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ABSTRACT

Monthly and seasonal predictions of mean atmospheric states have traditionally
been viewed as a boundary forcing problem, with little regard for the role of atmospheric
initial conditions (IC). The potential predictability of these mean states is investigated
using hindcasted monthly mean January (JAN) and seasonal mean
January/February/March (JFM) 200 hPa geopotential heights from the National Centers
for Environmental Prediction/Climate Prediction Center (NCEP/CPC) Dynamical
Seasonal Prediction System along with the corresponding data from the NCEP/National
Center for Atmospheric Research (NCAR) Reanalysis for the period 1980-2000. With
lead times ranging from one month to four months, the impact of the atmospheric ICs on
long-term means is investigated. Analysis of variance tests are employed to separate the
total variability into an unpredictable internal component, due to atmospheric dynamics,
and a potentially predictable external component, due to the boundary forcing. These
components represent the noise and signal, respectively, and areas where the signal
exceeds the noise designate where long-term means could be potentially predicted with
some degree of skill. Anomaly correlations (AC) between ensemble-averaged model
height anomalies and Reanalysis height anomalies also provide a measure of the model
skill.

Comparisons between the results of these tests for the different initialization times

Comparisons between the results of these tests for the different initialization times

reveal that, for this model, the atmospheric initial conditions have little effect on the



monthly and seasonal means for lead times of one month or more. The model proves to
be highly skillful in the tropics, as expected. Signal-to-noise ratios (SNR) and ACs also
show four areas in the extratropics displaying useful skill: a) South Pacific Ocean, b)
Southern Ocean, c) Southeast Asia, and d) the PNA region. The skill found in the
extratropics outside of the PNA region is highly encouraging. Higher SNR for JFM
compared to JAN suggest that seasonal forecasts may be more reliable than monthly
forecasts. Anomaly correlations for El Nifio/Southern Oscillation (ENSO) warm and cold
events are markedly higher than correlations for both the period 1980-2000 and the subset
of ENSO neutral events. The model's ability to accurately capture changes in the
atmosphere in response to changes in the ocean's thermal structure suggests that accurate
forecasting of these changes in the ocean should lead to more accurate forecasts of

atmospheric conditions associated with ENSO warm and cold events.
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1. INTRODUCTION

Predictability of atmospheric means on monthly or seasonal time scales has been
historically viewed as a boundary forcing problem, with little attention paid to the
possible effects of atmospheric initial conditions (IC). Such boundary forcings include
sea surface temperature (SST), sea ice, snow cover, soil moisture, and other land surface
conditions. It is the slow changes in these forcings, and the subsequent response to these
changes, that are exploited in atmospheric general circulation model (AGCM) studies.
Slowly varying anomalies in lower boundary forcing [i.e., sea surface temperature
anomalies (SSTA)] can have a significant effect on the atmospheric response. This is the
basis of potential predictability of monthly or seasonal means. (Brankovic et al. 1994).

Potential predictability (PP) of model simulated monthly or seasonal means can
be determined by an analysis of the interannual variability of monthly or seasonal means
(Chervin 1986). Atmospheric mean states are comprised of a naturally varying
component and a boundary-forced component (Kumar et al. 1996). The naturally varying
component is due to the internal dynamics of the atmosphere and is referred to as the
internal variability (IV). The boundary-forced component is external to the atmosphere
and is referred to as the external variability (EV). Under the assumption that internal
variability is a measure of the unpredictable climate noise and the external variability is a

measure of the potentially predictable signal, separation of the total variability into its
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measure of the potentially predictable signal, separation of the total variability into its

internal and external components allows for the determination of a model's skill in



simulating the atmosphere by means of a signal-to-noise ratio (SNR). The potential for
predictability can then be assessed by the amount to which the signal exceeds the noise
(Shukla and Gutzler 1983).

One of the earliest studies of potential predictability was by Madden (1976). He
estimated the so-called natural variability using time-averaged sea-level pressure
analyses. This is analogous to [V and was referred to as "natural" since it would be
present in an unchanging climate. Madden concluded that potential predictability is low
because the total variability was not sufficiently larger than his estimates of natural
variability. Shukla (1983) later pointed out that Madden's estimates of natural variability
were too high, and as such the potential for predictability was underestimated. He noted
that Madden's estimate of PP should be looked at as a lower bound for PP.

Kumar and Hoerling (1995) used the separation of total variability methodology
on a nine-member ensemble of monthly mean 200 hPa eddy height anomalies for January
from a model forced with monthly mean observed SSTs to evaluate the PP of
atmospheric mean states. They found that large-scale atmospheric patterns associated
with anomalous boundary forcings observed in El Nifio/Southern Oscillation (ENSO)
extreme events were produced at times in the extratropics. However, skill in the model
simulations was not large away from the tropics, primarily due to large background
climate noise. They concluded that the PP in the extratropics is low. Based on the idea
that time-averaging has a similar effect as ensemble-averaging on the internal variance,
they suggested that seasonal predictions should be improved over monthly predictions.

Internal variance was found to decrease with increasing ensemble size, thus time
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Internal variance was found to decrease with increasing ensemble size, thus time

averaging on longer time scales should produce a similar decrease in the internal variance
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(Kumar and Hoerling 1995). This, in turn, would result in a higher SNR and a larger
potential for predictability. They also noted that maxima in the boundary-forced signal
coincided with two centers of the Pacific/North America (PNA) pattern and that this
region would offer the best chance for predictability of wintertime climate patterns in the
extratropics (Kumar and Hoerling 1998). Predictability was found to be larger in boreal
winter because the strongest signal in model studies has consistently been found during
Northern Hemisphere winter for both the tropics and extratropics. The wintertime signal
has also been seen to increase with increasing strength of ENSO events, with a stronger
response in warm events compared to cold events (Kumar and Hoerling 1997). The
stronger response in the warm events may be due to a reduction in the wintertime signal
during cold events (Hoerling et al. 1997).

