receive their energy from the time-mean wind driven circulation by the effects
of the deep convections that are forced by the combined effects of intensive buoyancy
loss and wind mixing in the surface layers when the thermocline is eroded.

Although modeling global ocean and climate will undoubtedly require sophisti-
cated ocean models, physical intuition about the ocean circulation may be gained

from simpler models. Consider the classical example of a homogencous ocean
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(p = p, = constant) of uniform depth H driven at its surface by wind stress.
In this idealized setting, after appropriate simplification of the equations of motion,
the steady response of the ocean to the applied stress can be determined directly.
The development of increasingly sophisticated and efficient models is a great
challenge; however, it may not be the single greatest constraint on future progress. In
order to be able to apply and validate the increasingly realistic models of the future,
an increasingly comprehensive observational description of the ccean circulation
itself, including its variability, and the exchange of momentum with the atmosphere
will be required. This will remain a problem for oceanographers, as already noted
above for the following reasons. First, data sets are difficult to collect and are sparse
and inhomogeneous. Furthermore, the great bulk of the ocean will continue to be
incompletely (even poorly) observed, unless efficient acoustic means of observing the
oceanic interior can be developed (Munk and Forbes 1989, see the next section).
One idea which is being intensively explored in regional and basin-scale ocean
models, and which may ultimately prove practical for application to global models
as well, is the application of optimal and suboptimal methods for combinations of
prognostic model-data synthesis. Several alternative approaches are under evalua-
tion. One family of approaches, broadly practiced in meteorology, is the systematic
combination of dynamical (usually model-produced) and observational information
to produce increasingly accurate representations (usually predictions) of large and
meso-scale motions (Ghil and Malonotte-Rizzoli 1991). Assimilative techniques from
the atmospheric sciences, appropriately adapted for the ocean case, are being used
with simulated data to explore the impact of assimilation on steady and transient
ocean response. Of particular interest is the determination of which space/time
scales of oceanic motion are effectively “constrained” by assimilation of different

kinds of data.
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Another approach that is complementary to the combined analysis of oceanic
models and observations is the formulation of an optimal control or inverse prob-
lem. Formulated in this way, poorly-known model parameters, along with some
estimate of how well their values are constrained by the data, can be explicitly
calculated. The computational requirements associated with the optimal control
approach can be severe and expensive. Nonetheless, efficient implementations of
the optimization approach are possible (e.g., based on adjoint equation techniques).
Applied to simple ocean models, the resulting formulation allows the optimal es-
timation of parameters, such as the bottom friction and forcing functions such as

the wind stress, and provides a particularly attractive approach (Yu and O’Brien,

1991).

1.3 Acoustic Monitoring of Global Ocean Climate

The oceans play a major role in the dynamics of climate through their large
capacity for the transport and storage of heat, moisture, and C'O;. The oceans .
are driven by the atmosphere, and their response to changes in atmospheric forcing
represents one of the most important couplings within the complex system of climate
feedbacks. The ocean-atmosphere coupling has a strong impact both on the response
characteristics of the climate system of external forcing and on internal natural
climatic variability.

Detecting climate changes expected as a consequence of the increase of atmo-
spheric greenhouse gases has become increasingly important. Several attempts have
been made to analyze historical data records and to compare them with the ex-
pected signal in both ocean surface and air temperature and ocean hydrographic
data. Munk and Forbes (1989) have proposed measuring the changes in travel times
of long-distance acoustic transmissions from Heard Island in the southern Indian

Qcean to receivers scattered around other ocean basins. The change in travel times
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over a period years would be used as a climate change detection strategy since
they are primarily a measure of the average temperature change along the acous-
tic ray paths. The “acoustic thermometer” (Spiesberger, 1983) has the advantage
of producing integrated quantities, which significantly reduce the noise level from
measurement at individual locations and , thus, minimize the higher-frequency noise
problems. Spiesberger and Metzger (1991) have demonstrated the practical feasi-
bility of this method across the basin scale (3000 km).

1.4 Thermohaline Circulation

The oceans carry heat from the tropics to polar latitudes and carry cold water
from the poles towards the equator. The details of these transport processes, which
are restricted to certain depth ranges, are hidden in the Sverdrup circulation. They
have to be resolved if the ocean’s role in climate variability and climate change is
to be understood.

It is known that the ocean carries ahout as much heat towards the poles as
the atmosphere does, but since its time scales are so much larger, the ocean has a
larger capacity to act as a damping mechanism for rapid fluctuations in our climate.
Conversely, much of the long-term variability of the climate may be related to the
ocean as it slowly releases heat stored from ecarlier rapid climate changes.

The radiative heating of the atmosphere causes motion because it leads to density
differences. Perhaps this can be said in a less tutorial manner; also, it is customary to
define symbols as they are used, e.g. gp that are important. These density changes
are proportional to the depths of the ocean by turbulent diffusion, subduction, and
convective mixing. As a result of this, a pressure field and associated thermohaline
circulation develops in the world ocean.

The quantity —g¢p is called the buoyancy, the minus sign being used because a

particle is said to be the more buoyant when it has less weight. The ocean moves
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because of buoyancy contrasts, but these are due to differences in temperature and
salinity. These differences are created by the fluxes of heat and water at the ocean
surface. For example, evaporation decreases buoyancy in two ways: by cooling and
by increasing salinity. Temperature differences generally make greater contributions
to density differences than salinity differences in the ocean. The circulation that
is driven by the buoyancy flux is called the thermohaline circulation. The com-
plete ocean circulation consists of both wind-driven circulation and thermohaline
circulation.

The thermohaline forcing, like the mechanical wind-driven ones, is external, but
the pressure field formed by these factors is internal. The largest contribution to
the development of thermohaline circulation is due to thermal processes; the heating
and cooling of ocean waters.

The general circulation of the world ocean, especially below the surface layer,
is intimately linked with the distribution of oceanographic characteristics such as
density, temperature, etc.. These characteristics have long been used as indicators,
or tracers of motion, although they show only the qualitative aspect of the circu- A
lation. This is because the world ocean is filled with inhomogeneous waters whose
characteristics vary continuously within the world ocean. On the other hand, the
distribution of these characteristics is rather regular and is mainly the result of ad-
vection and diffusion of the properties. Thus, by fixing the water characteristics at
the source of water masses formation and tracing changes in these characteristics
in space, objective qualitative conclusions can be drawn about the spread of these
water masses.

An interesting feature of a surface-driven thermohaline circulation is the extreme
asymmetry between rising and sinking regions. Whenever conditions produce sur-

face water dense enough to sink to the bottom, it does so and spreads over the

bottom.
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Thermohaline circulation and its role in the general dynamics of currents were
investigated at the early stages of development of oceanography. The following
question was energetically posed at the time: What type of circulation, wind-driven
or thermohaline, plays the dominant role in the total circulation? Now, it is known
that both types are important and that they are related to each other. This makes
the analysis of ocean currents more complicated that that of atmospheric motions.

The observed effects of thermohaline forcing (which directly governs the density
of the ocean waters) and mechanical forcing lead to formation of the resultant field
of density of the world ocean. The density field, thus formed, determines the pres-
sure field. However, it is impossible to divide the ocean circulation into wind-driven
and thermohaline since the motion components are generated by different, but in-
terdependent, factors. The resultant currents cannot be represented by a simple
linear superposition of thermohaline and wind-driven currents even if they could be
separately determined by some method. The interaction of wind-driven and ther-

mohaline forcing in the generation and maintenance of the ocean currents has not

been investigated sufliciently.

1.5 Objectives

In considering the thermohaline circulation, it is natural that the advection of
heat and salt by the circulation or their combined effect, density changes, is central
to the problem and cannot be neglected. Therefore, the model used must be so-
phisticated enough to account for active thermodynamics and the salinity structure.
Examples of this are the Occan General Circulation Model (OGCM) and the U.S.
Navy layered ocean model for which tremendous computational effort and hence

huge quantities of supercompnter time are needed. An alternative way to study the

thermohaline structure is as follows:
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Formulate and modify a model from a nonlinear, reduced gravity model which
has been used successfully to study two preferential cyclonic ocean eddy generation
sites along the California coasts (Liu and O’Brien, 1995) and to investigate the
variations in the thermocline depth of the northeast Pacific ocean during 1970-1989
(Meyers et al. 1995). In contrast with the models which assume a constant density
in a layer, horizontal variations in the upper layer density are considered. This
assumption instantaneously leads to the thermohaline forcing which is not included
in the above mentioned models. On the other hand, oceanic tomography data imply
both wind-driven and thermohaline information. In this study, an effort is made to
develop a method to estimate the density field as well as the thermohaline structure
in the upper Northeast Pacific ocean, from a simple model associated with acoustic

tomography data, using variational data assimilation.



2. DATA ASSIMILATION

With respect to the problem of assimilating observations into numerical ocean
models, a variety of different methods already exist, most of them originally devel-
oped in meteorology. An extensive review of these methods can be found in Ghil
and Malanotte-Rizzoli (1991) and Le Dimet and Navon (1988). Data assimilation
methods can be classified as (a) function fitting methods (b) statistical interpola-
tion methods (c) nudging data assimilation and (d) variational (adjoint) methods.
The latter method is described in detail in the following section, but first, the other
methods are introduced.

In function fitting methods (a), which are the early data assimilation methods,
the idea is to expand the data misfit in terms of some interpolating functions. The
observations and the first-guess are weighted with prescribed weights that decrease-
with distance from the observation (Bergthorsson and Doos, 1953). Cressman filters
are a commonly used meteorological assimilation technique. Neither knowledge of
the statistical property of the data nor a numerical model is used. Comprehensive
studies of these methods, together with their historical perspective, are provided by
Thicbaux and Pedder (1987), and Daley (1991).

