
AUGUST 2002 417A N D R E A S

Parameterizing Scalar Transfer over Snow and Ice: A Review

EDGAR L ANDREAS

U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

(Manuscript received 12 October 2001, in final form 28 February 2002)

ABSTRACT

Evaluating the profiles of wind speed, temperature, and humidity in the atmospheric surface layer or modeling
the turbulent surface fluxes of sensible and latent heat over horizontally homogeneous surfaces of snow or ice
requires five pieces of information. These are the roughness lengths for wind speed (z0), temperature (zT), and
humidity (zQ) and the stratification corrections for the wind speed and scalar profiles cm and ch, respectively.
Because over snow and ice the atmospheric surface layer is often stably stratified, the discussion here focuses
first on which of the many suggested cm and ch functions to use over snow and ice. On the basis of four profile
metrics—the critical Richardson number, the Deacon numbers for wind speed and temperature, and the turbulent
Prandtl number—the manuscript recommends the Holtslag and de Bruin cm and ch functions because these have
the best properties in very stable stratification. Next, a reanalysis of five previously published datasets confirms
the validity of a parameterization for zT/z0 as a function of the roughness Reynolds number (R

*
) that the author

reported in 1987. The zT/z0 data analyzed here and that parameterization are compatible for R
*

values between
1024 and 100, which span the range from aerodynamically smooth through aerodynamically rough flow. Dis-
cussion of a z0 parameterization is deffered and an insufficiency of data for evaluating zQ is reported, although
some zQ data is presented.

1. Introduction
Over glaciers, sea ice, and snow-covered ground, the

atmospheric surface layer is often stably stratified. Es-
timating the contributions from the surface sensible and
latent heat fluxes to the surface energy budget for such
surfaces usually relies on Monin–Obukhov similarity
theory to deal with these stratification effects. This
method, in turn, requires knowing how to parameterize
the roughness lengths for wind speed (z0), the so-called
scalar roughness length for temperature (zT) and hu-
midity (zQ), and the stratification corrections to the usual
semilogarithmic profiles for wind speed, temperature,
and humidity.

Mathematically, in the context of Monin–Obukhov
similarity theory, the profiles for wind speed (U), poten-
tial temperature (T), and specific humidity (Q) as func-
tions of height (z) in the atmospheric surface layer obey

u* z z
U(z) 5 ln 2 c , (1.1a)m1 2 1 2[ ]k z L0

t* z z
T(z) 5 T 1 ln 2 c , (1.1b)s h1 2 1 2[ ]k z LT

q* z z
Q(z) 5 Q 1 ln 2 c . (1.1c)s h1 2 1 2[ ]k z LQ
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Here, k (50.40) is the von Kármán constant; Ts and Qs

are the temperature and specific humidity at the surface;
L is the Obukhov length, a stratification parameter; and
cm and ch are the stratification corrections to the semi-
logarithmic profiles. In (1.1c), I make the usual as-
sumption that ch is the same for both the temperature
and humidity profiles. Over surfaces of snow and ice,
we commonly take Qs to be the saturation specific hu-
midity at temperature Ts.

Last, in (1.1), u* is the friction velocity, and t* and
q* are analogous temperature and humidity flux scales
such that the sensible (Hs) and latent (HL) heat fluxes
are

H 5 2rc u*t*, (1.2a)s p

H 5 2rL u*q*. (1.2b)L y

Here, r is the air density; cp, the specific heat of air at
constant pressure; and Ly , the latent heat of vaporization
or sublimation. Since this review concentrates on stable
stratification, I follow Nieuwstadt (1984) and treat u*,
t*, q*, and L as local scales.

Combining (1.1) and (1.2) results in the usual bulk-
aerodynamic method for estimating Hs and HL:

H 5 rc C U(z)[T 2 T(z)], (1.3a)s p Hz s

H 5 rL C U(z)[Q 2 Q(z)]. (1.3b)L y Ez s

Here, CHz and CEz are called the scalar transfer coeffi-
cients: the transfer coefficients for sensible and latent
heat at reference height z. Combining (1.1), (1.2), and
(1.3), we evaluate these coefficients to be
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2k
C 5 , (1.4a)Hz [ln(z/z ) 2 c (z)][ln(z/z ) 2 c (z)]0 m T h

2k
C 5 , (1.4b)Ez [ln(z/z ) 2 c (z)][ln(z/z ) 2 c (z)]0 m Q h

where z 5 z/L.
Thus, to reiterate, estimating Hs and HL, in general,

requires knowing how to parameterize the roughness
lengths z0, zT, and zQ and the stratification corrections
cm and ch. My focus here is on how to parameterize zT

and zQ over surfaces of ice or snow. The subject of how
to parameterize z0 over such surfaces is much more
complex and must await a dedicated review, although
Kind (1976), Jackson and Carroll (1978), Banke et al.
(1980), Chamberlain (1983), Inoue (1989), Raupach
(1992), Andreas and Claffey (1995), and Andreas
(1995), among many others, offer insights into this pa-
rameterization.

Finding zT and zQ involves either calculating CHz and
CEz from measurements of Hs and HL using (1.3) and
then solving (1.4) for zT and zQ or fitting profile mea-
surements with (1.1) to obtain the flux scales and the
roughness lengths. Either way, knowing the functional
forms for cm and ch is crucial. I therefore first review
and assess several published expressions for cm and ch.
The cm and ch functions from Paulson (1970), for ex-
ample, are suitable for treating unstable stratification,
and I discuss these no further. On the other hand, be-
cause the atmospheric surface layer over surfaces of ice
or snow is often stably stratified, I focus on the forms
of cm and ch in stable stratification, where there is little
consensus on how to represent these.

2. Profile metrics

For investigating theoretical constraints on the be-
havior of the atmospheric surface layer profiles during
stable stratification, using the gradient functions fm(z)
and fh(z) is easier than using the profile functions cm(z)
and ch(z). These gradient functions are related to the
surface-layer profiles of wind speed, potential temper-
ature, and specific humidity as (e.g., Dyer 1974)

dU u*
5 f (z), (2.1a)mdz kz

dT t*
5 f (z), (2.1b)hdz kz

dQ q*
5 f (z). (2.1c)hdz kz

Comparing (1.1) and (2.1), we get the expression that
links the c and f functions (e.g., Panofsky 1963):

z 1 2 f(z9)
c(z) 5 dz9. (2.2)E z90

A host of fm and fh functions for stable stratification

(i.e., z . 0) have been suggested. Of course, not all of
these have proper theoretical behavior—some are sim-
ply empirical fits. Here I introduce four profile metrics
to help us decide which fm and fh functions have proper
behavior, especially in the limit of very stable stratifi-
cation. These metrics are the gradient Richardson num-
ber Ri, the Deacon numbers for wind speed Dm and
potential temperature Dh, and the turbulent Prandtl num-
ber Prt.

a. Gradient Richardson number

The gradient Richardson number is

g dT /dz
Ri [ , (2.3)