The PNA pattern (Wallace and Gutzler 1981; Horel and Wallace 1981) is the
most prominent teleconnection in Northern Hemisphere winter. This pattern has also
been linked to tropical SST variability. A train of anomaly centers of opposite signs
emanates from the tropical Pacific Ocean. In its positive phase, negative height
anomalies are found over the North Pacific Ocean and Southeast United States, while
positive anomalies are found over Hawaii and western Canada. The centers of action
over the North Pacific and western Canada are generally the strongest (Horel and Wallace
1981) and it is these two centers that are associated with the maxima in boundary-forced
signal noted above. Seasonal mean height anomalies are more likely to be in the positive
PNA phase during El Niflo, although the PNA pattern has been observed in non-El Nifio

years as well (Yarnal and Diaz 1986).
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years as well (Yarnal and Diaz 1986).



Reproduction of the PNA pattern in past model studies is not unprecedented.
Blackmon et al. (1983) noted a PNA pattern in 200 hPa, 500 hPa, and 700 hPa
geopotential height anomalies produced by an AGCM run in perpetual January mode
with a representative SSTA in the tropical Pacific typical of warm ENSO events. Geisler
et al. (1985) showed that the PNA pattern was a typical extratropical response in 200 hPa
height anomalies for ENSO warm events of varying prescribed strengths. Lau (1985)
also produced a PNA pattern similar to that seen in observations when forcing a model
with observed SST in the tropical Pacific.

Recently, in the Applied Research Center at the Center for Ocean-Atmospheric
Prediction Studies (COAPS), Salapata (2002) used output from the same model used in
the present study to look at the relationship between various surface parameters and both
the Arctic Oscillation (AO) and ENSO. He found that while the model performed well
on the whole for seasonal averages, it had difficulty resolving the more extreme events in
both precipitation and temperature. Capturing the observed effects of ENSO and AO was
also found to be particularly problematic. Most troubling of all was the revelation that
climatology was a better predictor of mean temperature and precipitation rate than the
model over most of the United States. It was concluded that this model was not a useful
forecasting tool for seasonal means of surface temperature and precipitation.

Apart from the well documented influence of SSTs on the interannual variability
of the extratropical climate, other sources of predictability are continually being sought.
One possible candidate is the low-frequency component of the atmospheric ICs, and their

possible influence on the subsequent monthly and seasonal means (Shukla, 1983; Straus
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possible influence on the subsequent monthly and seasonal means (Shukla, 1983; Straus

and Shukla, 2000). Conclusions about the impact of atmospheric ICs on monthly and

4



seasonal predictability, however, remain controversial. In this study, hindcasted 200 hPa
geopotential heights from the second generation of the National Center for Environmental
Prediction/Climate Prediction Center (NCEP/CPC) Dynamical Seasonal Forecast System
starting from ICs with different lead times are examined to determine the role of
atmospheric ICs in predicting monthly and seasonal mean atmospheric states. Skill of
model simulations is determined by SNRs and anomaly correlations (AC) between
ensemble-averaged height anomalies and NCEP/National Center for Atmospheric
Research (NCAR) Reanalysis anomalies. If the atmospheric ICs have any positive
influence, it is expected that simulations with a shorter lead time will provide a more
skillful representation of the monthly and seasonal mean states of the upper atmosphere.
In section 2, a brief description of the NCEP Dynamical Seasonal Forecast
System is presented and is followed by a description of the model and NCEP/NCAR
Reanalysis data. Section 3 outlines the methods used to determine model biases, to
separate the total variability into internal and external components, and to determine the
level of skill obtained in the model hindcasts. Results are presented in section 4, with

their discussion following in section 5.



2. DATA

a. Model

The coupled atmosphere-ocean general circulation model (GCM) used in this
study is the second generation of NCEP's Dynamical Seasonal Forecast System.
Implemented in April 2000, the second generation system was designed with a primary
goal of refining predictions in the winter season. A brief description of some of the
coupled model's components and characteristics are presented. A more detailed
description can be in found in Kanamitsu et al. (2002b).

The AGCM dynamics incorporate the spectral method of Kanamitsu (1989). The
atmosphere-only forecast model runs in T62L28 reduced grid resolution, providing an
approximate 200 km resolution in the horizontal with 28 vertical layers. Model physics
were taken from the operational medium range NCEP/Department of Energy (DOE)
Reanalysis-II model with a few notable changes (Kanamitsu et al. 2002a). The
convective parameterization scheme in this model is the Relaxed Arakawa-Schubert
(RAS) scheme (Moorthi and Suarez 1992), as opposed to the Simplified Arakawa-
Schubert (SAS) scheme (Pan and Wu 1995) used in the operational NCEP/DOE model.
The RAS scheme was found to reproduce the PNA response much more accurately than

the SAS scheme, especially for the PNA center over northern Canada. The original
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the SAS scheme, especially for the PNA center over northern Canada. The original

Reanalysis-II model was found to have a considerable warm bias, and significant testing
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was done with various parameterization schemes to reduce this bias. Changes from the
Reanalysis-II model that resulted in a reduction of the warm bias include the use of
Chou's longwave radiation scheme (Chou and Suarez 1994), the original Slingo cloud
scheme (Slingo 1987), and smoothed mean orography.