The statistical interpolation methods in (b) include both optimal interpolation
(OI) methods and Kalman filter methods. The OI methods, which combine the
model field and the observed data to estimate the correct field in a way consistent
with the estimated accuracy of each of the two, are the most commonly used methods
in major forecasting centers. The OI scheme requires knowledge of spatial error
covariances for the model field and the observations. since the weights needed to

minimize analysis error depend on these covariances (Gandin 1963; Lorenc 1931,

1986).

9



10

The Kalman filter represents a sequential assimilation procedure. It is based
on the statistical concept of optimal interpolation. That is, at each observation
time, the Kalman filter (Kalman 1960, 1961) optimally interpolates between the
model forecast and the observations to obtain a new state vector with reduced error
covariance. This state is subsequently used as the initial state for the model to
compute a forecast for the next observation time. By repeating this assimilation
cycle and keeping track of the error covariance of the model state in a sequential
manner, the model absorbs the information of the sequence of observations step-by-
step (Cohn, 1982; Ghil et al., 1981). The crucial point is that for this technique to
be optimal, the time evolution of the covariance matrix of the model errors must be
computed. Neither the forecast error covariance matrix nor the observation error
covariance matrix are known. It is the corresponding computational cost which, for
present purposes, rules out the use of the Kalman filter.

In (c), nudging data assimilation (NDA) (Anthes 1974), which is called optimal
nudging data assimilation in the work of Zou et al. (1992c) and Wang (1993)
combines the aforementioned data assimilation schemes in an efficient way. The
original idea of optimal nudging data assimilation was put forward by Le Dimet.
A parameter-estimation approach is used in the framework of the variational data
assimilation algorithm to simultancously determine the best initial conditions for
numerical weather prediction (NWP) and optimal coefficients for the NDA scheme.
The goal is to find the best initial conditions and optimal nudging coefficients which

hest assimilate the given observations.

2.1 Optimal Control: Theory and Application

The data assimilation problem can be stated in a general sense as the determi-
nation of the model evolution which is the closest solution to the observation. This

is equivalent to looking for the parameters which optimally fit to the observation.
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2.2 History and Background of Variational Calculus

The development of variational calculus in the seventeenth and eighteenth cen-
turies was motivated by the need to find the minima or maxima of rapidly varying
quantities. Many early applications of this calculus were to the problems of classical
mechanics where they provide attractive alternatives to Leibniz and Newton. The
appeal of variational procedures is that they consider a system as a whole and do
not deal explicitly with the individual components of the system. Thus, it is possible

to derive the behavior of a system without the details of all the interactions among

its various subcomponents.

2.2.1 A formal definition of optimal control

A system which is defined by some variable X is conidered . The system also
has some input described by a variable U/. The output of the model, which can be
observed, is defined by O. It is assumed that, once the input has been fixed, the

state of the system is uniquely defined through a relation:

F(X,U)=0 (‘2.1).
from which the output is given by another function

G(X,0)=0 (2.2)

Therefore, O is an implicit, function of U/ through X thanks to [Eq. (2.1)] and
[Eq. (2.2)]. Oy is a given state belonging to the spaces of the model output, 0. We
may state the problem as follows:

How can U/ (the control variable) be acted on in such way that the resulting
output O will be as close as possible to O4, an estimation of the proximity between
O and Oy as some cost functional J. The problem of optimal control is to determine
the 7" leading to the best adjustment of a solution of the model to the observation.

If such a controlled " exists, then it will said to be optimal.
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In order to solve this problem, most of the time a scheme of the following form

will be used:

o Frame the problem in an adequate mathematical context, especially

if the state of the system belongs to an infinite dimensional space.
e Characterize the optimal control U~.

e Derive numerical algorithms to implement the optimal control.

2.2.2 Variational method

As one of the most classic and elegant methods in physical and mathematical
sciences and as a powerful tool of optimization and numerical analysis, variational
calculus has been employed in many areas of the geosciences, including meteorology,
oceanography, hydrology and geophysics within the last few decades to interpret and
assimilate geophysical data and to simulate geophysical phenomena.

The theoretical aspect of variational calculus is comprehensively described in the.
book by Courant and Hilbert (1953) and in other mathematical physics books and
it is not repeated here.

The variational approach consists minimizing the distance between a model so-
lution and available data, usually to be distributed in space and time. The measure
of the distance is called the cost function. Sasaki (1969, 1970a, b) first introduced a
number of variational techniques whereby the imposed constraints are satisfied only
approximately, not exactly. In particular, a cost function can be defined so that
the solution does not have to obey the dynamics of the model exactly by adding a
term that measures the model error as in the representer method (Bennett, 1992).
The minimization of the cost function gives rise to the weak constraint minimization
problem. When the solution is required to satisfy the model exactly, it is referred

to as strong constraint minimization. By integrating a nonlinear model forward
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in time, followed by a backward integration of an (non-homogeneous) adjoint lin-
earized system forced by the observations, the cost function can be reduced. By
defining the cost function as an inner product, Lions (1971) showed that the result
of the backward integration of the adjoint model to initial time, is the gradient of
the cost function with respect to the control variables, e.g. the initial conditions in
his case. He also pointed out that a descent method can be used to iterate toward
the minimum of the cost function.

The first application of variational methods in meteorology was pioneered by
Sasaki (1955, 1958). Stephens (1966, 1968), Sasaki (1969, 1970a, 1970b, 1970c) and
others have given a great impetus towards the development of variational methods
in meteorology.

In the strong constraint case, control theory has been used to develop a compu-
tationally efficient method called the adjoint method. Control theory is a branch of
mathematics developed to solve optimization problems of functionals such as those
arising from the variational formulation.

The optimal control methods may be mathematically described by

ngn J(U) (2.3)
FU,X)=0 (2.4)

where F(I/, X) is the dynamical constraint; the cost function J(U/}) is defined as

J(U) =/JHI O(X) = Oy |2dS (

[
N
=

where X denotes the various prognostic fields, O the output, Oy the local obser-
vations of O over £. O(X) in [Eq. (2.5)] is equivalent to the implicit function,
G(X,0)=0in [Eq. (2.2)]

The classical variational approach of 6.J = 0 leads to the Euler-Lagrange equa-

tions which also depend on the constraint F(U7,X) or the model equations. In a series



14
of basic papers Sasaki generalized the application of variational methods with either
the strong or the weak constraint formalism in meteorology to include time varia-
tions and dynamical equations in order to filter high-frequency noise and to obtain
dynamically acceptable initial values in data void areas. In all these applications,
the Euler-Lagrange equations were used to calculate the optimal state. Stephens
(1970) derived the general form of Euler-Lagrange equations with a coupled PDE
system of a mixed type of well-posed initial-boundary value problems. There are also
so-called Augmented Lagrangian methods which consider both a strong constraint
and a weak one (Navon and de Villiers, 1983) to prevent numerical instabilities.

Variational data assimilation solves the Euler-Lagrange equations by directly
minimizing a cost function measuring the misfit between the model solution and the
observations with respect to the control variables.

It is well-known that solving the above constraint problem [Eq. (2.1) and
Eq. (2.2)] is very difficult or sometimes impossible. Introducing an inner prod-
uct (.,.) compatible with the norm || .|| into the function space, one defines the

Lagrangian functional (Le Dimet and Talagrand, 1986b)

LU, A) = J(U) + (A, F(U, X)) (2.6)

where A is the Lagrangian multiplier. as the so-called the adjoint method. and
reduces a constrained minimization problem to an unconstrained one. The advan-
tage is that Euler-Lagrange equations can be solved numerically by classical descent

algorithms which are a popular topic in the mathematical optimization literature.

2.3 Parameter Estimation

Parameter estimation is an aspect of data asstmilation. It assimilates the ob-

servation into an atmospheric or oceanic model in order to obtain an estimate of a
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designated model control parameter and, at the same time, to obtain an optimal
state of the atmosphere or the ocean. This process is able to provide an exact con-
sistency between the analysis and dynamics using various kinds of available data
sets.

The unknown parameters of the model can be deduced simultaneously by min-
imizing a cost function that measures the distance between the model results and
observation in which the model parameters are the control variables. The system-
atic application of the variational adjoint methods to parameter estimation prob-
lems in oceanography proceeded with O’Brien and his colleagues. For example, the
barotropic gravity-wave speed in a two dimensional reduced-gravity, linear-transport
model for the equatorial Pacific Ocean was used as a control variable (Smedstad and
O’Brien, 1991). Recently, Kamachi and O’Brien (1995) used a similar model to as-
similate the trajectories of drifting buoys. In the work of Panchang and O’Brien
(1988), the friction coefficient for a one-dimension tidal-flow model was the param-
eter to be estimated from the observations. Yu and O’Brien (1991) sought to use
measurements of the upper ocean currents to determine the eddy mixing coeflicients
in the Ekman layer together with the surface drag coefficient.

A general question with any kind of numerical modeling concerns the sensitivity
of the results to the input parameters of the model. A numerical model can be
described as a process which starts from a set of input parameters and produces a
sel of output parameters. In the case of meteorological or occanic models, which
integrate the equations governing the temporal evolution of ocean circulation. the
input parameters could be the initial and boundary conditions which, in this study.
is the upper layer density. The output parameters are the geofluid fields produced
at successive times by the integration and also the varions quantities which can be

computed from these fields such as energy and potential vorticity.
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The determination of the uncertainty of the model’s output results from the
uncertainty of the input. For instance, the uncertainty on the horizontal transport
U,V and the upper layer thickness h is due to the uncertainty of the density which

is the control variable in this study.