2T (dU/dz)y

where g is the acceleration of gravity and Ty is the virtual
temperature. From (2.1a) and (2.1b), we see that (2.3)
can be written

g t*kz f (z)hRi 5 . (2.4)
2 2T u* f (z)y m

The group of variables in the front of (2.4) is just z,
where

2T u*yL 5 . (2.5)
g kt*

Consequently,

zf (z)hRi 5 . (2.6)
2f (z)m

Like z, the gradient Richardson number is a stratifi-
cation parameter. In stable conditions, turbulence is pre-
sumed to cease and the flow becomes laminar when the
Richardson number exceeds a critical value Ricr. Thus,
we should expect accurate fm and fh functions to pre-
dict this critical value through (2.6). That is,

lim Ri 5 Ri . (2.7)cr
z→`

Traditionally, Ricr is assumed to be 0.20–0.25 (Oka-
moto and Webb 1970; Busch 1973; Businger 1973;
Nieuwstadt 1984). But Mahrt (1981) and Heinemann
and Rose (1990) report that a larger value is sometimes
indicated. Lyons et al. (1964) report nighttime data from
Brookhaven, New York, that show ‘‘no clear ‘critical’
Richardson number’’ for Ri values up to at least 0.99
but also point out that these data do suggest the de-
creasing potential for turbulence for Ri greater than
0.25–0.50. Kondo et al. (1978) likewise report that tur-
bulence can persist up to Ri values of 1 but conclude
that the turbulence is only intermittent for Ri values
between 0.2–0.3 and 1. Woods (1969) explained this
apparent range in critical Richardson numbers some-
what differently by demonstrating how hysteresis can
affect Ricr. He concluded that a turbulent flow becomes
laminar when Ri exceeds 1, but a laminar flow does not
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become turbulent until Ri falls below 0.25 (see also
Plate 1971, p. 76). Canuto et al. (2001) partially cor-
roborate this scenario by reporting that, in large-eddy
and discrete numerical simulations, turbulence persists
for Richardson numbers up to 1. In his observations at
the South Pole, however, Lettau (1979) frequently found
turbulence to exist even when Ri exceeded 1 and, thus,
concluded that there is no critical Richardson number.
Monin and Yaglom (1971, p. 440 f.) and Yamamoto
(1975) also argue that no critical Richardson number
seems to exist.

In light of this controversy, I conclude that the critical
Richardson number for an existing turbulent flow is
probably larger than the traditional value of 0.20 or 0.25;
perhaps it is of order 1. Still, some have speculated that
Ri does not reach a critical value at all: that turbulence
does not cease as z increases.

b. Deacon numbers

Lettau (1957, 1979; see also Viswanadham 1979,
1982) uses two quantities to characterize profile cur-
vature in the atmospheric surface layer, the Deacon
numbers for wind speed (Dm) and potential temperature
(Dh). Andreas (1998) also discusses these.

For wind speed,

2 22z(d U/dz )
D [ . (2.8)m dU/dz

From (2.1a), we easily see that

z df (z)mD (z) 5 1 2 . (2.9)m f (z) dzm

Similarly, for potential temperature,

2 22z(d T /dz )
D [ ; (2.10)h dT /dz

and from (2.1b),

z df (z)hD (z) 5 1 2 . (2.11)h f (z) dzh.

In neutral stratification, where z 5 0, Dm and Dh are
both 1. As the stratification increases, however, reliable
fm and fh functions should predict limiting Dm and Dh

values that agree with theory and experiment. I will
discuss theoretical limits for Dm and Dh as z gets large
shortly, but the experimentally determined limits are
inconclusive. For example, from profile observations at
the South Pole, Lettau (1979) concludes that Dm 5 1/4
and Dh 5 21/2 in the limit of z → `. On the other
hand, Viswanadham (1982) suggests that Dm is small
but slightly positive; he gives 0.04 as the limit for Dm

with increasing stratification. He did not evaluate Dh.
One reason for this absence of definitive results must

surely be the difficulty in measuring second derivatives
of U and T in the atmospheric surface layer. As a min-

imum, such measurements require four levels of well-
calibrated sensors.

c. Turbulent Prandtl number

The turbulent Prandtl number is the ratio of the eddy
diffusivities for momentum (Km) and sensible heat (Kh).
These fluxes are related to the respective wind speed
and potential temperature gradients through these dif-
fusivities (e.g., Dyer 1974):

dU
2t 5 ru* 5 rK , (2.12a)m dz

dT
H 5 2rc u*t* 5 2rc K . (2.12b)s p p h dz

From (2.1) and (2.12), we thus see that

K (z) 5 u*kz/f (z), (2.13a)m m

K (z) 5 u*kz/f (z). (2.13b)h h.

As a result, the turbulent Prandtl number is

K (z) f (z)m hPr (z) [ 5 . (2.14)t K (z) f (z)h m

Much of the discussion regarding Prt has concentrated
on its value at neutral stability, z 5 0 (e.g., Businger
et al. 1971; Kader and Yaglom 1990; Högström 1996).
Again, since I am interested more in the behavior of the
fm and fh functions in the limit of very stable strati-
fication, I focus on the limit of Prt(z) as z gets large.

Because Prt contains the ratio fh/fm, as does Ri, if
the Richardson number is unbounded as z increases, Prt

could be too. Monin and Yaglom (1971, p. 440 f.) there-
fore believe that Prt increases without bound as z in-
creases. Mahrt (1998) reaches essentially the same con-
clusion, explaining that pressure fluctuations in the at-
mosphere caused by gravity waves can transfer mo-
mentum but not sensible heat (cf. Beljaars and Holtslag
1991). Observations by Kim and Mahrt (1992) seem to
substantiate this conclusion. Using aircraft data col-
lected over Kansas and Oklahoma, they show Prt in-
creasing without bound for Ri values up to almost 1. In
contrast, Howell and Sun (1999) show surface-layer
data from the Microfronts experiment in Kansas in 1995
for which the turbulent Prandtl number remains near 1
for z up to 10.

d. In laminar flow

As the stratification increases—that is, as z approach-
es infinity—a turbulent flow eventually becomes lami-
nar, at least in a laboratory setting. Here molecular pro-
cesses alone must support the fluxes of momentum and
sensible heat. Thus, for the momentum flux, rather than
(2.12a), we have (e.g., Tennekes and Lumley 1972, p.
160)
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FIG. 1. A sampling of (top) fm and (bottom) fh functions for
stable stratification.

dU
2t 5 ru* 5 rn , (2.15)

dz

where n is the kinematic viscosity of air. As a result,

u*kz u*kLz
lim f (z) 5 5 . (2.16)m n nz→`

Likewise, the sensible heat flux in laminar flow is

dT
H 5 2rc u*t* 5 2rc D , (2.17)s p p dz

where D is the thermal diffusivity of air. Consequently,

u*kz u*kLz
lim f (z) 5 5 . (2.18)h D Dz→`

Therefore, in the limit of laminar flow, the turbulent
Prandtl number should obey

f (z) nhlim Pr (z) 5 lim 5 , (2.19)t f (z) Dz→` z→` m

which is the molecular Prandtl number, approximately
0.71 for air. Notice that, in this context, Prt is a bound
quantity that is of order 1. Of course, this extension to
laminar flow does not consider intermittent processes in
the stable atmosphere, such as wave breaking, that can
periodically destroy the laminar flow and foster mo-
mentum exchange with little heat transfer, as Monin and
Yaglom (1971, p. 440 f.) and Mahrt (1998) explain.

From (2.16) and (2.18), we can also evaluate the Dea-
con numbers in the limit of laminar flow. From (2.9)
and (2.16),

lim D (z) 5 0; (2.20)m
z→`

and from (2.11) and (2.18),

lim D (z) 5 0. (2.21)h
z→`

That is, both the wind speed and potential temperature
profiles are linear in laminar flow and, thus, have no
curvature. The respective Deacon numbers must there-
fore be zero.