The land model in the AGCM is based on the Oregon State University land model
(Pan and Mahrt 1987). The two soil-layer model provides soil temperature, soil water
content, and canopy water content to the atmosphere and also includes simple snow
physics. Vegetation and soil types used in the land model are derived from the Simple
Biosphere Model climatology (Dorman and Sellers 1989).

The coupled dynamical seasonal prediction system at NCEP also includes
prediction of SST based on a comprehensive coupled ocean-atmosphere GCM. The
ocean GCM (OGCM) in this system is a modified version of the Geophysical Fluid
Dynamics Laboratory (GFDL) tropical oceans model. The domain covers the Pacific
Ocean basin from 45°S to 55°N and 120°E to 70°W. Resolution in the zonal direction is
1.5°, but meridional resolution is not uniform. In the equatorial region between 10°S and
10°N, the meridional resolution is 1/3°. The meridional resolution increases linearly
from 1/3° to 1°, poleward from 10° to 20°. Outside of 20°, the meridional resolution is
1°. Vertically, there are 28 layers, 18 of which are in the top 400 m of the surface, with
variable bottom topography. Vertical mixing is handled by a Richardson number-
dependent scheme developed by Pacanowski and Philander (1981). A more detailed
description of the OGCM is provided in Ji et al. (1995).

For production of the seasonal forecasts only, the OGCM is "one-way anomaly

e N iR I Wy

For production of the seasonal forecasts only, the OGCM is "one-way anomaly

coupled" to a T42L18 AGCM, which is similar to the higher resolution model described



above but with an approximate horizontal resolution of only 300 km. Total SSTs from
the OGCM are used to force the low resolution AGCM, while anomalies of momentum,
heat, and fresh water fluxes from this lower resolution AGCM are added to climatological
means to force the OGCM. A two-tiered approach is then used to drive the T62L18
atmospheric forecast model with the predicted SSTA obtained from the coupled ocean-
atmosphere model. Over a period of one month, 16 runs are made from differing
atmospheric initial conditions, resulting in a 16-member ensemble of SSTA. The
predicted SSTAs from the first tier are available over the Pacific basin only. In the
second tier of this approach, the ensemble-averaged SSTAs from tier one are blended
with the observed SSTAs derived from the NCEP weekly SST analysis outside of the
Pacific basin described above to comprise global SSTA fields. These anomalies outside
of the tropical Pacific basin are damped to climatology with an e-folding time of 90 days.
The anomalies are used as the lower boundary condition for the higher resolution
atmosphere-only tier-2 forecast model.

The tier-2 seasonal atmospheric prediction system consists of two components.
Each month, a set of hindcast runs initialized with observed atmospheric ICs and forced
with observed SSTs for the period 1979-1999 is first done. An additional set of forecast
runs forced with the predicted SSTAs is then made. The hindcast runs provide model
climatologies from which the predicted anomalies are computed.

Real-time atmospheric analyses available in T62L.28 resolution from the
Reanalysis-II are used for atmospheric initial conditions. These analyses contain both

high and low frequency modes of atmospheric variability, such as the PNA pattern, the
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high and low frequency modes of atmospheric variability, such as the PNA pattern, the

North Atlantic and Arctic Oscillations, and individual synoptic systems. Land initial



conditions are taken from the Reanalysis-II climatology for soil wetness and snow cover.
Climatological vegetation cover and types are used since these observations are not
readily available over the period 1979-1999. Ocean initial conditions are derived from
the GFDL real-time ocean data assimilation system. Weekly analyses of subsurface
ocean temperature, SST, and sea surface height are used as initial conditions in the
OGCM.

One other major component in the NCEP/CPC seasonal forecast system is the
inclusion of hindcasts. Prior to the forecasts being made, 21 years of hindcasts are made
for each of the six full months being forecast in that particular model run. Hindcasts are
produced by the atmosphere-only model described above, which is initialized with past
observed atmospheric conditions from 0000 UTC and 1200 UTC on the first five days of
the initialization month for each of the 21 years. The only external boundary forcing is
observed global monthly mean SSTs. Since SSTs are updated monthly, each simulation
for a particular month, for example, January 1980, is subjected to identical lower
boundary forcing, regardless of whether the starting month is September or December.
Land initial conditions are the same as those described above for the forecast model to
ensure that the hindcast climatology is as consistent with the forecast as possible

(Kanamitsu et al. 2002b).

b. Model Data

The data used in this study are AGCM hindcasted 200 hPa geopotential heights

The data used in this study are AGCM hindcasted 200 hPa geopotential heights

for January, February, and March for the period 1980-2000 (Table 1). The use of



Table 1. Schematic representation of model output for this study. BOLD months
represent the monthly data used and italicized months are the initialization months.
(NOTE: JAN data from the July and August runs are not used, as explained in the text.)