2.4 Uniqueness, Identifiablity, and Stability

It is widely recognized that, whereas there are situations in which the inverse
problem defined below has no solution, there also are many circumstances under
which a meaningful solution is possible, albeit in a limited sense. The important
thing is to recognize the circumstances that may or may not allow solution of the
problem and, if a solution is possible, to impose on it the proper limitations so as to
make it mathematically well-posed and physically meaningful. Achieving this goal
requires clear definitions of the terms uniqueness, identifiability, and stability. In
addition, one must understand how each of these aspects affects the behavior of the
inverse solution and how their adverse effects can be mitigated.

The inverse problem can be defined as follows: let a functional rcla,tionship,.
X = F(p), be given between parameters p which in this case is the density field
and X which represents the state variables of our problem, ({7, V,#)T. The inverse
problem will be to determine the parameter p on the basis of X and the inverse
relationship p = R(X). The problem is said to be well-posed if (1) for every X
there corresponds a solution p (i.e., a solution exists); (2) the solution is unique for
any given X; and (3) the solution depends continuously on X (i.c., the solution is
stable). If the inverse problem fails to satisfy one or more of these three requirements.
it is said to be ill-posed.

Uniqueness can be defined in the following way. If X} = F(p) and Xy = F(p,)

are two solutions of the inverse problem, then

[X1—=Xol[=0&lp—pl =0 (:

8%
-1
—
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where || || represents a norm over the appropriate space. In a practical problem, X
is only given at discrete points in space and in time and R represents a minimization
of a functional J as given in the previous subsection.

While uniqueness refers to the inverse problem, R, identifiability refers to the
forward problem, F. If two sets of parameters lead to the same function X, the
parameters are said to be unidentifiable. Uniqueness, on the other hand, is concerned
with the problem whether different parameters may be found for a given X. If so,
the parameters are non-unique.

Stability can be defined in the following way. For every € < 0 there exists a 6

such that for p; = R(X;) and p2 = R(X;) one has

X7 —Xall <6 [lp—pal <€ (:

|88
oo
~—

[Eq. (2.8)] states that small errors in the variables must not lead to large changes

in the computed parameters.

2.5 Adjoint Method

Adjoint equations, also called backward or top-down differentiation, are the tools
of the theory of optimal control for solving a number of optimization and sensitivity
problems which arise in the general context of numerical modeling of atmospheric
and oceanic circulation. It has been developed in the last twenty years and generally
deals with questions of how to “control” the input parameters of a numerical process
in order to “optimize” its output parameters. The idea of applying adjoint equations
to meteorological problems is by no means new and it was first suggested by J. Lions.

In many situations, one is led to consider a problem whose solution requires, in
one form or another, the explicit determination of a number of output parameters
with respect to a number of input parameters. Among such situations. we can

mention the following ones in particular.
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(1) One wants to solve an inverse problem, i.e. to determine values of the input
parameters corresponding to given (e.g., observed) values of output parameters.
Such inverse problems will normally be solved as an optimization problem, i.e. one
which will determine the values of the input parameters which minimize a prescribed
scalar function of the output parameter of the model (e.g., a function which measures
the fit of the output parameter to observed quantities). A typical example of such
an inverse problem is an assimilation of observations which will be described below.

(2) One wants to determine which of the input parameters was at the origin
of some observed feature in the output parameters. A typical example might be a
situation in which a numerical weather forecast has been erroneous in some respect
and one wants to determine what, in the model physical parameters or in predicting
the rapid deepening of a depression was the cause for the error.

In some situations, one will be interested in the sensitivities of a large number of
output parameters with respect to a large number of input parameters such as the
density field of the upper ocean of the northeast Pacific in this study. In situations
where one wants to determine the gradient of one output parameter with respect to

a large number of input parameters the method of adjoint equations is powerful.

2.6 Numerical Optimal Algorithms

The useful implementation of data assimilation depends crucially upon the fast
convergence of a large-scale unconstrained minimization algorithm. The aim of the
application of variational optimization for this study is to iteratively search for the
set of the parameters that minimizes the cost function, using the knowledge of its
gradient with respect to the control variable.

Since problems in oceanography often contain many degrees of freedom O(10%).
Conjugate-Gradient (C-G) methods (Navon and Legler, 1987) and Limited Memory

Quasi-Newton (LMQN) methods are the only ones under consideration due to the
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fact that only information from the first few iterations can be saved due to huge
memory requirements. For experience and details concerning various algorithms,
see a recent review paper by Zou et al. (1993c).

Shanno and Phua (1980) proposed an extension of the (C-G) method which
requires more vectors of storage and resembles a Quasi-Newton (QN) method and
is a LMQN method. The LMQN method of Shanno and Phua is a two-step LMQN
like the CG method which incorporates Beale restarts. Only seven vectors of storage
are necessary.

LMQN algorithms use the following procedure for minimizing J(X), X € ®™

(1) Choose an initial guess Xo, and Hp, a symmetric and positive definite initial
approximation to the inverse Hessian matrix (Ho may be chosen as the unit matrix).

(2) Compute

9o = ¢(Xo) = VJ(Xo) (2.9)
and set
do = —Hogo (2.10)
(3) For k=0,1,---,n 41, set

Xit1 = Xi + apdy (2.11)

where ay is the step-size obtained by a line search to satisfy a sufficient decrease.

(4) Compute
Jky1 = v.](‘\,k.*.]) ( .

| SV
—_—
(O]
~—

(5) Check if a restart is needed (see the discussion below).

(6) Generate a new scarch direction, dy4;, by setting

diy1 = = Hiprgi41, (2.13)
(7) Check for convergence: if

lgisill < emar{L, | Xl (2.14)



then stop, where ¢ = 107°. Otherwise continue from step 3.
Step-sizes are obtained by using Davidon’s (1959) cubic interpolation method to

satisfy the following conditions of Wolfe (1968):

J(Xi+ ardi) < J(Xi) + Bargi” i, (2.15)
VJI( Xk + ardi)Tdx
THREBAS S < p (2.16)
i T di

where 8 = 0.0001, and 8 = 0.9.

The following restart criterion is used:
lgkr1 " gx] 2 0.2]|grs ]I (2.17)

The new search direction dy41, defined by Eq. (2.19), is obtained by setting (in
the BFGS Q-N update of rank-2)

meqiT Hy + HeqpiT o Hegre pipn”

Hiwr = Hy - +(1+ : 2.18
i Pl qn pT gk kT qx (213)
If a restart is required, Eq. (2.13) is changed to
disr = —Higra, (2.19)
where pr = Xip1 — Xk and gk = gr41 — gr,
T T T T T
. q q @ ¢ pp
M = (1 - P T G qepen pepe (2.20)

pTq. peTge T g nqe

Here the subscript ¢ represents the last step of the previous cycle for which a

line scarch was made. The parameter 5, = p;Tq:/q: T q. is obtained by minimizing
the condition number H, ' Hy1.

Shanno and Phua's method implemented in CONMIN uses two pairs of vectors,

¢ and p, to build its current approximation of the Hessian matrix. The advantage
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of CONMIN is that it generates descent directions automatically without requiring
exact line-searches as long as (gx,px) are positive at each iteration. This can be
ensured by satisfying Wolfe second condition in the line search. The CONMIN

algorithm is globally convergent with inexact line searches on strong constraint

problems.



3. ESTIMATION OF THE TIME INDEPENDENT DENSITY FIELD

IN THE UPPER NEP OCEAN

3.1 Oceanic Model

In this study, we use a nonlinear, reduced gravity model to simulate the northeast
Pacific Ocean. Due to the large latitudinal extent, spherical coordinates are used
with ¢ (longitude) increasing toward the east and 8 (latitude) increasing toward the
north. The domain for this model is as shown in Fig. 3.1. The actual configuration
of the northeast Pacific Ocean and its topography used is from 18°N to 50° N and
from the west coast of North America to 155°W, the longitude of Hawaii, with %’
(C-grid spacing in both horizontal directions. In the reduced gravity model driven by
observational winds, the ocean is assumed to consist of two layers of slightly different
density (p, p2), with the interface as the thermocline. Similar models have been
successfully used to simulate the ocean circulation of the northeast Pacific Ocean
(e.g., Pares-Sierra and O’Brien, 1989; Johnson and O'Brien, 1989). After modifying
the local phase speed and including the bottom topography in the above models.
Liu and O’Brien (1995) studied the eddy formation sites and eddy migration in the
same area. In another study with same model, Meyers (et al., 1993) investigated the
interannal variations in the thermocline depth of the northeast Pacific ocean during
1970-1989.

The simple models for the wind-driven circulation described above assume that
buoyancy variation plays little or only a passive role in the dynamics. This type
of ocean model is quite successful in representing the basic pattern of the upper

ocean circulation and provides the underpinning of much of the theory of the occan

o
[
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circulation. For climate applications, however, it is the spatial and temporal vari-
ations of the temperature and salinity distribution of the ocean and its capacity
for heat storage and transport that are of primary concern. A fuller understanding
of the wind and thermal forcings of the oceanic flows has gradually emerged only
through a number of studies that either invoke some theoretical approximation to
allow analytical solutions or utilize numerical methods.