In summary, these laminar limits are targets for
Dm(z), Dh(z), and Prt(z) in the limit of very stable strati-
fication. We realize though that contrary experimental
and theoretical results call into question the idea of re-
lying strictly on these laminar limits for flows in the
atmospheric boundary layer. Nevertheless, real flows
should not stray far from these laminar limits as the
stratification increases.

3. A sampling of gradient functions for stable
stratification

Dozens of expressions for the fm and fh functions
have been published over the last 40 years. Dyer (1974),
Yamamoto (1975), Yaglom (1977), and Sorbjan (1989,

p. 74 ff.), for example, summarize some of these func-
tions. Since I cannot hope here to provide an encyclo-
pedic review of all of these functions, I select for dis-
cussion a small sample of representative functions.
Readers can evaluate other functions themselves with
the techniques I will describe.

a. Log–linear

Classically, the log–linear relation,

f (z) 5 f (z) 5 1 1 az,m h (3.1)

is the usual model for fm and fh in stable stratification.
The constant a is generally reported to be in the range
from 5 (Webb 1970; Dyer 1974; Large and Pond 1981)
to 7 (Wieringa 1980; Large and Pond 1982; Högström
1988).

Figure 1 shows plots of fm and fh for a values of
5 and 7, while Table 1 lists the Deacon, gradient
Richardson, and Prandtl numbers for these functions
in the limit of large z. The Deacon and Prandtl numbers
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TABLE 1. A comparison of the predictions of several sets of fm

and fh functions in the limit of very stable stratification. The laminar
case is a possible nonturbulent limit.

f , fm m

Lim z → `

Dm Dh Ri Prt

Log–linear, a 5 5 0 0
1

5 0.20
5

1

Log–linear, a 5 7 0 0
1

5 0.14
7

1

Lettau (1979)
1

4

1
2

2
z 3/4(4.5z)

Brutsaert (1982) 1 1
z

6
1

Holtslag and de Bruin
(1988)

0 0 1.43 1

Beljaars and Holtslag
(1991)

0
1

2
2

1/22
z1 23

1/22
z1 23

King et al. (1996) 1 1
z

12
1

Laminar 0 0
n

ø 0.71
D

for these log–linear functions reach the proper laminar
theoretical limits of 0 and order 1, respectively. The
critical Richardson numbers implied by the a 5 5 and
a 5 7 versions of the log–linear gradient functions, 1/
5 and 1/7, respectively, are approximately in the clas-
sical range, 0.20–0.25. As I explained, however, these
critical Richardson numbers are too small for atmo-
spheric flows in light of more recent theory and ob-
servations.

b. Lettau

On the basis of his profile observations at the South
Pole, Lettau (1979) introduced the following novel ex-
pressions for fm and fh:

3/4f (z) 5 (1 1 4.5z) , (3.2a)m

3/2f (z) 5 (1 1 4.5z) . (3.2b)h

Figure 1 depicts these functions. Lettau’s fh function
predicts by far the steepest temperature gradient among
any of the functions that I survey.

Table 1 lists the Deacon, Richardson, and Prandtl
numbers that Lettau’s functions imply in the limit of
large z. Lettau specifically formulated his fm and fh

functions to produce the rather unusual Dm and Dh val-
ues of 1/4 and 21/2 because these values mirror the
results of his profile observations at South Pole. His
predicted Richardson number does not approach a limit

at large z but, rather, continues increasing in proportion
to z. Likewise, his turbulent Prandtl number does not
reach a laminar limit but increases as z 3/4. As I men-
tioned above, some have speculated that such unbound-
ed Richardson and Prandtl numbers could exist in an
intermittently turbulent, stable boundary layer. None,
however, have corroborated the steepness of Lettau’s fh

function.

c. Brutsaert

Brutsaert (1982, p. 71) recommends the log–linear
form for fm and fh but constrains these to values of 6
or less. That is,

f (z) 5 f (z) 5 1 1 5z for 0 # z # 1 (3.3a)m h

f (z) 5 f (z) 5 6 for z . 1. (3.3b)m h

Kondo et al. (1978) also suggest that fm is limited by
6. Figure 1 shows plots of the functions in (3.3). At
large z, they yield the smallest fm and fh values for
any of the functions I am surveying.

Table 1 lists the Deacon, Richardson, and Prandtl
numbers predicted by Brutsaert’s functions in the limit
of large z. His functions predict rather unusual limiting
Deacon numbers of Dm 5 Dh 5 1. His functions also
predict a Richardson number that is unbounded; it in-
creases as z/6. In other words, he predicts that no critical
Richardson number exists. In a break with the other
functions in Table 1 that predict an unbounded Richard-
son number [except those from King et al. (1996)], how-
ever, his functions predict that the turbulent Prandtl
number reaches a limit of 1.

d. Holtslag and de Bruin

Holtslag and de Bruin (1988) build on analyses by
Carson and Richards (1978) and Hicks (1976) to de-
velop expressions for fm and fh that are specially adapt-
ed for very stable stratification (cf. Launiainen and Vih-
ma 1990):

f (z) 5 f (z)m h

5 1 1 0.7z

1 0.75z(6 2 0.35z) exp(20.35z). (3.4)

Figure 1 shows plots of these functions. They are fairly
close to Brutsaert’s (1982) in the plotted range but con-
tinue increasing slowly with z, while his functions are
constant at 6 for z larger than 1.

Table 1 lists the limiting values of the Deacon,
Richardson, and Prandtl numbers implied by the Holts-
lag and de Bruin functions. All these values reach rea-
sonable limits as z increases. The Deacon numbers Dm

and Dh both go to zero, the limit for laminar flow. The
turbulent Prandtl number is always 1, which is the ap-
proximate order of the molecular Prandtl number. Fi-
nally, Holtslag and de Bruin’s functions predict that the
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critical Richardson number is 1.43, in line with my ear-
lier discussion that modern ideas suggest a critical Rich-
ardson number of order 1.

e. Beljaars and Holtslag

Beljaars and Holtslag (1991) suggest slightly altered
versions of the fm and fh functions given by Holtslag
and de Bruin (1988) because, presumably, these new
functions ‘‘are more consistent with critical Ri consid-
erations.’’ The Beljaars and Holtslag functions are

2
f (z) 5 1 1 z 1 z(6 2 0.35z) exp(20.35z), (3.5a)m 3

1/22
f (z) 5 1 1 z 1 1 zh 1 23

2
1 z(6 2 0.35z) exp(20.35z). (3.5b)

3

Figure 1 shows plots of these functions.
Table 1 lists the values of the Deacon, Richardson,

and Prandtl numbers implied by Beljaars and Holts-
lag’s functions in the limit of large z. The limiting
Deacon number for the wind speed profile, 0, agrees
with the laminar limit. The Deacon number for the
temperature profile, 21/2, on the other hand, does not;
though it is the same as Lettau’s (1979) value. Beljaars
and Holtslag’s functions also predict that no critical
Richardson number exists; for their functions, Ri in-
creases as [(2/3)z ]1/2 . Likewise, their predicted tur-
bulent Prandtl number does not have a limiting value
but also increases as [(2/3)z ]1/2 .

f. King et al.

King et al. (1996) take an approach similar to Brut-
saert’s (1982), basing fm and fh on log–linear relations
but limiting these functions to a maximum of 12. That
is, their formulation is

f (z) 5 1 1 5.7z, f (z) # 12, (3.6a)m m

f (z) 5 0.95 1 4.99z, f (z) # 12. (3.6b)h h

Here the additive constants and the coefficients of the
z terms come from King and Anderson’s (1994) profile
measurements at Halley Station on the Antarctic con-
tinent. Figure 1 shows plots of these fm and fh func-
tions.