JAN

Jul Aug Sep Oct Nov Dec JAN
Aug  Sep Oct Nov Dec JAN Feb
Sep  Oct Nov Dec JAN Feb Mar
Oct Nov Dec JAN Feb Mar Apr
Nov Dec JAN Feb Mar Apr May
Dec JAN Feb Mar Apr May Jun

JFM

Sep  Oct Nov Dec JAN FEB MAR
Oct Nov Dec JAN FEB MAR Apr
Nov Dec JAN FEB MAR Apr May
Dec JAN FEB MAR Apr May Jun

10



hindcasts initialized and forced with past observed atmospheric and oceanic conditions
provides an estimation of the upper limit of a model's forecast skill, thereby justifying
inferences made from hindcast results about monthly and seasonal forecasts. In
accordance with past studies, the 200 hPa height anomaly fields are considered to be
representative of the midlatitude response to the tropical Pacific SSTs (Geisler et al.
1985). For January (JAN) monthly means, integrations with lead times of July, August,
September, October, November, and December are available. However, modifications in
the model between the August and September initializations require that available data
from the July and August runs be neglected for this study. The daily model fields at 2.5°
x 2.5° latitude/longitude resolution are averaged to produce monthly mean JAN 200 hPa
geopotential height fields. From the four available sets of hindcast runs, a total of 840
JAN simulations are made. For January/February/March (JFM) seasonal means,
integrations with lead times of September, October, November, and December are used.
The 3-month daily output is averaged to produce seasonal mean JFM 200 hPa
geopotential height fields. For the JFM seasonal means, a total of 840 simulations are
also available. For consistency between JAN and JFM means, the AGCM simulations
from December ICs are referred to as the one month lead time, the simulations from
November ICs are referred to as the two month lead time, the simulations from October
ICs are referred to as the three month lead time, and the simulations from September ICs
will be referred to as the four month lead time.

For each of the 21 years in a particular model run, an ensemble mean 200 hPa

height field is calculated by averaging the 10 members in the ensemble. The mean of
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height field is calculated by averaging the 10 members in the ensemble. The mean of

these 21 ensemble averages determines the model climatology (Fig. 1 for JAN, Fig. 2 for
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JFM) for that particular simulation's lead time. Hindcast height anomalies (HA) are

obtained by subtracting the 21-year climatology from each individual ensemble member.

¢. Reanalysis Data

For comparisons to model data, monthly mean JAN and seasonal mean JFM 200
hPa geopotential heights for 1980-2000 are derived from the NCEP/NCAR 50-Year
Reanalysis (Kistler et al. 2001). These data are readily available from the NOAA-
Cooperative Institute for Research in Environmental Sciences (CIRES) Climate
Diagnostics Center. The Reanalysis climatologies for JAN and JFM (Fig. 3) are
computed by averaging the 21 years of JAN and JFM data, respectively. Height
anomalies for the Reanalysis data are calculated in the same manner as described above

for the model data.
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3. ANALYSIS PROCEDURES

Model biases for each lead time are formed by subtracting the appropriate
Reanalysis climatology from the various model climatologies. Model climatologies are
computed by averaging all 210 simulations (10-member ensemble for 21 years) for a
given lead time. Reanalysis climatologies for JAN and JFM are calculated by averaging
the 21 monthly mean or seasonal mean fields derived from the NCEP/NCAR Reanalysis
project for the period 1980-2000.

Analyses of variance of model HA are performed in order to assess the potential
predictability of monthly and seasonal atmospheric conditions by isolating the potentially

predictable signal produced by the external boundary forcing from the unpredictable
background climate noise. Let 4,. representa hindcast HA, where the subscript

o denotes a particular year with unique SST state and the subscript i denotes a

particular member within an ensemble. Then, the ensemble-averaged anomaly for unique

SST state is defined as

— 1
Ap=7e 2 A (1)

Despite the fact that each member in an ensemble is subjected to the same SST forcing,
the atmospheric anomalies are a blend of the response due to anomalous SSTs and

atmospheric internal variability. It is the ensemble average that represents the

atmospheric internal variability. It is the ensemble average that represents the

atmospheric response (Kumar and Hoerling, 1995) and is the most likely outcome for the
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observed anomalies. The variability among the 10 ensemble members in a particular year

is termed the internal variability (IV) and is given by

1 -
ONZZ—Z(Alxai_Alla)z . (2)

The IV can differ from year to year due to differences in SST states used to force the
model. The mean internal variability (MIV) across all SST states, then, is the average of

the IV over the entire 21-year period and is defined as

a,zz—l-Zoaz : 3)

This M1V is a measure of the background climate noise, which is not predictable from the
knowledge of SSTs.
The external variance (EV) is spread among ensemble-averaged anomalies and

represents the variance due to interannual changes in SST. It is defined as

1 21 . L
UEZ=Ea=](Ahot_Ah)2 s (4)

where 4, is the mean anomaly of the entire population and is, necessarily, zero. The
EV is a measure of the boundary-forced signal, which is potentially predictable. The total
variance is the sum of the mean internal and external variances, such that

0T2=0,2+052 . (5)
A signal-to-noise ratio (SNR) can be defined as the ratio of external variance to mean

internal variance and is given by

Ok
SNR=F : (6)

1

o’
SNRZU s . (6)

1
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Correlations in time between ensemble-averaged hindcast anomalies (4,,) and

Reanalysis anomalies (4,,) for each grid point are calculated using

AC=—; — 21 ) (7

in an effort to determine areas where the model skillfully hindcasted the climate
anomalies. This is done for the period 1980-2000 and also for subsets of ENSO warm
and cold events and ENSO neutral events. Both extremes of ENSO are treated as a whole
because of the small number of warm and cold events in this period. An anomaly
correlation of 0.5 or greater implies useful skill in the model hindcasts (Kumar et al.
1996). In addition, correlations greater than 0.3 are assumed to show some skill, while
correlations in excess of 0.8 exhibit significant skill.