It is difficult to determine the thermohaline driven circulation resulting from the
joint effects of heat and salt on buoyancy and the reciprocal effects of the circu-
lation on the distribution of water mass properties for several reasons. First and
foremost is the essential nonlinearity of the system. In considering the thermohaline
circulation, it is natural that the advection of heat and salt by the circulation or
their combined effect, density, is central to the problem and cannot be neglected.
Additional complications in modeling the thermohaline circulation arise from the
nonlinear equation of the state of sea water and the presence of double-diffusive
phenomena. Therefore, this requires that the model which is used would be sophis-
ticated enough to account for active thermodynamics and the salinity structure.
Examples of this are the Ocean General Circulation Model (OGCM) and the Navy
layered ocean model for which tremendous effort and huge quantities of supercom-
puter time are needed. An alternative way to study the thermohaline structure is
as follows:

We use mass continuity and the momentum equations as the the governing equa-
tions for the numerical model. In contrast with most layer models which assume a
constant density in a layer, we allow horizontal variations in the upper layer density
[p = p(¢,0)] which are treated as model parameters that can be estimated through
tomographic assimilation using the variational adjoint method. This assumption in-
stantanconsly leads to the thermohaline forcing which is not included in the above

mentioned models (the detailed derivation is in Appendix A).
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The fluid is of the Boussinesq type, which allows the neglect of density variations
in the momentum equations except when coupled with gravitational acceleration,
and to assume the Auctuations in the density are the result of thermal effects (Spiegel
and Veronis, 1960).
The variables U = uh and V = vh are the transports in the east and north di-
rections, respectively, where (u(0, #,t),v(0, ¢,t)) are the depth-independent velocity
components in the upper layer and h(8, ¢,t) is the upper layer thickness (ULT).

The model equations are:

U 1 9 (U?\ 18 /UV\ 2tan0 UV
: = — — _9 . 7
E, ot + acos90¢( ) ( ) (—) — 2Qsin 01

h )T ad0\ h a \h
1 —tan?4d 2tanf OV
- I J — i
A[A(L )+ a? a?cos 0¢]
L B - (o0 = 0 (321)
po  2acosfp,0¢ P2 PRI | = i
ov 1 o /UV 10 [v? tanf U? - V?
g o= VL 9 (UVy 1ofr) et 20sin O
b at +a00500¢( h )+a00(/z) a ( h )+ 20sin 0l
1 —tan?d 2tan 0 U
-4 [A(V) + a? a?cos %]
70 g

0 ) .
| (G (3:22)

oh 1 [ou 0
o= gt ——=lo + 55(Veosl) = 3.2:
£ ol + acosﬂ[a(b + 0()(‘ Coso)] 0 (3:23)
where
A [ 0 1 92 d
V=22 L % a2 3.2
AAL) a? ((?02 + cos? 0 Qp? moao) (3:24)

Ais an eddy viscosity coefficient, « is the radius of the Earth, and € is the Earth’s
rotation rate. The wind stress is 7(¢, 9, ¢) = (7%(¢,0,t),7%(6,0,t)) = Cypa|ju|ju..
where u,(¢, 9, t) is the surface wind, Cy is a drag coefficient and p, is the air density.
Monthly average pseudo-stress was obtained from COADS monthly mean climato-

logical winds and interpolated to the model grid. A linear temporal interpolation



was used between each monthly value. Define

(H — )b

c=4g H

(3.25)

where H = H(¢,0) is the total depth of the ocean and g’ the reduced gravity which is
equal to gAp/pa (Liu and O'Brien, 1995). cis the local phase speed of the baroclinic

mode.
The major physical features of this ocean model are:

¢ Reduced-gravity
e Linear as well as non-linear primitive equations
e Realistic spherical coordinates, including geometrical terms

o Irregular coastline and topographic geometry

3.2 Oceanic Tomography Data and Climate Modeling

It takes a research vessel roughly a month to map a 1000 by 1000 squarc km
region with mesoscale resolution using conventional means such as CTDs and XBTs.
Previous studies indicate that data from available hydrographic stations are insuf-
ficient for estimating the change in a large-scale temperature field.

[lowever, it seems that oceanic acoustic tomography offers an alternative solu-
tion. Sound travels at about 1500m/s and is eflectively transmitted through the
ocecans. Since the travel time of sound rays is a function of the ocean temperature,
one has, in principle, a method of remotely observing the ocean. Ocean acoustic
tomography was first proposed by Munk and Wunsch (1979) to apply geophysical

inverse techniques to map temperature in the interior of the ocean from the travel
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times of acoustic pulses measured between source and receivers below the ocean’s
surface.

Sound speed C in the ocean is controlled by density p which is a function of
temperature ©, salinity S and pressure P, but the dominant variable in the upper
ocean is temperature. However, we use a layered model without salinity structure
or thermodynamics and cannot directly yield an estimate of C. This handicap of
the isopycnal model was addressed by Roed [personal communication, 1994], who
provided a means to estimate variations in ¢ as a function C(H). The essence of his
argument is reproduced below (also see Meyers et al. 1995).

Consider a tomography section of acoustic pulses between a source S and a
receiver R. The velocity component of the current in the vertical plane along S - R

is u. The acoustic ray 7 projected from S to R has a travel time,

ds ds
7“1‘ = =
i C4+u /iCo+6C+u
N ds 6C +u ;
ds 6C
ié -/ —C-',—Z(ls (3.26)

The integral is along the geodesic acoustic path of ray i¢. The sound speed ('
in an instantaneous ocean realization is decomposed into an “unperturbed” sound
speed C,, the climatological sound speed profile characteristic of the region, plus a
perturbation 6C. Here C, ~ 1500ms=". Using a Taylor expansion, neglect u/C? <«
8C/C?. The “unperturbed” travel time is

ds
Tio Ca

This is the travel time of the acoustic ray [io when traversing the unperturbed,

T, = (3.27)

climatological ocean defined by C,. By tracing the acoustic rays through C,, T;,

can be directly evaluated . Thus, the data used are the differential travel time

o) I 66' RS T
Ti=T;, — . Fz(ls (3.238)
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The above equation defines “density” tomography as being proportional to the
sound-speed perturbation §C along the section which is proportional to the tem-
perature perturbation. The data measured in the tomography experiment are the
travel times of different acoustic rays reaching the receiver. The measured travel
times are coupled to the reference travel times with the unperturbed ocean defined
by C,. For each ray the reference travel times are defined by [Eq. (3.27)].
Propagation of sound is due to the pressure differences in the incompressible

media and the speed of sound in the sea water, C, is defined by the formula,

apP q
C*= (a—p)A (3.29)

where A indicates an adiabatic process, p density and P pressure. Thus, C' depends
on pressure p, temperature, ©, and salinity S, viz.,, C = C(p,0,S5) and may be
written

C'=Co+B(0-0,)+7(p—ps) +£(5 = 5,) + HO.T. (3.30)

where the subscript o denotes the corresponding reference state. It should also
be noted that the first two terms are by far the most significant ones. A good

approximation to ' may be written as
C=C,+p0O-0,) (3.31)

In the mid-latitude ocean, the density is commonly assumed to be a function of

temperature to first order only, viz.

p:po—(y(@—-@o) (3.32)

where a is an expansion coefficient.
However, use a layered model without thermodynamics which cannot directly
give an estimate of travel time or sound speed. Therefore, have to find a means to

estimate the travel time in terms of the model variables in order to construct the
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data misfit to be minimized. The connection to the layered model is now introduced.
There is evidence that in many regions of the ocean variations in the thermocline
depth are related to variations in temperature, then density. In the context of a
layered ocean, Roed [personal communication, 1994] finds the following relation

between the upper layer thickness A and speed of sound [Eq. (3.23)]

p=po——(h—ho) (3.33)

in which k, is the reference upper layer thickness (ULT), Ap = ps — po, the density
difference between the upper and lower layer, and D is a measure of the shape of
the (vertical) density profile and is set to a constant 1000 m, though this value has
no effect on the essential results.

Given that the choice of a reference state is arbitrary, {Eq. (3.33)] and [Eq. (3.32)]

can be combined to give

0=0,+22(h—h) (3.34)
aD

Further, invoking [Eq. (3.31)] gives finally

8¢ = C-C,

= BADp(h—h ) (3.35)

«

In summary, the travel time at ¢ = ¢;, due to anomalies in ULT [Eq. (3.33)], is

, 6C
T,"j ~ .r[,'o— -(72(19

= T~ 1 ﬂAp/(h—h ds

T, —Cr / (h = h,)ds

-Tin
0= C (h — h,)ds

i

Tit) (3.36)
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where Cr = E!Zi'—‘\g, I'i = [.ds, the arc length of the ray ¢, ¥, indicates the space
domain, as before.

Downwelling raises ocean temperature anomalies and increases 6C, reducing
T:;. The opposite effect occurs for upwelling. This dependence of temperature
anomalies on thermocline depth variations is well known in the tropics where a
strong permanent thermocline exists. It does not necessarily hold for SST anomalies
in mid-latitudes where the seasonal thermocline cycle has a significant effect on SST.

Unfortunately there will be no ocean tomography data available until at least late
1995, but can use the so-called “identical twin” experiment and pseudo-tomographic
experiments as an initial effort to solve this problem. The idea is the following:

(1) for the “identical twin” experiment, given a density distribution, p,, such as
climatologic data, run the model with p, and produce the travel time “data” with
[Eq. (3.36)], then start the initial density guesses, p obtained by adding p, and a
perturbed ép;

(2) for pscudo-tomographic experiments, the “travel time” is calculated with
the outputs from the Navy layered ocean circulation model (additional details are ’
provided in the next chapter), use the Levitus climatological density as the initial
guess of control variables, the density field, instead of the perturbed density field in
the case of the “twin experiments”

We carry out the minimization scheme; which will be described below, and an-
ticipate that p, can be successfully recovered in the “identical twin” experiments.