Table 1 lists values for the profile metrics implied by
the functions suggested by King et al. in the limit of
large z. Both Dm and Dh equal 1 in very stable condi-
tions, contrary to the predictions from laminar flow the-
ory and at odds with all results except Brutsaert’s
(1982). The King et al. functions also do not produce
a critical Richardson number; in their formulation, Ri
increases monotonically as z/12. Notice that the King
et al. functions are the only ones that I consider for

which the turbulent Prandtl number at z 5 0 is not 1;
their functions imply Prt 5 0.95 at neutral stability, in
line with Högström’s (1996) recent review. In very sta-
ble stratification, their predicted turbulent Prandtl num-
ber is 1, as predicted by several other sets of functions
in Table 1.

g. Summary

We see from Fig. 1 that, for 0 # z # 0.5, where most
profile data for evaluating the fm and fh functions have
been collected, the seven candidate sets of functions
show only minor differences. As the stratification in-
creases, however, and the turbulence likely becomes in-
termittent, the fm and fh functions show diverging opin-
ions. The two log–linear expressions for fm—which ad-
mittedly were never intended for extrapolating into very
stable stratification—suggest very large values. The oth-
er five functions, which are intended explicitly for treat-
ing very stable stratification, imply fm values typically
between 6 and 12.

For fh, again the log–linear functions imply very
large values in very stable stratification but really should
not be extrapolated into this region. Lettau’s (1979)
function, in contrast, suggests even larger values and
was formulated specially to treat very stable stratifica-
tion. Nevertheless, it has no corroboration that I know
of; I must thus assume it is unrealistically large. The
other four fh functions in Fig. 1 typically predict values
between 6 and 14 in very stable stratification.

I use the values of the four profile metrics, Dm, Dh,
Ri, and Prt, in the limit of large z to judge which of
these functions have realistic behavior. I eliminate the
two log–linear sets immediately because they were
never intended to treat very stable stratification. I elim-
inate Lettau’s (1979) functions because these imply the
most unusual profile metrics of all the functions in Table
1 and because fh seems too large. Though mathemat-
ically simple, I also eliminate the Brutsaert (1982) and
King et al. (1996) functions because of their implied
Deacon numbers in the limit of large z.

Finally, I eliminate Beljaars and Holtslag’s (1991)
functions because I have seen no hard evidence that
turbulence persists without limit as the stratification in-
creases. In particular, Howell and Sun’s (1999) Micro-
fronts data do not show Ri increasing as rapidly with z
as Beljaars and Holtslag’s functions predict and do not
give Ri values larger than 0.6 for z up to 10. In other
words, most analyses that have addressed the question
suggest a critical Richardson number of order 1 exists.
Likewise, Howell and Sun suggest the turbulent Prandtl
number is also of order 1 in very stable stratification
contrary to Beljaars and Holtslag’s prediction of no lim-
iting Prandtl number.

The functions developed by Holtslag and de Bruin
(1988) imply profile metrics that agree with these as-
sessments and are thus the functions I recommend for
representing stratification effects in surface-layer wind
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TABLE 2. Values of the coefficients to use in (4.1) for estimating
the scalar roughness lengths in the three aerodynamic regimes.

R
*

# 0.135
Smooth

0.135 , R
*

, 2.5
Transition

2.5 # R
*

# 1000
Rough

Temperature (zT/z0)
b0

b1

b2

1.250
0
0

0.149
20.550

0

0.317
20.565
20.183

Humidity (zQ/z0)
b0

b1

b2

1.610
0
0

0.351
20.628

0

0.396
20.512
20.180

speed, temperature, and humidity profiles in stable
stratification. Launiainen (1995), Vihma (1995), and
Jordan et al. (1999, 2001), among others, have also set-
tled on these stability functions for treating stable strat-
ification.

The radiative flux divergence in the atmospheric sur-
face layer is a process that may affect the conclusions
above. Although a full evaluation of this term in the
heat budget of the atmospheric surface layer is beyond
my scope, I want to raise the issue as an area that needs
research. Briefly, near-surface water vapor absorbs and
emits longwave radiation. Depending on the near-sur-
face temperature and humidity profiles, this exchange
may ruin the assumption that a surface layer exists in
which the vertical flux of sensible heat is constant with
height. In turn, the fh function especially would then
not obey Monin–Obukhov similarity.

Normally, the radiative flux divergence is negligible.
But in very stable stratification, when the winds are light
and the magnitude of the sensible heat flux is small, the
radiative flux divergence can lead to a significant var-
iation in the sensible heat flux with height (e.g., Coantic
and Seguin 1971). Coantic and Seguin (1971), Garratt
and Brost (1981), and Narasimha and Vasudeva Murthy
(1995), among others, investigated the effects of radi-
ative flux divergence on atmospheric surface layer pro-
files but did not treat the specific cases of snow-covered
surfaces or temperatures well below freezing, when the
water vapor density in the atmospheric surface layer
will be small. Hence, I cannot reliably infer what their
results might say about the effects of the radiative flux
divergence over surfaces of ice or snow. We need a
thorough study of the possible interactions between tur-
bulence and radiation in the atmospheric surface layer
at temperatures well below freezing to evaluate whether
these interactions can explain the variety of fm and fh

functions reported in the literature.

4. Scalar roughness over snow and ice

Andreas (1987) built on the surface-renewal models
of Brutsaert (1975) and Liu et al. (1979) to produce the
only theoretically based model that specifically predicts
zT and zQ over ice and snow-covered surfaces. Although
I had scant data with which to test that model when I
published it, sporadic tests have been published since
(e.g., Munro 1989; Bintanja and Van den Broeke 1995).
More importantly, since that model is the only one spe-
cifically for snow and ice surfaces, many have been
using it for numerical modeling (e.g., Morris 1989; Lau-
niainen and Cheng 1998; Jordan et al. 1999), though,
to my mind, it has not been adequately validated.

The model’s basic result is an equation that predicts
the scalar roughness zs from the roughness Reynolds
number R* (5u*z0/n),

2ln(z /z ) 5 b 1 b (lnR ) 1 b (lnR ) ,s 0 0 1 2* * (4.1)

where zs is either zT or zQ. Table 2 lists the polynomial
coefficients, b0, b1, and b2.

Comparing (4.1) and the coefficients summarized in
Table 2, we see that (4.1) is a piecewise-continuous
function with three pieces. For aerodynamically smooth
flow, zs/z0 is independent of the roughness Reynolds
number because here molecular effects control the ex-
change of both momentum and scalars. That is, both
scale similarly with u*. For aerodynamically rough flow,
in contrast, the viscous boundary layer continually thins
with increasing u*, the surface roughness elements pro-
trude farther above this layer, and pressure forces be-
come more important in transferring momentum. The
effect is that z0 increases with u*; while zs, which is
still dictated by molecular processes, does not change
as rapidly. Hence, zs/z0 is a monotonically decreasing
function of R* for aerodynamically rough flow. Andreas
(1987) simply made a log–log interpolation between the
limits of smooth and rough flow to fill in the transition
region in Table 2.

I want to test this model here with several datasets
that I have located or that have become available since
Andreas (1987) appeared. Hicks and Martin (1972),
Thorpe et al. (1973), Joffre (1982), King and Anderson
(1994), and Calanca (2001) have all reported measure-
ments of quantities related to zT or zQ; but these are
small datasets, or the reported data were not in a form
that I could use.