Classification of ENSO events is provided by NCEP/CPC and is summarized for
1980-2000 in Table 2. The process is subjective, as a group of CPC scientists have
individually categorized each season since 1950 based on thé pattern and magnitude of
SST in the tropical Pacific along the Equator from the International Dateline to 150°W.
The classification, then, is the consensus of individual evaluations. For this study, the
strong (W+) and moderate (W) warm events from the NCEP/CPC classification are
considered as the "warm" events, the weak warm (W-), neutral (N), and weak cold (C-)
events are considered as the "neutral" events, and the moderate (C) and strong (C+) cold
events are considered as the "cold" events. Since ENSO events begin in the summer of a

classified year, the classification for JAN and JFM appears to lag by one year. For
events are considered as the "cold” events. Since ENSO events begin in the summer ot a

classified year, the classification for JAN and JFM appears to lag by one year. For
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Table 2. Classification of ENSO Events for JAN and JFM for the period 1980-2000.
"Warm" denotes the strong and moderate warm events from the NCEP/CPC
classification, "Neutral" denotes the weak warm, neutral, and weak cold events, and
"Cold" denotes the moderate and strong cold events.

Warm Neutral Cold

1983 W+ 1980 W- 1989 C+

1987 W 1981 N 1999 C

1992 W+ 1982 N 2000 C+

1998 W+ 1984 C-

1985 C-

1986 N

1988 W-

1990 N

1991 W-

1993 W-

1994 N

1995 W-

1996 C-

1997 N
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example, the extraordinary 1982-83 warm event shows up as 1983 for JAN and JFM,
even though it began in the latter part of 1982. For the period 1980-2000, there are a total
of four warm events, three cold events, and 14 neutral events.

Based on the above ENSO classification, composite ENSO warm and cold events
can be formed for both the hindcast and Reanalysis data. Compositing extracts the
common features in the atmospheric responses to different SST forcings (Kumar and
Hoerling 1997). A total of 40 AGCM simulations comprise the hindcast warm composite
and a total of 30 AGCM simulations make up the hindcast cold composite for each lead
time. These AGCM composites are compared to the Reanalysis warm and cold
composites, respectively. Comparisons are done for the PNA region bounded by 20°N,

70°N, 180°, and 60°W, a region where model simulations in the past have shown to be

most skillful.
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4. RESULTS

a. Analysis for JAN Means

The dominant feature in the JAN model biases (Fig. 4) for each lead time is a
relatively strong negative bias spanning much of the South Pacific Ocean between 30°S
and 60°S. Climatological model heights are more than 180 m less than Reanalysis
heights just southeast of Australia. This negative bias extends over much of the globe,
including Europe, Asia, Africa, and most of the Americas, while a positive bias is found
over most of Antarctica. The bias pattern over the western portion of the Northern
Hemisphere is reminiscent of the PNA pattern. The primary negative center just south of
Alaska aligns well with the corresponding center of the PNA, while the positions of the
secondary positive center north of the Hudson Bay and the tértiary negative center over
the North Atlantic are shifted eastward in relation to the PNA. There appears to be a
positive shift in the bias over the entire globe from the two-month lead to the one-month
lead. The bias is consistent for the four-month, three-month, and two-month leads. In the
December initialization, however, the negative centers in the South Pacific and south of
Alaska are weaker while the positive center north of the Hudson Bay is stronger, with all
differences on the order of 30 m. Such an effect can also be seen in northern Asia.

Analysis of variance techniques described above are used to separate the total

VIRLIWVIVIIVVY VIL WV VIUVL VL JV 11, JUuVll 4l Vilvwl wdll AloVv UL OVl 11l vl LAVl LL aola.

Analysis of variance techniques described above are used to separate the total

variability into internal and external components to determine signal-to-noise ratios.
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Internal variability (Fig. 5) in the Northern Hemisphere extratropics is found to be about
twice that in the Southern Hemisphere. Within 25-30° of the Equator, MIV is very small.
Maximum MIV in the Northern Hemisphere is found over the North Atlantic and the
Arctic Ocean and just north of the Ross Sea in the Southern Hemisphere. The pattern for
M1V is fairly consistent regardless of lead time indicating little influence of atmospheric
ICs.

Maps of EV (Fig. 6) show four main features: a) a dual-lobe pattern in the eastern
tropical Pacific straddling the Equator, b) a local maximum in the South Pacific in the
same area as the strongest negative bias, c) a slightly stronger local maximum centered
just off the coast of China, and d) the dominant maximum in the North Pacific just south
of Alaska, corresponding to one of the centers of action in the PNA pattern. These four
features are consistent with each lead time, though there is a marked increase in EV over
Antarctica for the one-month lead (Fig. 6a).

Signal-to-noise ratios (Fig. 7) are strongest over the eastern tropical Pacific,
corresponding to one of the local maxima in EV described above. Areas where signal
exceeds noise are generally contained in the tropics (within ~20° of the Equator) and span
the entire tropical belt. In the extratropics, the lone area where SNR>1 for all lead times
is in the North Pacific just south of Alaska, in the same area of the dominant maximum in
EV. An interesting feature is the appearance of SNR>1 over Antarctica for the one-
month lead (Fig. 7a), most likely the result of the noted increase in EV in the same area.
The areal coverage of SNR>0.25 tends to increase as the lead time decreases. No such

increase is observed in the total area where the signal exceeds the noise. Noticeable

LIV GIVUL VU Y VIUAEV VL LTIV Vel LVLIUD LU VA VUIDVY U0 LIV AU LIV UUVAVUOVO. LTV DUV

increase is observed in the total area where the signal exceeds the noise. Noticeable

increases in SNR over the eastern tropical Pacific and equatorial Africa and the western
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Indian Ocean can be seen as the lead time decreases. However, such details when SNR
are this high to begin with are of little value or use.