The improved p can be estimated in the experiments with NRL model outputs.

3.3 Identical Twin Experiments

The assimilation procedure finds the solution to the model equations that best fit,
in the generalized least-squares sense, all observations made within some specified

space-time interval. The first kind of experiments are of the “identical twin™ type:
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synthetic data are generated by sampling the observable fields produced by a control
run of the model, then the data are assimilated using the same model initiated with
some error. The sequence of numerical experiments serves two purposes: (1) to
demonstrate the performance of the assimilation procedure in the context of a full
3.dimensional, time-varying northeast Pacific ocean model and (2) to examine the
utility of specified data sets, in particular, observations of tomography, in estimating
the density field or thermohaline circulation structure of the northeast Pacific ocean.
A cost function must be defined which measures the distance between the obser-
vation and the corresponding model outputs in the frame work of optimal control
method. In this study, the oceanic tomography data will be used. The density field
p(,0) in the upper layer is treated as a model parameter, which will be determined
by the variational data assimilation process. For an efficient implementation of such
a method, it is necessary to determine the gradient of this cost function with respect
to the control parameters, namely the density field. In terms of the language of op-
timal control theory, such parameter forms the control variable. This gradient can
be determined in a computational efficient way by using the adjoint of the model.

The first step is to choose the cost function:

J(T,p) = |IT ~ Tllr + llp(x) = ()]l (3.37)

Two different sets of information are available for this use. The data are the
travel time T¢ which were produced by the model control run. Two different sets of
information are available for this use. Second, the Levitus density p is chosen as the
“first guess™. It is interesting to take into account the background as it allows an
increase in the number of available pieces of information and, therefore, the number
of equations to solve, without an increase in the number of unknown factors. Thus.
it makes the optimization calculation more stable. Besides, taking into account the

guess allows the use of a relaxation term toward the parameters. Therefore, it avoids
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obtaining local parameters that would not be too different from what we want and

would not be physically realistic.

3.4 Adjoint Model and the Variational Procedure

The cost function J (also see Eq. (2.5)) is taken to be

110 = EES [~ 1] e [ 2o = )P

&

= I\TTE;/; [/E, (CT(h —h,) + [T—loj—l_‘:z—Tl—]) Ai(x)(la} di

b7 [ S200(x) = px)fdo (3.35)

&

where the subscript 7 denotes a section between the 7 th pair between a source and a
receiver, the superscript *°’ the observed data, T7 corresponds to T; [Eq. (3.36)] and
T, [Eq. (3.27)], and the tilde 7 is the estimated values. K7 is the inverse covariance
matrix of the observational rms error. If the errors in the data are uncorrelated and
equally weighted, I\, is the computational weight.

The momentum equations [Eq. (3.21) and Eq. (3.22)] and the conservation of
mass [Eq. (3.23)], which are the strong constraints, can be enforced simultaneously
by introducing the Lagrange multipliers. Referring to [Eq. (2.6) and Eq. (3.33)] this

leads to the formulation of the associated Lagrange function:

L(S, A, p) = J(T,p) + /v ATE(S, %, 1, p)do (3.39)

where

S(x.t) = (U,V,i)T
/\ = (/\(n /\U~ /\’l )7
E(S.X.t.ﬂ) = (Ezn [51,'1EIL)T
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MisAy,and Ay are the Lagrange multipliers for the strong constraints, E,, E, and E,
respectively [Eq. (3.21), Eq. (3.22) and Eq. (3.23)].
The first variations of L [Eq. (3.39)] with respect to As yield the original model
equations [Eq. (3.21), Eq. (3.22) and Eq. (3.23)]. Letting the first variations of L
[Eq. (3.39)] with respect to U, V, and h vanish, yields the adjoint equations

O, 17 20 9A, VOA, tanbV
3 " Hlreias et e
-Qtaz Uy, + . c‘; 9002] +20sin 0),
- a_cl(ﬁ% + A[A(/\u) + 1= :;“nz O re — 3:::3?) %] (3.40)
; .
= %%’1+A[A(AU)+ ————1_:;“20 v ;—t:%%%—\(b] (3.41)

oM glp2 — p1(6,0)h 0Ny | g(p2 — p1($,0))h D,

T acosfp, 0¢ “po a0
Lr U, 9\ 0N oA O,
. /' u /r U / u k4 v / /',v _ [
== V) V(U V) HUano(V, vA)]
- 71'0 - Tio [
- I\TCTZ[(C’T(I: —1IO)+[’—IT—]) ./_\'(x)] (3.42)

The details of the derivation of the [Eq. (3.40), Eq. (3.41), Eq. (3.12)] are given in
Appendix B. Comparing [Eq. (3.21)], [Eq. (3.22)] and [Eq. (3.23)] with [Eq. (3.40)],
Eq. (3.41)] and [Eq. (3.42)] respectively, we find that the adjoint equations have
similar forms to the corresponding model equations. except that the diffusion terms
in the adjoint equations have signs opposite to those in the corresponding model
equations and the adjoint equations correspond to evolution backward in time with
forcing by the misfit of the model to the data. The Lagrange multipliers serve to

collect information from the data and to propagate it back to the initial time.
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After computing the integration of the model forward and the integration of the

adjoint model backward in time, the gradient of cost function J with respect to the

control variable p vanishes, and we have:

V,J = K lp) - )] + -2 [a*u 0

m Er + 2 (Ay cos8) (3.43)

The aim of the application of variational optimization for this study is to find
the set of the parameters that minimizes the cost function, using availability of the
gradient with respect to the control variable. For this study, an algorithm based
on the two-step LMQN like the CG method is used. A detailed description of
this algorithm is in 2.6 or can be found in Zou et al. (1993c). At each iteration
computation of the gradient with respect to the control variable is required.

In order to obtain the optimal distribution of p, the model equations and corre-
sponding adjoint equations can be performed iteratively with the descent algorithm
which uses Eq. (3.43), by performing the following operations:

o The model “travel time” is computed with the Levitus climatological

density po(x).
o Choose p,(x) + 8p(x) as the initial density.

e Integrate the model equations forward in time from the initial density

to obtain and store the outputs, 0 <t < 7.

o Integrate the adjoint equations backward from { = 7 to ¢t = 0 using

the outputs stored in step 3, starting with the As =0 at { = 7.

e Check if the optimal solution has been found by satisfving an 'a priori’

chosen convergence criterion. If not, compute a new distribution of p
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which minimizes the the cost function by using LMQN. At last, p,(x)

should be recovered.

3.5 Correctness for Discretization of the Continuous Adjoint Equations

One controversy has been around in the data assimilation community for a quite
while. That is if you discretize the continuous adjoint equations, it only gives an
approximation, which means the gradient of cost will be misleading. With a large
amount of algebric effort, I have proven the identity betweenihe discretization of
the continuous adjoint equations and the adjoint equations which are derived from
the discretized model equations with the Arakawa C grid scheme. This result is
fundamentally important to this study. The details of the derivation are provided

in Appendix C and D.






4. EXPERIMENTS AND DISCUSSIONS
4.1 Ocean Acoustic Tomographic Experiments

Ocean acoustic tomography was first proposed as a viable method to observe the
ocean by Munk and Wunsch in 1979. The basic principle of acoustic tomography
relies on the fact that the ocean is essentiélly transparent to acoustic radiation.
That is, sound waves can travel very long distances in the ocean without substantial
decay. Since the sound speed is dependent on density and pressure, distortions in
the temperature, salinity, etc, are reflected as changes in the sound speed. Since
the concept of acoustic tomography was proposed, some experiments by the Ocean
Tomography Group (OTG) have been performed to assess its capabilities. These
experiments have focused on the study of mesoscale variability in particularly well-
observed areas of the ocean.

More recent experiments (Spiesberger and Metzger, 1991 and Global Acoustic
Mapping of Ocean Temperatures (GAMOT)), have shown its capabilitics with long-
range networks of sources and receivers and have proved its potential for studying
and monitoring mean properties of the gyre-scale and even global-scale circulation.
They speculate that the variations in travel time are related to basin scale temper-
ature changes occurring when El Nino (and similar) signals pass from the equator
to higher latitudes as coastal Kelvin waves and radiate offshore as Rosshy waves.
Rosshy waves modify the vertical distribution of temperature. Significant horizon-
tal modifications in the thermal structure persist for several years as the waves
propagate westward. Rossby waves are important for understanding the changes
in acoustic travel time. A set of recent numerical model experiments (Shriver et

al., 1991; Meyers et al., 1995; Liu and O’Brien, 1995) include the relevant physics.
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Those model results explain most of the variability found in records of temperature
measured at 300m across the eastern Pacific basin.

GAMOT’s task is to determine whether these changes can account for the ex-

pected warming and travel time differences. As a part of the GAMOT task, this

study is attempting to estimate the density field or thermohaline structure through

tomographic data assimilation using the variational adjoint method.

4.2 Assimilation Experiments

In the last chapter, we described in some detail the construction of a nonlinear,
reduced Northeast Pacific ocean model and a procedure for assimilating acoustic
tomography data into that model. The development of the combined model and as-
similation system was motivated by the need to establish the state of the Northeast
Pacific and to forecast its evolution in time, a perceived prerequisite for estimating
thermohaline structure. Numerical simulation offers the best hope for successful
oceanic representation, but requires both a validated numerical model and relevant
density field, and these requirements can, in turn, only be met by reference to acous-
tic tomographic observation. Unfortunately, no real tomography data are currently
available, and it is important to be able to check the performance of the data as-
similation algorithm. No test to check how well it performed was possible, but.
consistent with the practice in meteorology, identical twin experiments and pscudo-
tomographic assimilation experiments were conducted, and the “observations” were
obtained from the models. The variational data assimilation procedure finds the
solutions to the model equations that best fit, in the generalized least-squares sense.
all “observations” made within some specified space-time interval (window of assim-
ilations).