The primary reason for the scanty data is the difficulty
in making the required measurements. Analyses for zT

and zQ rely on (1.3), but the fluxes Hs and HL are gen-
erally smaller in magnitude in stable stratification than
in unstable stratification and can be especially small
over snow and ice surfaces. That is, often the magni-
tudes of Hs and HL are comparable to the experimental
uncertainty in the measurements of these values. Like-
wise, the required gradients in (1.3), Ts 2 T(z), and
Qs 2 Q(z), are often small with large experimental un-
certainties. In total, then, over surfaces of snow and ice,
experimental uncertainties can often swamp values of
CHz and CEz calculated from (1.3) and, thus, values of
zT and zQ calculated from (1.4). Still, I have located five
datasets that are modestly sized and seem to have
enough signal-to-noise ratio to provide estimates of zT
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FIG. 2. Five typical (top) wind speed and (bottom) potential tem-
perature profiles from Munro’s (1989) dataset. In each panel, the
markers show the data, and the lines are the fits based on (1.1a) and
(1.1b) using the Holtslag and de Bruin (1988) stability corrections.
The horizontal scale is relative rather than absolute. In the wind speed
plot, the number at z 5 1 m gives the measured wind speed (in m
s21) at 1 m; in the temperature plot, the number at z 5 1 m gives
the potential temperature (in 8C) there. The number under each profile
is the Obukhov length in meters.

and zQ. For these sets, I was also usually able to obtain
and analyze the raw data.

a. Munro’s data

Munro (1989) measured profiles of wind speed and
temperature at four levels between 0.25 and 1.00 m over
the melting Peyto Glacier (Alberta, Canada; e.g., Good-
ison 1970). The value of this dataset is that the surface
temperature is well known, 08C, and the surface–air
temperature difference is unusually large—sometimes
as large as 128C.

Munro’s original paper contains his analysis of zT/z0

as a function of R*, but almost all of his plotted values
are above the line set by (4.1). To obtain his results,
however, Munro used the log–linear form for fm and
fh with a 5 5; assumed k 5 0.41; and most importantly,
modified each of his wind speed and temperature profile
heights by adding 0.17 m to each original height. He
evidently based this 0.17-m correction on the typical
trough-to-peak height of the microtopography of the
glacier and what he viewed as ambiguity in his zero-
reference height.

I have three concerns with these manipulations. That
0.17 m seems akin to a displacement height, but dis-
placement heights are always subtracted from the mea-
sured height. I am not sure what adding 0.17 m to the
height means physically. Second, because momentum
can be transferred by pressure forces acting on the
roughness elements, Thom (1971) interpreted the dis-
placement height as the height at which the roughness
elements absorb momentum. Because pressure forces
do not transfer heat, however, it seems unlikely that the
temperature profile should exhibit the same displace-
ment height as the wind speed profile, as Munro ac-
knowledges himself. Finally, Andreas (1995) adapted a
form-drag model developed by Raupach (1992) to in-
vestigate momentum transfer over a surface covered
with sastrugi—that is, over a fairly rough surface like
that of the Peyto Glacier. I infer from this modeling that
the ratio of displacement height to the height of the
roughness elements is much less than one. Consequent-
ly, Munro’s choice of 0.17 m seems too large by a factor
of, at least, three. The upshot is that, since Munro’s
measurement heights were 0.25, 0.50, 0.75, and 1.00 m,
adding 0.17 m to each height causes significant changes
in the apparent curvature of the profiles and could easily
explain the difference between his results and the An-
dreas (1987) model.

I therefore obtained Munro’s raw profile data (S.
Munro 1995, personal communication) and analyzed
these myself to estimate zT and z0. This analysis simply
involved fitting his wind speed and potential tempera-
ture profile data iteratively with (1.1a) and (1.1b). This
fitting yields u*, t*, and L. Since U(z0) 5 0, (1.1a) then
gives z0; and since T(zT) 5 Ts 5 08C, (1.1b) gives zT.
Unlike Munro, I assumed no displacement height; set k

5 0.40; and on the basis of the last section, used the
Holtslag and de Bruin (1988) functions for cm and ch.

Figure 2 demonstrates the success of this fitting with
five representative pairs of wind speed and potential
temperature profiles. In each panel, the left profile is the
second most stable run in the dataset; the right profile
is the one nearest neutral stratification. The three middle
profiles get more nearly neutral from left to right. The
correlation coefficients of the fits depicted in Fig. 2 are
all at least 0.997. Of the 122 pairs of Munro’s profiles
that I analyzed, the smallest correlation coefficient for
my fitting was 0.996. Figure 2 and these correlation
coefficients are testimony to my choice of the Holtslag
and de Bruin (1988) stability corrections and to my
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FIG. 3. The ratio zT/z0 as a function of the roughness Reynolds
number R

*
based on my reanalysis of Munro’s (1989) profile data

collected over the Peyto Glacier. The line is the Andreas (1987)
model, (4.1).

FIG. 4. The ratio zT/z0 as a function of the roughness Reynolds
number R

*
based on my calculations using the Kondo and Yamazawa

(1986) data, which were collected over snow-covered ground. The
line is the Andreas (1987) model, (4.1).

decision to ignore Munro’s suggestion that a displace-
ment height is necessary.

Figure 3 compares my results from this reanalysis
with the Andreas (1987) model for zT/z0. Plots of zs/z0

are common in this business because this quantity lets
us estimate the neutral-stability scalar transfer coeffi-
cient at reference height z (i.e., CsNz) without the added
steps of calculating zs and z0 individually. That is, from
(1.4a) with z 5 0 (cf. Garratt and Hicks 1973),

CDNzC 5 . (4.2)sNz 21 1/21 2 k C ln(z /z )DNz s 0

Here, CDNz is the neutral-stability drag coefficient at z
(e.g., Andreas 1998),

2k
C 5 . (4.3)DNz 2[ln(z/z )]0

The data and the model in Fig. 3 seem to agree star-
tlingly well, both with respect to magnitude and to R*
dependence. In particular, the data and the model agree
much better than in Munro’s (1989) original analysis.

Careful readers will realize, however, that z0 appears
in both the dependent and independent variables in Fig.
3. This shared variable could thus lead to an artificially
good (or bad) correlation. And, as I explain in the ap-
pendix, Fig. 3 apparently does suffer from this effect:
The artificial correlation seems to explain the tendency
for zT/z0 to decrease with increasing R* at approximately
the same rate as the model predicts. Consequently, I
hesitate to conclude that Fig. 3 confirms the predicted
R* dependence in zT/z0. The artificial correlation, on the
other hand, has no influence on the typical magnitude
of the zT/z0 values, which the model predicts well for
R* between 0.1 and 10.

b. Kondo and Yamazawa’s data

Kondo and Yamazawa (1986) report measurements
of the wind speed and temperature profiles at six levels
over snow-covered ground in Japan. Using a profile
analysis like the one I just described, they obtained from
these profiles u*, L, CDN1, and CHN1—the latter two being
neutral-stability values of the drag coefficient and the
sensible heat transfer coefficient at a reference height
of 1 m. Although their paper shows plots of some of
these quantities, the details were not sufficient for my
reanalysis. But J. Kondo (1986, personal communica-
tion) kindly provided me a table of their entire u*, L,
CDN1, and CHN1 dataset. I earlier converted these CDN1

and CHN1 values to CHN10 (i.e., a 10-m reference height)
and compared these with the model predictions in An-
dreas (1987). Here I further convert these tabulated val-
ues to zT, z0, and R*.