Anomaly correlations for all 21 years (Fig. 8) show that the highest correlations
between ensemble-averaged model-simulated JAN height anomalies and Reanalysis
height anomalies are found in the tropical belt consistent with high SNR. The maximum
AC, exceeding 0.9, is found in the tropical eastern Pacific. Local maxima in AC also
correspond to the other three features described earlier in regard to EV. AC>0.5 are
found in the South Pacific and off the coast of China. In the extratropics, the dominant
feature is the AC center south of Alaska in the same region as the maximum EV. The
strongest extratropical correlations are consistently found here. A new feature is the
appearance of AC>0.5 in the Southern Ocean between 180° and 60°W for the four- and
one-month leads. Correlations are not as strong in the October and November runs, but
the pattern of increased AC in this area is persistent. Over the entire globe, AC is
consistently the same, regardless of lead time.

Computing the AC for the seven ENSO warm and cold years (Fig. 9) shows that
correlations are generally larger for the entire globe when compared to AC for 1980-
2000. Areas of AC>0.9 are much larger and now found in the area of maximum EV just
south of Alaska and off the coast of China. Correlations over the Southern Ocean now
exceed 0.8 and are much more expansive. Also, significant AC greater than 0.8 are now
found over portions of North America and the north Atlantic that were not present when
all 21 years were considered as a whole.

For ENSO neutral years (Fig. 10), there is a sharp decrease in AC compared to

e mmm ot me e m e mmmeere e e e s aa— e

For ENSO neutral years (Fig. 10), there is a sharp decrease in AC compared to

ENSO warm and cold years over the entire globe, most noticeably in the vicinity of the
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PNA center south of Alaska. The only area with AC>0.8 for neutral years is in the
eastern tropical Pacific. Very little skill is exhibited in the Southern Ocean or off the
coast of China. More skill is noted in the South Pacific, but not nearly as much as in
ENSO warm and cold years.

To assess the model's ability to simulate ENSO events, composite warm and cold
events were formed. In the warm composites (Fig. 11), Reanalysis data (Fig. 11a) show a
strong negative anomaly center in the North Pacific in the same area as the maximum EV.
The area of negative anomalies extends eastward over the southern United States and
northern Mexico with a weak secondary negative center along the US/Mexico border. A
strong positive anomaly is centered near Hudson Bay. Model composites (Figs. 11b, 11d,
111, and 11h) show that a strong negative center of the same magnitude as that found in
the Reanalysis composite is displaced slightly eastward. No secondary negative center is
found in the model simulations, but the extension of the major center is approximately
twice as strong as the Reanalysis. The positive center is not replicated as well in the
model. The model composite anomaly is close in proximity to the Reanalysis composite,
but its magnitude is less than half that found in the Reanalysis. Differences between the
model composite and the Reanalysis composite (Figs. 11c, 11e, 11g, and 11i) show very
little change as lead time decreases.

The pattern in the ENSO cold composite (Figs. 12) shows a response that is
somewhat opposite in nature to the warm composite. In the Reanalysis composite (Fig.
12a), a positive anomaly center is now found south of Alaska in the northern Pacific. A

negative anomaly is centered over northern Alaska, to the west of the warm composite's

N -

negative anomaly is centered over northern Alaska, to the west of the warm composite's

positive anomaly location over Hudson Bay. A distinct secondary positive anomaly is
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Figure 11. Comparisons of JAN composite ENSO warm event anomalies over the PNA
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Figure 11. Comparisons of JAN composite ENSO warm event anomalies over the PNA
region: a) Reanalysis, b) December initialization, c) difference (b-a), d) November
initialization, e) difference (d-a), f) October initialization, g) difference (f-a), h) September
initialization, and i) difference (h-a). Conto;é' interval is 20 m.
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Figure 12. Comparisons of JAN composite ENSO cold event anomalies over the PNA
region: a) Reanalysis, b) December initialization, c) difference (b-a), d) November
initialization, e) difference (d-a), f) October initialization, g) difference (f-a), h) September
initialization, and i) difference (h-a). COHtO:;J?l)‘ interval is 20 m.




located over the Mississippi Valley and covers much of the continental US. All three
centers in the cold composite are more extreme than their warm composite counterparts.
The model cold composites (Figs. 12b, 12d, 12f, and 12h) are not as consistent with
different lead times compared to the warm years. However, the North Pacific center is
still displaced slightly eastward as opposed to the Reanalysis. The negative center over
Alaska is nearly non-existent in the model composites and the positive anomalies over the
US are not as strong as the Reanalysis. Again, there is very little change in the difference

maps (Figs. 12c, 12e, 12g, and 12i) with decreasing lead time.

b. Analysis for JFM Means

Model biases for JFM (Fig 13) are quite similar to those for JAN. There is a
negative bias covering much of Europe, Asia, Africa, and the Indian Ocean and a PNA-
like pattern over the western part of the Northern Hemisphere for each lead time. As
expected, biases for JFM are more consistent for different lead times than are the biases
for JAN. The magnitudes of the negative biases over the South Pacific and North
Atlantic and the positive bias over Hudson Bay remain approximately the same as lead
time shrinks from four months to one month. The only noticeable change is the reduction
of the negative bias just south of Alaska. Also absent from the JFM biases is the positive
bias over Antarctica.