To examine the assimilation scheme, we have conducted a sequence of numerical

experiments in which the tomographic “observations™ are produced either from this
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model or from the Navy layered ocean model. In each case, the data are extracted
from a control run of this model, and successful results are measured by the extent
to which the assimilation process is able to retrieve the control and to retrieve the
control variables. For all experiments, we have assumed that wind stress is the
COADS climatological wind stress for the twin experiments and the Hellerman-
Rosenstein monthly wind-stress climatology for the NRL-model output assimilation
experiments, known everywhere over the assimilation interval. Attention is then
focused entirely on the effect of tomographic data on the recovery of the model
state.

To maximize the conditioning of a simple inverse problem (Barth and Wunsch,
1990; Bennett, 1992), the configuration of acoustic paths is designed over the region

(Fig. 3.1) for both types of experiments. Acoustic travel times are determined for

various paths.

4.3 Identical Twin Experiments

The twin experiments are devised as follows. The model was run for a spin-up a
period of 12 years with the COADS climatological wind stress and the Levitus upper
ocean climatological density (Fig. 4.2a) being inserted. The model was essentially
in a seasonal, periodic state at the end of this spin-up period and exhibited flow
patterns that were similar in distribution and magnitude to those observed in the
Northeast Pacific, such as the realistic subtropic gyre and California current, ete.
(see Fig. 4.3). We then used the last year of this spin up period as a control run.
extracting a general set of synthetic model “travel time” from this run. That is. the
model “travel time™is calculated with [Eq. (3.36)] as the observation at threc-hour
intervals.

The sum (Fig. 4.5a) of the perturbed density anomaly field (Fig. 4.2b) and

the Levitus density field are then used as the initial guess of control variables. i.c..



39
the density field. The time-length of the assimilation window is 3 hours which, in
turn, involves 18 time steps of 10 minutes each. The model equations are integrated
forward in time with the perturbed density and the wind mentioned above. The U,
V and h fields are saved only once a day for the whole domain because of the huge
memory required. A linear temporal interpolation was used between each day value
for the adjoint-variable and the gradient of the cost function calculation.

The adjoint model equations [Eq. (3.40), Eq. (3.41) and Eq. (3.42)] are forced
by the difference between the model “travel time” and its model counterpart (or
the data misfit) and integrated backward in time, using the outputs stored above
starting with the As = 0 at ¢ = 7. The time step in the adjoint model is the same as
in the forward model, 10 minutes. Similarly, the Ay, A, and Ap fields are saved every
day. h, A, and ), are used when the gradient of L with respect to p is calculated
by [Eq. (3.43)] at each iteration by solving the adjoint model equations [Eq. (3.40),
Eq. (3.41) and Eq. (3.42)]. These equations, derived from those defining the reduced
ocean model itself, propagate the influence of the model/data misfits for any given
model state backward from the time of the latest observation to the initial time of
the model run and yield the desired cost function gradient. The adjoint model is
similar in size and complexity to the ocean model itself and requires about the same
computing effort to solve. One iteration of the data assimilation procedure involves,
at minimum, one forward run of the ocean model from current initial conditions, to
establish the current cost function gradient.

The variation data assimilation with the penalty term is implemented by starting
from a model ocean with a perturbed density field and minimizing the cost function
defined in [Eq. (3.38)]. When a prescribed convergence criterion is met, the mini-
mization process was stopped. In all the experiments, we employed the CONMIN,
a limited memory quasi-Newton method (the details are in Chapter 2). We expect

that p, can be finally recovered.
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The results of the iterative process are shown in Fig. 4.4a and Fig. 4.4b. The
iteration procedure converges rapidly (Fig. 4.5b - Fig. 4.8b), only requiring about
9 iterations to recover the Levitus density field (Fig. 4.9b). This is indicated by the
rapid reduction in the cost function. The evolution of the cost function, normalized
by that of the first iteration during the iterative process, is shown in Fig. 4.4 a.
There is rapid decrease during the first 3 iterations. The values do not decrease
much during the next couple of iterations. Then, they drop very fast and converge
during the final 3 iterations. In Fig. 4.4 b, the normalized value of the gradient
of the cost function is shown. The gradient also experiences a rapid decrease at the

beginning and the ending, just as the cost function itself.

4.4 Pseudo-Tomography Assimilation Experiments

The Navy layered ocean circulation model (NRLM) is assumed to represent
the ocean. The model has the following features: (1) 6 vertical layers with free
surfaces, (2) nonlinear primitive equations, (3) hydrodynamic, i.e., isopycnal, ()
semi-implicit time difference scheme, and (5) Full-scale bottom topography in lowest
layer and arhitrary coastline geometry. The horizontal resolution is 0.125° by 0.176”
(latitude, longitude) for each variable or about 15 km at mid latitudes.

The pscudo-tomographic measurements were taken from NRLM model outputs.
Starting from rest, the NRLM was spun up to statistical equilibrium at 1/4 degree
resolution using the Hellerman-Rosenstein monthly wind-stress climatology, and
then continued another 15 years at 1/8 degree resolution. Fig. 4.10 shows the
basic features of upper ocean circulation in the Northeast Pacific. The subtropical
gyre and the California current are clearly evident. The NRLM outputs of a 3 day

average were interpolated to the model grid. A linear temporal interpolation was

used between 3-day values.
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Only take the sum of heights of layer 1 and layer 2 from NRLM as the coun-
terpart of the upper layer thickness of the reduced gravity. Similarl to the “twin
experiments”, pseudo-tomographic “travel time” is calculated with [Eq. (3.36)] as
the “observation” at three-hour intervals. Only use the Levitus climatological den-
sity as the initial guess of the control variable, where the density field is used instead
of the perturbed density field in the case of the “twin experiments”. All the other
assimilation procedures are similar to those used in the “twin experiments” except
that the penalty term in [Eq. (3.38)] is weighted inversely proportional to the square
of the number of iteration. We anticipate that p,, can be estimated through the
assimilation procedures.

The results of the iterative process are shown in Fig. 4.11a and Tig. 4.11ib.
The iteration procedure converges rapidly (Fig. 4.12 - Fig. 4.16), only requiring
about 10 iterations to achieve a decrease of 4 orders of magnitude and to reach
the final density field (Fig. 4.16b) which improves the initial guess, the Levitus
density field (Fig. 4.2a or Fig. 4.9b). The 3-D density surface is very rough during
beginning iterations, especially along the ray paths (see Fig. 3.1). The reason is
the ray paths are covered where the data misfits are located. Those disturbances
propagate westward as the number of iteration increases and finally exit out of the
domain. The entire procedure is also characterized by a rapid reduction in the cost
function which was close to zero after 10 iterations, but never attain zero because
the “observation” was from the NRLM. In Fig. 4.11 b, the normalized value of the
gradient of the cost function is shown. The gradient behaves differently from that
in the “twin experiment”. It increases during the first 5 iterations prior to dropping
very rapidly to zero.

The density field can be estimated by using NRLM output assimilation and imn-
proving the Levitus density by checking the difference between them (Fig. 4.17).

The estimated density field (Fig. 4.16b) decreases the Levitus density by approx-
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imately 0.3 kg m~3. Their differences creat the meridional density shear which is
about 0.1 kg m=2 over 20 degrees of latitude (Fig. 4.17a). The shear can produce
additional eastward transport of about 2 — 5 Sverdrups and enhance subtropical
gyre. The above is as expected. The reason for the enhanced transport is that the
Levitus climatological density field is calculated with historical hydrographic data,
obtained from various cruises which are biased due to the fact that the data were
not uniformly distributed in time and space (i.e. lack of data during winters). As we
know, the purely thermal circulation in the upper ocean is represented by a single
large anticyclonic gyre with a typical westward displacement of the center. There-
fore, it is natural that the estimated density makes the subtropical gyre stronger in
the northeast Pacific region.

Both assimilation procedures find that solution to the model equations is best
fits, in the generalized least-squares sense. All experiments are of the “identical
twin” and pseudo-tomographic assimilation types; synthetic data are generated by
sampling the observable fields produced by control runs of the models; then the
data are assimilated using the same model. The sequence of numerical experiments
serves two purposes: to demonstrate the performance of the assimilation procedure
in the context of a fully-nonlinear, time-varying, reduced-gravity ocean model; and
to examine the utility of data sets, in particular, observations of tomography, in
estimating the density field or thermohaline circulation structure of the northeast
Pacific ocean. The results indicate that the assimilation procedure works very well.

Finally, the data assimilation scheme demonstrated here seems to offer a powerful

tool for analyzing a large, complex, tomography data set.
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Figure 4.2: (a) The climatological Levitus density field. (b) The perturbed density

anomaly field. Contour interval is 0.01 kg/m® and dashed lines indicate negative
values.
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Figure 4.5: (a) The 3-D surface of initial density guess prior to iterative process.
(b) The 3-D surface of density after 1 iteration.
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Figure 1.6: (a) The 3-D surface of density after 2 iterations. (b) The 3-D surface of
density after 3 iteratious.
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Figure 4.9: (a) The 3-D surface of density after 8 iterations.(b) The 3-D surface of
density after 9 iterations.
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iteration during the iterative process. Experiments with NRL data. (b) Same as
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Figure 4.12: (a) The 3-D surface of density after 1 iteration. Experiments with NRL
data. (b) after 2 iterations.