From (1.4a), we see that, for a 1-m reference height,
at neutral stability,

2k
C 5 . (4.4)HN1 [ln(1/z )][ln(1/z )]0 T

Analogously, the neutral-stability drag coefficient for a
height of 1 m is just (4.3) with z 5 1 m. Thus, from
the values tabulated in the Kondo and Yamazawa data-
set, I could easily compute z0, zT, and R*.

Figure 4 compares my calculations of zT/z0 and R*
from the Kondo and Yamazawa dataset with the Andreas
(1987) model. Only three of the markers here reflect
unstable stratification; all the other runs were made in
stable stratification, though the stratification was never
very strong. The data are generally within an order of
magnitude of the model but, contrary to Fig. 3, tend to
suggest values lower than the model. Although I have
not confirmed this as I did with Fig. 3, the trend in zT/z0

with R* probably reflects some self-correlation because
of the shared z0.
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FIG. 5. The ratio zT/z0 as a function of the roughness Reynolds
number R

*
based on my reanalysis of Ishikawa and Kodama’s (1994)

data, which were collected over snow-covered ground. The line is
the Andreas (1987) model, (4.1).

FIG. 6. The ratio zT/z0 as a function of the roughness Reynolds
number R

*
adapted from Bintanja and Van den Broeke (1995). The

Bintanja and Van den Broeke measurements were over snow-covered
and bare glacier ice in Antarctica. The number near each data marker
represents the number of hourly averaged runs used to create the bin-
average shown. The lines are Andreas’s (1987) model, (4.1), and
Bintanja and Reijmer’s (2001) model, derived from (4.7).c. Ishikawa and Kodama’s data

Ishikawa and Kodama (1994) report other profile and
flux measurements over snow-covered ground in Japan.
N. Ishikawa (1995, personal communication) kindly
provided me all their raw data so I could reanalyze them
for z0, zT, u*, and L.

Ishikawa and Kodama measured Hs with a sonic an-
emometer/thermometer. They also measured the snow-
surface temperature, which was usually very near 08C,
and the temperature at a height of 1 m. From (1.3a) we
see that these measurements provide CH1, the sensible
heat transfer coefficient appropriate at a reference height
of 1 m.

The Ishikawa and Kodama dataset also includes mea-
surements of the wind speed U at heights z1 and z2—
either 1 and 5 m or 0.1 and 1 m. From (1.1a), I could
relate these measurements to u*; that is,

k[U(z ) 2 U(z )]2 1u* 5 . (4.5)
ln(z /z ) 2 c (z /L) 1 c (z /L)2 1 m 2 m 1

Once this equation yields u*, I could use (1.1a) to com-
pute z0. Substituting this z0 value and CH1 into (1.4a)
let me also calculate zT. Of course, these computations
are iterative because L depends on u* and the measured
sensible heat flux. I again used the Holtslag and de Bruin
(1988) functions for cm and ch in (1.4a) and (4.5). All
of Ishikawa and Kodama’s data were collected in stable
stratification.

Figure 5 shows the results of my reanalysis of the
Ishikawa and Kodama data. Although the centroid of
the data cloud agrees fairly well with the model’s pre-
dictions, the trend in the data with R* is contrary to the
model. I attribute this difference to the need to use (4.5)
to evaluate u*. Winds in this dataset were very light:
The highest extrapolated 10-m wind speed for the data
points plotted in Fig. 5 was 4.5 m s21, and most values

were between 1 and 3 m s21. As a result, the difference
in wind speed, U(z2)–U(z1), in (4.5) was often small;
the consequent large relative uncertainty in that differ-
ence therefore made the u* evaluation imprecise. In fact,
in creating Fig. 5, I eliminated 62 runs that had implied
10-m wind speeds less than 1 m s21. These runs with
light winds led to unrealistically large z0 and R* values.

d. Bintanja and Van den Broeke’s results

Bintanja and Van den Broeke (1995) report two-level
measurements of wind speed and temperature at several
sites over snow-covered and bare glacial ice near the
Swedish station Svea in Queen Maud Land, Antarctica.
They used a profile analysis, again based on (1.1a) and
(1.1b), to evaluate z0, zT, u*, and thus R* from these
data. Their paper contains a plot of values bin-21BH

averaged in R* bins, where (e.g., Garratt and Hicks
1973)

1 z021B 5 ln . (4.6)H 1 2k zT

I digitized this plot and converted the averaged 21BH

values to zT/z0 averages.
Figure 6 shows my replotting of the Bintanja and Van

den Broeke results. This plot represents many hours of
data over a wide R* range and is thus a valuable test
of the Andreas (1987) model. The data in Fig. 6 do
seem to corroborate the model—both with respect to
the magnitude of zT/z0 and the trend in this ratio with
R*. All but three of the data markers in Fig. 6 are within
half an order of magnitude of the model’s predictions.
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FIG. 7. The ratio zQ/z0 as a function of the roughness Reynolds
number R

*
based on the data obtained by Barry and Munn (1967)

over snow-covered ground. The lines are Andreas’s (1987) model,
(4.1), and Bintanja and Reijmer’s (2001) model, derived from (4.7).

e. Bintanja and Reijmer’s results

Bintanja and Reijmer (2001) report recent measure-
ments of z0, zT, and zQ in the vicinity of Svea. They
based their analysis on five-level profiles of wind speed,
temperature, and specific humidity measured between
0.4 and 10 m above the surface. They restricted their
analysis to cases of blowing and drifting snow, when
u* is above a threshold of 0.30 m s21, and deduced z0,
zT, and zQ by fitting the profiles with semilogarithmic
functions. That is, they made no corrections for the cur-
vature in the semilogarithmic profiles caused by strat-
ification and modeled by the cm and ch functions in
(1.1).

They summarize their results as functions of u*:
for u* # 0.30 m s 21 ,

24z 5 z 5 z 5 2 3 10 m;0 T Q (4.7a)

for u* . 0.30 m s21,
2.1968z 5 0.003 920 2u* , (4.7b)0

10.144z 5 14.302u* , (4.7c)T

6.1141z 5 0.503 24u . (4.7d)Q *

In all of these, the roughness lengths are in meters for
u* in m s21.

The approximate quadratic dependence of z0 on u*
in (4.7b) is in line with earlier assessments of how z0

should behave in drifting and blowing snow (e.g., Owen
1964; Chamberlain 1983; Andreas and Claffey 1995).
But the large exponents of the u* terms in (4.7c) and
(4.7d) imply that both zT and zQ get much larger than
z0 at large R*, a result not supported by any theory or
by any other data.

As an example of (4.7), I include in Fig. 6 the relation
for zT/z0 as a function of R* that (4.7) implies. Although
this new model is not unreasonable for R* less than 5,
for larger R*, Bintanja and Reijmer’s model does not
fit Bintanja and Van den Broeke’s (1995) data.

f. Barry and Munn’s data

The only dataset of even modest size that I have found
suitable for my reanalysis and that has anything to say
about zQ over snow or ice is Barry and Munn’s (1967).
They released tritiated water vapor at the surface or at
a height of 10 m over snow-covered ground in Chalk
River, Ontario, Canada. Using radioactivity detection
techniques, they measured the downwind water vapor
concentration at a height of 0.3 m 45–90 m from the
release point and could estimate the surface water vapor
flux from a time series of snow-surface samples. They
also measured the mean wind speed at five heights be-
tween 0.25 and 2 m and could therefore estimate u* and
z0. Their tabulated data include R* and enough other
information for me to estimate zQ/z0. Figure 7 shows
the results for their highest-quality runs.