Because JFM data are three-month seasonal averages, IV (Fig. 14) is reduced by

about one-third. This is especially evident in the Northern Hemisphere. Reduction in the
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about one-third. This is especially evident in the Northern Hemisphere. Reduction in the

Southern Hemisphere is not quite as drastic, however, and the IV in the Northern
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Hemisphere is now comparable to that in the Southern Hemisphere. Variability in the
tropics within ~30° of the Equator is still very small and the maximum [V is still found
over the North Atlantic. This is valid for all lead times.

The EV for the seasonal means (Fig. 15) reveals the same four main features
shown for JAN. These are a) the dual-lobe pattern in the eastern tropical Pacific, b) the
local maximum in the South Pacific, ¢) another local maximum over Southeast Asia,
which extends across to India for JFM, and d) the dominant maximum in the North
Pacific in the area of a PNA center. Overall, EV is slightly reduced compared to JAN,
but not as much so as the IV detailed above. The patterns in the EV are fairly consistent,
regardless of lead time.

As seen in JAN, the SNR for JFM (Fig. 16) shows a maximum for all lead times
in the eastern tropical Pacific. The area where the tropical signal exceeds the noise
(SNR>1) is more expansive for JFM, extending out to ~30° from the Equator. Two
regions where local maxima in EV were noted also exhibit SNR>1. These are the
location of the largest negative bias in the South Pacific, where SNR>1, and the area over
China and India, where SNR>2. An increase in SNR over the PNA region is also noted,
with SNR>1 over portions of the continental United States and SNR>2 in the North
Pacific. On the whole, SNR for JFM is more consistent for varying lead times than SNR
for JAN.

Anomaly correlations for JFM (Fig. 17) for the period 1980-2000 are stronger
than for JAN, especially in the tropics where AC>0.8, and generally larger than 0.9,

within 15° of the Equator with only a few exceptions. The area of largest AC is not
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within 15° of the Equator with only a few exceptions. The area of largest AC is not

confined to the eastern tropical Pacific as is found in JAN. Correlations increase to
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beyond 0.7 for the Southern Ocean, the South Pacific, and over China and India. In the
PNA region, the AC is greater than 0.8 and the area of AC>0.5 is larger, as well.
Correlations over the US exceed 0.6 in some instances, a feature not seen in JAN. This
pattern of AC is persistent with decreasing lead time.

Isolating the ENSO warm and cold years (Fig. 18) reveals AC of greater than 0.9
for the entire tropical belt within 20-25° of the Equator. The areal coverage of AC>0.3 is
much larger, as well, when compared to all 21 years. Correlations over the Southern
Ocean, the South Pacific, and over China and India increase to greater than 0.8, with
isolated AC>0.9. Correlations in the PNA region exceeds 0.9 in the North Pacific and
much more of the North American continent is covered by AC>0.6 when just ENSO
warm and cold years are considered. As seen before, the AC pattern for ENSO warm and
cold years shows little change as lead time decreases.

Anomaly correlations for ENSO neutral years for JFM (Fig. 19) are reduced when
compared to AC for 1980-2000. Correlations in the tropics still exceed 0.7, which is
quite skillful, but areas of AC>0.9 are nearly non-existent. The largest reduction is seen
over China and India and the continental United States, where correlations drop below
0.3. Correlations over the Southern Ocean and the South Pacific still exceed 0.5, but the
areal coverage of such correlations is quite small. The largest extratropical AC are still
found in the PNA region in the North Pacific. This pattern, too, shows little variation
with decreasing lead time.

Warm ENSO event composites for JEM (Fig. 20) reveal in the Reanalysis (Fig.

20a) a pattern somewhat similar to JAN, with a negative center in the North Pacific, south
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20a) a pattern somewhat similar to JAN, with a negative center in the North Pacific, south

of Alaska. Moderate negative anomalies extend eastward from this center across the
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southern United States, but no secondary negative center is present. A strong positive
anomaly is located over Hudson Bay with a magnitude slightly reduced compared to
JAN. Model composites (Figs. 20b, 20d, 201, and 20h) reveal a positive center in the
North Pacific of similar magnitude but that has been shifted eastward compared to the
Reanalysis. The model composites show a secondary negative center over the southern
United States embedded in the eastward extension that is slightly stronger than the
Reanalysis composite. The major difference is the positive anomaly center. The model
response is only about one-quarter that of the Reanalysis, though the position is
consistent. Differences between model composites and the Reanalysis composite (Figs.
20c¢, 20e, 20g, and 20i) show very little change as lead time decreases.