Figure 4.13: (a) The 3-D surface of density after 3 iterations. Experiments with
NRL data. (b) The 3-D surface of density after 4 iterations.
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Figure 4.14: (a) The 3-D surface of density after 5 iterations. LExperiments with
NRL data. (b) The 3-D surface of density after 6 iterations.
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Figure 4.15: (a) The 3-D surface of density after 7 iterations. Experiments with
NRL data. (b) The 3-D surface of density after § iterations.



Figure 4.16: (a) The 3-D surface of density after 9 iterations. Experiments with
NRL data. (b) The 3-D surface of density after 10 iterations.
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Figure 4.17: (a) The initial dendity (Levitus) minus the final density. The contour
levels are in kg m~>. (b) The 3-D surface of the density difference.



5. SUMMARY AND CONCLUSIONS

An optimal control method is developed to assimilate tomographic data in an
upper ocean model of the northeast Pacific with the goal of estimating the time-
independent density field and thus the thermohaline structure. The horizontal den-
sity field serves as the control variable.

The as;similation procedure works by minimizing the cost function which consists
of the misfit between observations and their model counterparts, in a least-squares
sense, plus a penalty term. This minimization is carried out consistently while
satisfying the constraint that the model dynamics must be satisfied exactly. The
variational data assimilation consists of integrating the model equations forward in
time over the period which data are to be assimilated. Data misfits between the
model and the observation are then calculated and the adjoint equations of the
model are integrated backward using the data misfits as forcing. It is necessaryl
to determine the gradient of the cost function with respect to the control variables
(the density field). The gradient can be found using the model and adjoint variables
and it is used in a minimization algorithm to determine a new density ficld. The
minimization procedure utilized a large-sacle unconstrained minimization code, a
limited memory quasi-Newton method (Navon and Legler, 1987; Zou et al., 1993c).

Several identical twin experiments and experiments with NRL model outputs
were performed. In identical twin experiments, the Levitus density data is perturbed
as the initial density field and the estimated acoustic tomography from the control
runs is assimilated into the model. The final estimated density recovers the Levitus
density field as expected as fast as in 10 iterations. In the experiments with NRL

model outputs, the Levitus density serves as the initial guess. and the density is
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estimated by using NRLM output assimilation. The estimated density makes the
subtropical gyre stronger in the northeast Pacific region. The results indicate that
the variational assimilation procedure works very well.

It can be reasoned that the thermohaline circulation has the same direction as
wind-driven circulation in the northeast Pacific region. Therefore, the thermohaline
structure may be estimated since the acoustic tomographic data contains informa-
tion of both the winddriven circulation and, also, the thermohaline circulation.

The total number of control parameters, consisting of the upper ocean density
field, in this study is very large, O(10%). We perform the descent algorithm efficiently
by applying the technique of scaling to improve conditioning of the Hessian (the
second derivative matrix of the cost function w.r.t. control variables). Scaling
transforms the variables from units that typically reflect the physical nature of the
problem to units that display certain desirable properties of the optimization. The
basic rule of variable scaling is to make all the variables in the scaled problem to be
of order unity so that each variable has a similar weight during the optimization.
By scaling the variables, the derivatives of the cost function are scaled implicitly.
Experiments have shown that an initial well-scaled functional leads to a significant
improvement in the performance of the descent algorithm (see Yang, et. al, 1993).

In variational analysis, the solution of a problem is sought by minimizing the cost
function. The use of a priori information, the Levitus density data, is investigated
in the formulation of the cost function to obtain meaningful control variables. Ex-
perimental evidence has verified that adding « priori information or a penalty term
can increase the probability that the solution will be unique due to convexification
of the Hessian which is positive definite. Also, a priori information plays the role
of bogus data. It serves not only to compensate for the shortage of observations.

but to improve the conditioning of the Hessian matrix. Hence, the practical benefit
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of adding a priori information is to precondition the Hessian and to accelerate the
convergence of the descent algorithm.

The ocean is modeled with the FSU nonlinear, reduced-gravity model at high
resolution, assuming horizontal variations in the upper layer density [p = p(¢,0)),
which can be estimated through tomographic data assimilation. The model success-
fully reproduces many features of the circulation such as the realistic subtropical
gyre and the California current, particularly at large scales. Changes in acoustic
travel time are estimated from these non-thermodynamic model runs by assuming
vertical displacements of the layer leading to adiabatic changes of sound speed speed
and temperature.

The proof of the identity between the discretization of the continuous adjoint
equations and the adjoint equations which are from discretized model equations with
the Arakawa C has been carried out. This result will be very useful for this kind of
assimilation in the future.

The results from this research are very promising. It provides a way for estimat-
ing the density field and extracting thermohaline information from oceanic acoustic
tomographic data. As many applications have made clear, the adjoint method is so
versatile and powerful that it can adjust to any model parameter or field as long as

there are sufficient observational data available.



APPENDIX A
DERIVATION OF THE PRESSURE GRADIENT IN THE UPPER

LAYER

The hydrostatic approximation will be made first. The means of describing the
situation is shown in Fig. 1. Subscript 1 is used for the upper layer whose density
is p1(z,y) and whose equilibrium depth is H;. The free surface, whose equilibrium
position is z = 0, has the perturbed position =z = 7. The interface displacement

(upward) is ¢. It follows from the hydrostatic equation

dp _
5. = P9 (A.1)

and the surface condition p = 0, that the pressure p, in the upper layer is given by
pr=py(n—z),—Hi+s<z<n (A.2) -

Similarly, for the lower layer, denoted by subscript 2, the pressure p,, obtained

by integrating [Eq. (A.1)] and using continuity of pressure at the interface, is
p2 = prig(n+ Hi — <) = pag(z + H1 —¢), 2 < —Hy + (A.3)

Because of the stagnation of the lower layer, Vp, = 0 [Eq. (A.3)] leads to

1
Vi = . [(p2 = p1)Vh = hVpy] (A4)
where h = Hy +7n—¢
Therefore, from Eq. (A.2) we have
Vp = ( —z)Vpi+ —[ (p2 = p1)Vh - Wm])
= ([ (n—2)- —h] Vi + (f’z - /’I)VII) (A.5)
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APPENDIX B

DERIVATION OF THE CONTINOUS ADJOINT EQUATIONS

We now derive the continuous form of the adjoint equations from the continuous
reduced gravity model [Eq. (3.21), Eq. (3.22), and Eq. (3.23)], using the calculus
of variations (Courant and Hilbert, 1953 {20}) and forming a Lagrange function by
adding the constraints multiplied by the Lagrange multipliers.

From [Eq. (3.39)], the associated Lagrange function is given by:

(S,Ap) = [ ATE(S,x,t,p)do + J(T,p)

[0, L8 () 10 0v) smouv,
c Y10t acos0dp\ h add\ h a h

1 —tan?4 ;_ 2tanf BV]
a? a’cos 0¢

g g [(Pz—P1(¢,9))112] —‘ZQsinOV}da
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_;; + 2a cos 9/)0_8—(5
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"2 [p(x) ~ px)do (B.1)

»

+7

g

s

where do = a® cos 0d0dddt, Ay, A, and A, are the adjoint variables for the U, V and
h equations.

At the minimum of J, L has a stationary point, and its first variation with respect
to all of its arguments must vanish there. In order to find the adjoint equations, one

has to take the first variations of the associated Lagrange function, L [see Eq. (B.1)]

Is] oUu 0 1) X,
55 o Mgrde = 5&[/@““””"‘ T U""]
A, ;
= —/E T do (B.2)

where the initial conditions, A,|i=r and U|=o, are used. Similar calculations of the

corresponding terms are as follows:

a 0‘/ aAu .

'a—v'/g/\v-m-dd = -—/E at do (Bv3)
o [, oh, O\,

EE/SAh'()—th = —‘/SW([U (Bl)

From the continuity equation [Eq. (3.23)] we have

b 19U ) 1 /9 O\
L e = — ] —— (= U) =22

]. at\h -
- —[s acost Q¢ do (B5)

where the no-slip boundary condition, {/ = 0. at the eastern boundary has been used.
A discussion of the terms at the open boundaries, which are the northern, western
and sonthern houndaries, will be postponed until the finite difference equations are

derived. Similary we find

D[ M O
v /L a COSO%(" cos 0)do
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= %///a[%(xuvcose) Vcosa%}cwdqbdt
19\
/S ~ o (B.6)

The two integration terms from the pressure terms yield

0 g d 2
ah / 2a cos 9po “96 [(p2 — pi(6,0)h ]da

- al’///°ﬂo{0¢ —Pl)hz] (p2 — p1)h? %}dﬂdq&dt
- —/E e acc[))slgf)’o ))haé)/\qsd (B.7)

and

0 g 0 2
% L apaAu.—a@[(pz - il O] do

AN,
= / Js / a0 [6089%(/}2 - m)h"’] — cosO(pz — pl)hzw}(wdqsdt

.y o0~ i D)1 1,
h T ap, a0

do (B.38)

where the no-slip boundary conditions, A, = 0 and A, = 0, are applied along the
castern coastline.