Figure 7 also shows Andreas’s (1987) model for zQ/z0

and Bintanja and Reijmer’s (2001) prediction of the
same quantity based on (4.7). The data in Fig. 7 tend
to be significantly below both model predictions. The
zQ/z0 data do, however, decrease with increasing R* as
the Andreas model predicts—a distinct contrast between
it and Bintanja and Reijmer’s results. Still, Fig. 7 is
inconclusive and thus implies that we have more work
to do in evaluating zQ.

Though Barry and Munn’s is the only dataset I could
find for this review, it is far from ideal. Because of their
experimental design, I suspect their data suffer from
nonstationarity and the horizontal inhomogeneity of
their site. They also made no corrections for stratifi-
cation in their analysis of the wind speed profiles (e.g.,
see Fig. 2), an omission that could have had a large
effect on their u* and z0 values. In summary, though
Barry and Munn’s work was impressive for its time, I
have enough doubts about their data that I present Fig.
7 primarily for its historical value and to motivate fur-
ther work.

5. Discussion

Bin-averaging often clarifies relationship in plots of
wildly scattered data. Therefore, following the example
of Bintanja and Van den Broeke (1995) (Fig. 6), I bin-
averaged the individual zT/z0 and R* values in the Munro
(Fig. 3), Kondo and Yamazawa (Fig. 4), and Ishikawa
and Kodama (Fig. 5) datasets to see if such averaging
gives a better picture of the R* dependence in zT/z0. To
be faithful to the depictions in these plots, my averaging
was geometric rather than arithmetic. That is, for both
zT/z0 and R*, I calculated the average of the logarithms
of the values.

I identified just two R* bins in the Munro data in Fig.
3: R* values less than 0.01, and R* values greater than
0.01. Likewise, I used just two bins in averaging the
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FIG. 8. Values of zT/z0 averaged in R
*

bins for the Munro (Fig. 3),
Kondo and Yamazawa (Fig. 4), and Ishikawa and Kodama (Fig. 5)
datasets. The error bars are one std dev; the number beside each data
marker gives the number of individual values used to create the av-
erage. The line is the Andreas (1987) model, (4.1).

Kondo and Yamazawa data in Fig. 4. The cluster of
three points with R* values between 1 and 2 are in one
bin; all other points are in the second bin. Because the
Ishikawa and Kodama data in Fig. 5 do not show much
variation in zT/z0 with R*, I lumped all these data in a
single bin.

Figure 8 shows the results from this bin-averaging.
The four points with R* values between 0.7 and 20 that
represent most of the data agree quite well with the
model—both with respect to magnitude and to R* de-
pendence. The point in the aerodynamically smooth re-
gime (below R* 5 0.135) suggests the model’s predic-
tions may be low here. But measuring in such light
winds is often difficult, so eight points obtained in dif-
ficult experimental conditions may be suggestive but are
not sufficient to refute the model. Besides, the more
extensive dataset from Bintanja and Van den Broeke
(Fig. 6) does not corroborate this discrepancy between
the model and the measurements at small R*. In fact,
Figs. 6 and 8 now provide fairly strong support for the
Andreas (1987) model for zT/z0 over the R* range from
1024 to 100.

One caveat in this conclusion, though, is that most
of the zT data that I have reviewed were collected in
fairly warm conditions where snow would not have been
blowing or drifting. The Bintanja and Van den Broeke
(1995) set is the one exception. The issue is that Bintanja
and Reijmer (2001) suggest that both zT/z0 and zQ/z0

increase with R* when snow is drifting. My analyses
here have not shown this effect, however. In particular,
the Bintanja and Van den Broeke set, Fig. 6, which likely
included drifting snow during the measurements with
the large R* values, does not substantiate Bintanja and
Reijmer’s empirical expressions for zT and z0 in drifting
snow.

6. Conclusions

This review of current procedures for estimating the
fluxes of sensible and latent heat over surfaces of snow
and ice leads to some recommendations. First, because
the atmospheric surface layer over snow and ice is often
stably stratified, we need to reach some consensus on
which functions, cm and ch, to use to model this strat-
ification. On defining four profile metrics—the critical
Richardson number, the Deacon numbers for wind speed
and temperature, and the turbulent Prandtl number—I
reviewed probable values for these in the limit of very
stable stratification. Observations and theory suggest
that Ricr and Prt are both bounded and of order 1, while
Dm and Dh are approximately 0. Of the cm and ch func-
tions that I reviewed here, the set that Holtslag and de
Bruin (1988) developed satisfies these limits best. I rec-
ommend these functions for handling stable stratifica-
tion in general and for treating stable stratification over
snow and ice in particular.

The Andreas (1987) model is the only one specifically
adapted to predict the scalar roughness lengths zT and
zQ over snow and ice; though to date, it has had only
sporadic and incomplete testing. Here I have reanalyzed
five datasets collected over snow and ice for the explicit
purpose of testing this model. My comparison of the zQ

results with the model in Fig. 7 is inconclusive because
of presumed shortcomings in the data and, therefore,
highlights the difficulty in measuring zQ at low tem-
peratures. For intellectual reasons and because of the
technical challenges, we need to concentrate on making
the measurements required for evaluating zQ.

The other four datasets (Figs. 3–6), in contrast, agree
fairly well with the model’s predictions for zT/z0. Since
the model’s independent variable, R* 5 u*z0/n, also
contains z0, however, plots of zT/z0 versus R* may suffer
from fictitious correlation. In the appendix, I demon-
strate that this self-correlation indeed affected the shape
of the plot for Munro’s (1989) data (Fig. 3). The implied
correlation between zT/z0 and R*, even if zT were not
related to any other variable, coincides closely with the
model’s predicted dependence for zT/z0 on R*. This
means that making scatterplots from individual datasets
may not be a reliable way to judge a model’s veracity.

Comparing data from various sources, however, at
least mitigates the effects of bias errors in individual
datasets. My bin-averaging of the Munro (1989), Kondo
and Yamazawa (1986), and Ishikawa and Kodama
(1994) datasets yielded data points that generally agree
both in magnitude and in R* dependence with the An-
dreas (1987) model (Fig. 8). This summary plot and the
Bintanja and Van den Broeke (1995) results (Fig. 6)
therefore finally provide fairly strong support for the
Andreas model’s predictions for zT/z0 for R* values be-
tween 1024 and 100.

Although I have been unable to similarly test the zQ

model directly, the success of (4.1) in representing the
zT/z0 data supports it indirectly. Equation (4.1) is theo-
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retically based; consequently, Figs. 6 and 8 essentially
support that theory for heat transfer. Because most evi-
dence from the atmospheric surface layer suggests that
heat and moisture are transferred by similar processes,
we can presume that the theory applies equally well for
moisture transfer. Consequently, until we learn differ-
ently, (4.1) with the appropriate coefficients for humid-
ity from Table 2 is also a reasonable model to use for
predicting zQ/z0.