JFM cold ENSO composites (Fig. 21), as seen with JAN, are not exact opposites
to their warm counterparts. For the Reanalysis composite (Fig. 21a), positive anomalies
are found over the North Pacific and the continental United States, while a negative
anomaly is centered over Alaska. The pattern for JFM is not as extreme as the cold
composite for JAN, especially concerning the negative anomaly over Alaska. In the
model composites (Figs. 21b, 21d, 21f, and 21h), the positive center over the North
Pacific is in the same location as the Reanalysis, but of greater magnitude. The negative
center over Alaska and the secondary positive center over the United States collocate well
with similar magnitudes compared to the Reanalysis anomalies. Again, differences
between model composites and the Reanalysis composite (Figs. 21c, 21e, 21g, and 21i)
are very consistent. Overall, the best match among the four comparisons is for JEM cold

events, with only the magnitude of the primary positive center drastically different
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events, with only the magnitude of the primary positive center drastically different

between the model output and Reanalysis.
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c. Eddy Height Anomalies

The same analyses were performed on monthly mean JAN and seasonal mean
JFM eddy HA (not shown). Eddy HA were formed by removing the zonal mean anomaly
from the standard height anomalies that were described earlier. Results, in general, were
less satisfactory for the eddy height anomalies when compared to the height anomalies.
For monthly mean JAN, ACs greater than 0.3 were less expansive and areas with
significant correlations (0.8 or higher) were confined to only the equatorial Pacific basin.
For seasonal mean JFM, a similar reduction in the areal coverage of AC was found,
though significant correlations did consistently expand into southeast Asia and the
Maritime Continent for each lead time. Signal-to-noise ratios for eddy HA revealed no

new regions where signal routinely exceeded noise.
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S. DISCUSSION

Hindcasted 200 hPa geopotential heights from the second generation NCEP
Dynamical Seasonal Forecast System are used to assess the potential predictability and
skill of model-simulated wintertime monthly JAN and seasonal JFM means. In
particular, the role of atmospheric initial conditions is investigated by comparing model
output from lead times varying from one month up to four months. As demonstrated
earlier, no significant changes are noted for any of the parameters in this study as lead
time decreased for both monthly and seasonal means. Patterns in model biases, anomaly
correlations, and signal-to-noise ratios are consistent for each initialization time. This
suggests that, for lead times of one month or more, atmospheric initial conditions have
very little influence on the monthly or seasonal mean variability of upper level
atmospheric circulation during boreal winter. This is not to say that atmospheric initial
conditions are completely unimportant, just that their effects are minimal for lead times
of one month or more. Operational constraints at NCEP/CPC require a minimum lead
time of one month. NCEP/CPC products are released to the public on the Thursday
closest to the middle of the month. Thus, to allow adequate time for data processing and
analysis, this one-month lead is the shortest possible lead time. Perhaps lead times of less
than a month may show more influence from atmospheric initial conditions.

Based primarily on a marked increase in signal-to-noise ratio, predictions on
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Based primarily on a marked increase in signal-to-noise ratio, predictions on

seasonal time scales may be more reliable than monthly forecasts. External variability of
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ensemble-averaged anomalies is larger for monthly means compared to seasonal means.
That is, the predictable signal is slightly reduced for the seasonal means. However, an
effect of the time averaging to produce the seasonal mean is that the mean internal
variance is reduced by approximately one-third. This reduction in the unpredictable noise
is greater than the decrease in predictable signal. It is argued that this reduction in noise
is the primary cause of the increased predictability of seasonal means.

Results from correlations between hindcasted ensemble-averaged anomalies and
Reanalysis anomalies suggest that the model simulates the changes associated with
ENSO warm and cold events quite well. The model more accurately simulates upper-air
conditions for ENSO warm and cold events than for the period 1980-2000 or the subset
of ENSO neutral events. The improvement for ENSO warm and cold events compared to
ENSO neutral events is considerable. Comparisons of composite events for the PNA
region suggest that cold events may be simulated slightly better than warm events.
However, with such a small sample of warm and cold events, no strong conclusions can
be made with regard to this secondary suggestion. These composites also reveal a PNA-
type response during ENSO warm events and a somewhat reverse PNA response during
ENSO cold events. Neither of these findings are totally unexpected. The fact that
extreme ENSO warm and cold events are simulated more skillfully than neutral events,
though, is undeniable. The skill exhibited in hindcasting monthly and seasonal means
using observed SSTA to force the model also suggests that accurate forecasts of forcing
fields in a coupled system should yield positive results for climate forecasts, especially

for the extreme events associated with ENSO.
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for the extreme events associated with ENSO.
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The most encouraging result is the identification of areas outside of the tropics
and the PNA region where the model skillfully simulated the atmosphere. The tropical
atmosphere is generally assumed to be directly driven by fluctuations in SSTA in the
tropical Pacific Ocean. Thus, the high correlations and signal-to-noise ratios in the global
tropics are not surprising. It has also been shown that effects of the interannual changes
in SSTA in the tropical Pacific are teleconnected to the PNA region, such that the level of
skill displayed there in the model simulations was also expected. However, the skill
exhibited in the South Pacific, the Southern Ocean, and in Southeast Asia was not
anticipated. Ideally, it is hoped that these areas of skill could be expanded to provide a
more global coverage. The identification of additional areas where the model skillfully
replicates the atmosphere, especially in the extratropics away from the primary forcing
mechanism, provides more confidence in the forecasting of monthly and seasonal

atmospheric anomalies.
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the free golf benefits. He accepted a NOAA/NCEP/FSU Fellowship to study under Dr.
James J. O'Brien at COAPS in the Applied Research Center beginning in the Fall of
2000. As part of this Fellowship, Phelps worked as a Visiting Scientist at the NCEP
Climate Prediction Center in Camp Springs, MD, in the Summer of 2001 under the
guidance of Dr. Arun Kumar. During his time in Tallahassee, Phelps witnessed history in
Doak S. Campbell Stadium when the Pack stunned the college football world by
defeating the Seminoles 34-28 on November 10th, 2001, to become the first ACC school
to win a road game at Florida State. The result of the combined experiences at
FSU/COAPS/ARC and NCEP/CPC was the work you have just completed reading.
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