We decompose A(l/) [Eq. (3.24)] into two terms:

P
— I =
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- _ —_— (
EET /:A“Losw 9oz T a0 el ld" (B.9)
a b
We find that term (a) is
A9 [ A O
27 / e 98y
a® QU Jx cos® 0 2
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Combining {Eq. (B.10)] and [Eq. (B.11)] yields [Eq. (B.9)]

au/ AA(U (la—A/A o

A similar integration of the corresponding term for V' gives

)V/A_w o = 4 [ A()ds

Mecanwhile, the second to the last term in the diffusion for U is

A0 1 —tan?d A 1 —tan20
a9 T Ude =2 | — =" ") d
@ ol’ /;. Uda atJs a? Aude

W
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(B.10)

- (B.A1)

(B.14)



and for V

—tan? —tan® 6
ﬁzi/EA 1ot by = ﬁ/EI__ﬂ_Auda (B.15)

The last term in the diffusion for U is

/ 2tanf OV

3V “a?cosf 8(;5

17} 2tanf [ O Niow
W e @ cos9[8¢(V/\")( 0=V 8(;5](10

2tan 0 d\,
- A/S g lo (B.16)

and similarly for V
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2tan 0 9N, .

A

Using [Eq. (B.9) - Eq. (B.17)], we obtain the integration of the diffusion for U
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It is easily seen that the following is true for the Coriolis terms

'58(7 /: Ao(2Qsin OU)do = /S 2Q sin O),do (B.20)
and

0
- = 20 si =— [ 2Qsin ), 2
V/S)\u(HQsmm/)da /E Qsin A, do (B.21)

The integrations for the nonlinear terms by parts for both U and V yield

2
OU/ [acosﬁaqﬁ U )]do
r2 2
= 30 hzalgs )= O - T g e

U 0M,
= T Jsacosbh 0d 22
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A W U 9
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0 10 v: 9 -
0_/2/\ [a@O( )]da_/\*acos(}h2 00(/\ cos9)da (B37)
Combining [Eq. (B.24)] and [Eq. (B.28)] for U, we have
vV 0 2tan 0V V o\, tanfV
" et )~ =gy Ty (B

Similarly, with [Eq. (B.25)], [Eq. (B.27)], [Eq. (B.29)] and [Eq. (B.32)] for V we

obtain

2V 9 Uu o 2tan U 2tan 0V
wcos0h 90 (/\ €os ) " dcosOh OO (/\u ¢ 0) T ah Au = ah
2VOoX, U 0N, tanbU

W0 a0 T ah ™ (B.39)

Again, combining [Eq. (B.30)], [Eq. (B.33)], [Eq. (B.37)] and [Eq. (B.38)] for £,

we have

1% 0 v?. 9
acosfh? dgo (/\" €0 0) acos0h? 00 ()\" €os 0)
2tan UV tanf s L% — V2>
ah? “ a ( i v
l 0)\1‘ % '
= ——— [ ,/ _ .
ah? [V (( 50 +V 90 ) +1 tanO(\ M (/,\z,>] (B.40)

In summary, the first order variation of L with respect to I/, V" and h leads to

linear adjoint equations infering Ay, Ay, and Ay, respectively:

o\, 3 17 200 0A, LY Vad, t,an()‘*'\ 2tan fl- + VoA,
o hlacosh 96 @ 90 a " a " acosh 9o

] + 2Qsin 0N,
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(B.41)
o, 11 U a3\, 2Var, UodA, tanbU
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ot h[a cosf 8¢ T 00 T a 00 /\u] 2Asin 02,
19A, 1- tan2 6 2tan 0 O\,
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(B.42)
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APPENDIX C
MODEL IMPLEMENTATION OF THE FINITE DIFFERENCE

EQUATION

The model equations [Eq. (3.21),Eq. (3.22), and Eq. (3.23)] are:

a_U. + __1 _a_ Qz + l£<g_‘i> — __Qtana(g\i)
Ot  acosfdp\ h adO\ h a h
1 —tan?0 2tan 6 9V
- J — i
A[A(U)+ a? " da?cosf 0(}5]
T g

0 ) )
- - 9 b
P + Sacos Op, 99 [(/12 m(6,0))h ] 20 sin OV

(3V+ 1 i(g_\i)_*_l_g V2 tanO(UZ—V?)
Ot  acosf0gp\ h adf\ h a h
. l—tan?0 . 2tan OU
—A[A(‘/ )+ a? a? cosOf)_cp']
I g 0

—_ — — 2 90 o Io— o
=g = e 0] 42000 = 0 (C

oh 1 [i)U )

—_—— | ——— —_ (V" S fraend (_',_.'
dt  acosfldo + i)()(‘ €08 0)] 0 (€-3)
where
A [ O? 1 9 0 ,
AAN(Y) = P (5&4‘@8—(‘62‘—(&“00—0) (C.4)

Assume F is a function of the independent variables ¢. # and . Let A = Ad =
AP, unit side, since the model domain equally spaced in latitude and longitude is

formed in a system of a square meshes. Denote the value of 7 at the representative
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0 (C.1)



mesh point P(jA, kA) at the time t = nAt by
F(¢,0,t) = FGA kA, nAt) = F*

For the numerical solution of the above equations, all variables are measured at
discrete grid point locations using a staggered Arakawa C-grid. The distribution of
the variables is shown below. The equations are integrated in time using a leapfrog

time differencing scheme. A Dufort-Frankel scheme is used for the diffusive term.

hiciisr Ujcrkrr Bjser Upprr B Uppienn ——+ k41

r g R 1
Vici ks Viker Viet k4 . k+ 2
A¢
hioae  Ujcir hjk Us x hivie  Upprhe  —— ok
AP

P B 1
Vicik Vik Vigrk —_— k=3
hjcip-t Ujsvp—r hjp—r Ujper hjpper Upprker ———— o k=1
"’;‘—1.k—1 "’3‘,#;-1 "’;'+1,L-—1

For time differencing in [Eq. (C.1), Eq. (C.2) and Eq. ((".3)], we have respectively
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ot

ou N Uret - Ut

b

ot 20T
v v -vy
ot 2AT
oh R — R3
gt 2AT

where “=" denotes numerical approximation.

The finite-difference approximations of advective nonlinear terms in [Eq. (C.1)]
are

N - 1 (U™ ik + U p10)? (U U i)
acosdp\ h 8a cos 0, A¢ R i1k h™; x

1o (UV) = ; [(UnM + U ) (V" n + V1)
add\ h 2080 ™k A+ b + P ek + R ke
Uk U= ) (V7 4+ V)
ik 4+ et + A% ek + Bk

2tan0 ._UV __'_?_ tan 0,U" ; & V% Ve Ve + Vg
a h a g s+ Rk

similarly in [Eq. (C.2)]:

1 9 (QV_) = 1 (U gems U 5) (Vs V7 1)
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The Coriolis terms are

. 1 . T n n n
~20sin0V = —=sin0Q(V"ix + Vikar + Vi +V 4141

. 1,
20sinU = Ssm 0k_%Q(Unj,k + U"j_l,k -+ Unj,k_l + Unj_l‘k_l)

With the Dufort-Frankel Scheme for a variable F(¢,0,t)

Fiit+ F7
e (C.5)

&

Fk =

The horizontal viscous terms for the moment{Eq. (C.1)] are for

A QU N AU e U — 2U% 5k

T2 007 a? (2A0)2
_ AUk U 4207 s — 2US + U]
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2A tanOB_V N 2A tan 0, (an-H.k + an+1,k+1) — (V"]"k -+ an,k-f-l)
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Similarly in [Eq. (C.2)]
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The pressure gradient terms which also include thermohaline forcing are:
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The divergence terms in the equation of continuity {Eq. (C.3)] are:
1 B_U N 1 (Ut = UM )
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(C.6)
19V N TV = V7"ik)
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(C.7)
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a 2a

Finally, the finite difference form of the horizontal momentum eqnations can

then be written as:
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and
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(C.10)
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where
. 2Ar
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_ 1 2a
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The continuity equation [[Eq. (C.3)]] can be written in the form
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APPENDIX D

DERIVATION OF THE DISCRETIZED ADJOINT EQUATIONS

Now define a functional J as [Eq. (3.38)]

where T7; is the observed value of travel time along ray  at time ¢;. We have
assumed that the observations are located on the same regular space/time grid as
the model values.

The functinal J [Eq. (2.3)] is to be minimized subject to the constraints of the
F(U,X) [Eq. (2.4)]. The goal is to find p, the gradient of J, with respect to the
density and then use it in an iterative descent large-scale minimization procedure

as described in Chapter 2. To do this, define a new functional.
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where the A, %, A\,% 1, An",. are the undetermined Lagrange multipliers. Since the
J»" Jv"-’ Jv" g p

constraints in [Eq. (3.21), Eq. (3.22) and Eq. (3.23)] all equal to zero, the minimnn

of L is also a minimum of /. The minimum of L can be found by differentiating L

with respect to each of the variables As and model variables U/, V, I and setting the

results to zero:
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Equations simply return the model constraints [Eq. (3.21), Eq. (3.22) and Eq. (3.23)]
To determine the calculation of p, we first list all terms in L which contain U™

and differentation with respect to U™ yields:
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Similarly, the differentation with respect to V";; yields:
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and the differentation with respect to k" yields:
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Rearranging [Eq. (D.3)] and putting it on the left hand side, and referring to
[Eq. (B.41)] on the right hand side yield
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Therefore, we have proven the identity between the discretization of the contin-
nous adjoint equations and the adjoint equations which are from discretized model
equations with the Arakawa C for the adjoint [/ equation.

For the adjoint V" equation, the similar proof is as follows, rearranging (Eq. (D.4)]

and refering to [Eq. (B.42)]
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Finally he adjoint h equation, rearranging [Eq. (D.5)] and refering to
[Eq. (B.43)
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