The Andreas (1987) model for zT/z0 and zQ/z0 contains
nothing that makes it specific for snow and ice surfaces.
Only the parameterization for z0 from Banke et al.
(1980) that enabled me to predict CH and CE [i.e., see
(1.4), (4.2), or (4.4)] limited it to use over snow and
ice. In other words, the model’s predictions for zs/z0

should be just as valid for other solid surfaces with small
roughness elements—such as sand, bare soil, or mud
flats—as they are for snow and ice.
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APPENDIX

Self-Correlation in zs/z0-versus-R* Plots

Figures 3–7 show plots of log(zs/z0) versus log(R*).
The trends in the data in these plots could result from
fictitious correlation because of the shared variable z0

(e.g., Hicks 1978; Kenney 1982). Using ideas from
Hicks (1978), I look at this question.

Figures 3–7 suggest that a reasonable model for the
data summarized in these plots is

ln(z /z ) 5 a lnR 1 b.s 0 * (A.1)

Let me define

Y [ ln(z /z ) 5 lnz 2 lnz and (A.2)s 0 s 0

X [ lnR* 5 lnu* 1 lnz 2 lnn . (A.3)0

The correlation coefficient for the X and Y values is

cov(X, Y )
r 5 , (A.4)

s sX Y

where cov(X, Y) is the X–Y covariance and sX and sY

are the sample standard deviations of X and Y. Likewise,
the slope a and intercept b in (A.1) are

cov(X, Y )
a 5 and (A.5)

2sX

b 5 Y 2 aX, (A.6)

where and are the sample averages of the X and YX Y
values. That is,

X 5 lnu* 1 lnz 2 lnn and (A.7)0

Y 5 lnz 2 lnz , (A.8)s 0

where an overbar denotes the sample average.
We can evaluate the effects of the fictitious correla-

tion on r, a, and b analytically by assuming that zs, z0,
u*, and n are all uncorrelated. For example, from the
definition of the sample standard deviation, where N is
the sample size,

N1
2 2s 5 (X 2 X ) , or (A.9)OX iN 2 1 i51

N1
2s 5 [(lnu* 1 lnz 2 lnn )OX i 0i iN 2 1 i51

22 (lnu* 1 lnz 2 lnn )] . (A.10)0

Here, i is the index for the sample.
Because u*, z0, and n are all assumed to be uncor-

related for this analysis, from (A.10) we get

2 2 2 2s 5 s 1 s 1 s ,X lnu lnz lnn0* (A.11)

where the terms on the right are the sample variances
of lnu*, lnz0, and lnn. Similarly,

2 2 2s 5 s 1 s ,Y lnz lnzs 0
(A.12)

where is the sample variance of lnzs.2s lnzs

The X–Y covariance can be evaluated similarly:
N1

cov(X, Y ) 5 (X 2 X )(Y 2 Y ) (A.13)O i iN 2 1 i 5 1

N1
5 O

N 2 1 i51

3 [(lnu* 2 lnu* ) 1 (lnz 2 lnz )i 0i 0

2 (lnn 2 lnn )]i

3 [(lnz 2 lnz ) 2 (lnz 2 lnz )]. (A.14)si s 0i 0

Thus, under the assumption that all the variables are
uncorrelated, the only covariance between zs/z0 and R*
results because of the shared variable z0:

2cov(X, Y) 5 2s .lnz0
(A.15)

That is, interestingly, the fictitious covariance of the
logarithms of the nondimensional variables is equal to
the negative of the variance of the log of the shared
variable.

From (A.4), (A.11), (A.12), and (A.15), we conse-
quently see that

22slnz0r 5 . (A.16)
2 2 2 2 2 1/2[(s 1 s 1 s )(s 1 s )]lnu* lnz lnn lnz lnz0 s 0

That is, the correlation between ln(zs/z0) and lnR* is
always negative if it results strictly because of the shared
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FIG. A1. Same as Fig. 3 but here the dashed line shows the least squares fit required by the
presence of z0 in both the dependent and independent variables.

z0. From (A.5), (A.11), and (A.15), we likewise get for
the slope of the artificially correlated variables

22slnz0a 5 , (A.17)
2 2 2s 1 s 1 slnu* lnz lnn0

which is again always negative. Finally, we can cal-
culate b from (A.6)–(A.8) and (A.17).

Least squares linear regression, on which the above
analysis is based, implicitly assumes that the X values
are known perfectly and that the only uncertainty is in
the Y values. This assumption is rarely true in geo-
physical data series and is certainly not true of our R*
values. Consequently, I like to also fit X versus Y with
a least squares line and take the bisector of the two
fitting lines as the ‘‘best’’ fit.

That is, the second step to this analysis is to fit the
data as

X 5 a9Y 1 b9. (A.18)

From (A.4), we see that the correlation coefficient for
the X-versus-Y data is the same as for the Y-versus-X
data. From (A.5), we can also immediately write

cov(X, Y )
a9 5 . (A.19)

2sY

Hence, from (A.12) and (A.15),

22slnz0a9 5 . (A.20)
2 2s 1 slnz lnzs 0

Finding the bisector of (A.1) and (A.18) is easier if
we write (A.18) as

1 b9
Y 5 X 2 . (A.21)

a9 a9

Then the bisector has an equation like (A.1) and (A.21),

Y 5 âX 1 b̂. (A.22)

The slope of this bisector is

1
â 5 tan 0.5 arctan(a) 1 arctan , (A.23)5 1 2 6[ ]a9

and its intercept is

b̂ 5 Y 2 âX . (A.24)

I have tested the effects of this self-correlation by
evaluating r, â, and b̂ for Munro’s (1989) dataset (see
Fig. 3). Figure A1 shows the discouraging result.

Because the range of u* values in the Munro (1989)
dataset is small and because s and s are comparable,lnz lnz0 T

(A.16) shows that
22slnz0r ø ø 20.7; (A.25)

4 1/2(2s )lnz0

(A.17) and (A.20) likewise suggest that the predicted
slope, â, is between 21 and 22. That is, even if zT is
not correlated with anything, because of the shared z0,
the correlation between ln(zT/z0) and lnR* is still high
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and the implied slope is similar to the slope that both
the data and the model display. The dashed line in Fig.
A1 shows the regression line (A.22) that results solely
from this fictitious correlation.

In summary, at least for the Munro (1989) dataset,
the fictitious correlation between the zT/z0 and R* values
means that we cannot reliably evaluate the R* depen-
dence predicted by the Andreas (1987) model, except
perhaps at small R*, where the data tend more toward
the model than toward the artificial regression line. The
artificial correlation, however, does not influence the
mean value of zT/z0. The model and the data in Fig. A1
tend to agree that, for R* between 0.1 and 10, the typical
value for zT/z0 is 1.

Although I have not made similar calculations for the
other four datasets, because of (A.16), (A.17), and
(A.20), ln(zs/z0) in all of these should decrease with
increasing lnR* if the data are strongly influenced by
artificial correlation caused by the shared z0. Clearly,
the data in Figs. 4, 6, and 7 display this trend. My
reanalysis of Ishikawa and Kodama’s (1994) data,
shown in Fig. 5, shows a positive trend between zT/z0

and R*, however. To produce this trend, zT or z0 in this
dataset must be correlated with some of the other var-
iables [see (A.14)], either physically or as a consequence
of my analysis procedure. Thus, again, the data tend to
corroborate the mean zT/z0 level predicted by the model
but are ambiguous when it comes to testing the model’s
predicted R* dependence.

From (A.16), we can infer some ways to minimize
the fictitious correlation in plots of zs/z0 versus R*. For
example, if the standard deviation of lnz0, s , is smalllnz0

compared to s , the fictitious correlation—quantifiedlnzs

by r in (A.16)—is small. Likewise, if the u* range is
large so that slnu* is much larger than s , (A.16) alsolnz0

predicts that r is small.
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