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HIGH RESOLUTION SCHEMES USING FLUX LIMITERS 

FOR HYPERBOLIC CONSERVATION LAWS* 


Abstract. The technique of obtaining high resolution, second order, oscillation free (TVD), explicit 
scalar difference schemes, by the addition of a limited antidiffusive flux to a first order scheme is explored 
and bounds derived for such limiters. A class of limiters is presented which includes a very compressive 
limiter due to Roe, and various limiters are compared both theoretically and numerically. 

1. Introduction. Recently Roe [16] proposed a difference scheme which gives 
remarkably sharp profiles for the linear advection equation. It was the investigation 
of this scheme which prompted the work of this paper, which presents a unification 
of several independently proposed second order accurate TVD schemes, thus enabling 
it to be easily seen how these schemes related to each other. 

Roe's sharp profile scheme, like several other recent schemes, falls into the category 
of flux limiters, much akin to the Flux Corrected Transport of Boris and Book [ I ]  
although differing in the respect of being essentially one-step procedures as opposed 
to the two-step FCT. The purpose of flux limiting/correcting is to produce a high 
resolution scheme without the spurious oscillations associated with the more classical 
second order schemes. 

Some years ago Van Leer [22] derived a scheme using a flux limiter in his search 
for the ultimate conservative difference scheme, and more recently Roe [14] utilized 
flux limiting in his original monotonicity preserving second order scheme. Even more 
recently Chakravarthy and Osher [2] have used limiters, as has Harten [5] who also 
introduced the notion of TVD (Total Variation Diminishing) to  characterize oscillation 
free schemes. 

In § 2 we lay the foundation of entropy satisfying (assuring a unique solution) 
first order schemes to which, in § 3, we add a limited antidiffusive flux, and show the 
constraints this flux must satisfy to give a second order TVD scheme. A class of flux 
limiters is presented, which in § 4 are shown to include Roe's sharp profile limiter as 
well as his original limiter and a special case of the Chakravarthy and Osher limiter. 
Van Leer's limiter is also reformulated in the notation of § 3 and in § 5 numerical 
comparison of some of the limiters is given. 

The schemes considered here are fully discrete, but recently Osher and Chak- 
ravarthy [13] (this issue, pp. 955-984) have also used a similar procedure to obtain a 
second order semi-discrete scheme from a general 3-point first order semi-discrete 
scheme. With the addition of artificial compression/rarefaction (ACR) they have also 
been able to prove entropy satisfaction for the second order semi-discrete scheme. 

The schemes considered here are one-dimensional, and although they may easily 
be extended to two dimensions, a recent result by Goodman and LeVeque [4] shows 
that TVD schemes in two dimensions are at most first order accurate. 

2. First order schemes. We shall consider numerical approximations to the scalar 
conservation law 
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In particular we shall consider numerical schemes written in conservation form 

where h is a consistent numerical flux function 

A is the mesh ratio 
AtA =-
Ax' 

and uk are nodal values of the piecewise constant mesh function u,,(x, t) approximating 
U(X, t). 

Throughout we shall use the shorthand notation 

where k and n are the spatial and time indices respectively, whenever this is unam- 
biguous. 

Also, for clarity, we will restrict ourselves to  regular grids, Ax constant, although 
results for irregular grids wasily follow. 

Recently Osher [ l l ]  defined a class of semidiscrete schemes approximating (2.1) 
which he names E-schemes. He showed that these schemes are at most first-order 
accurate but converge to the correct physical (entropy satisfying) solution of (2.1). (It 
is well known that weak solutions to  (2.1) are nonunique and so an extra constraint 
is needed to select the unique physical solution. This constraint is taken to be the 
satisfaction of an entropy inequality, see for example [7].) These E-schemes, 

may be characterized by the inequality 

for all u between uk and ukt l .  
We shall consider fully discrete versions of E-schemes, in particular three point 

schemes: 

where the inequality (2.7) still holds. Tadmor [21] has recently proved entropy 
satisfaction for these fully discrete E-schemes for a CFL like condition of 1 and we 
also note that monotone schemes [6] belong to this class of schemes. 

We now define, for a general three-point E-scheme (2.8), the flux differences 

and note that 

(2.10) (Afk+l/2)++ (Afk+i/2)-=Afk+l/~. 

[We use the convention A+yk = =A-yk+l= yktl - yk.] 
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These flux differences in turn are used to define a series of local CFL numbers: 

Note that from the defining inequality of E-schemes, (2.7), we have 

justifying the +, - superscripts of the definitions. 
It is well known (e.g. [20], [S], [6], [9]) that a crucial estimate involved in 

convergence proofs on difference schemes approximation (2.1) is a bound on the 
variation of the solution. The Total Variation, TV(U"+'), of the solution is defined by 

where the shorthand (2.5) has temporarily been dropped, and an important class of 
difference schemes is those which are Total Variation Diminishing (TVD), 

(2.14) TV (un+') STV(u"), 

so-called after Harten [S]. 
If the general scheme (2.2) is rewritten in the form 

where Ck-,,, and DktllZ are data-dependent coefficients (i.e., functions of the set 
{uk)), then it is easily shown [20], [S] that sufficient conditions for the scheme to be 
TVD are the inequalities 

From (2.9) it is seen that 

and therefore, using (2.11), one possibility of writing a general discrete E-scheme 
(2.8) in the form (2.15) is 

i.e. taking 

(2.19) C k + l / ~ =V;+I/Z, D ~ + I / z = - ~ ~ + I / z  

It is obvious from (2.12) that the first two inequalities of the set (2.16) are satisfied 
whilst the third inequality of the set gives the CFL-like condition 

(2.20) 4 + 1 / 2 - ~ k + l / 2 51 

for the scheme (2.8) to be TVD. 
One example of an E-scheme is the Engquist-Osher scheme [3] which has numeri- 

cal flux 
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where 

and 

( c i  is the sonic point of f ( u ) ,f r ( c i ) =0 ) .  
For this scheme we have 

= - c f : + f ; + l  - f :+l  - f k + 1 )  

=f :+l  - f :  
= IukL' x ( s )  f ' ( s )  ds, 

u k 

and similarly 

which gives 

Therefore the Engquist-Osher scheme is TVD subject to a CFL condition 

We shall assume for the remainder of this paper that the general discrete 
E-scheme (2 .8) is TVD under a CFL condition 

(2.26) sup (hl fr (5)1)5 p 5 1. 
5 


It is well known that first order accurate schemes suffer from numerical diffusion, 
but classical higher order schemes, whilst giving higher resolution to discontinuities of 
the solution, exhibit spurious oscillations around such points (e.g. the Lax-Wendroff 
scheme [ 8 ] and Warming and Beam scheme [23] ) .In recent years effort has been 
placed into obtaining second order schemes which give high resolution whilst remaining 
TVD. For example, Van Leer [22] ,Roe [3]and Chakravarthy and Osher [2]have all 
proposed such high resolution schemes which incorporate some form of flux limiter. 

In the next section we systematically derive a class of high resolution TVD second 
order schemes, which, by method of construction includes an extremely compressive 
limiter recently proposed by Roe [16].Then in § 4 we investigate the schemes of the 
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above-mentioned authors in their various formulations and compare them analytically 
with the class of limiters in § 3. 

3. Higher resolution schemes. We now seek to derive a higher resolution TVD 
scheme in much the same way as the Flux Corrected Transport (FCT) of Boris and 
Book [I], that is, the application of a low order scheme supplemented by the addition 
of a "limited" (or "corrected" as in the terminology of Boris and Book) flux. This 
flux is a difference between the flux of a high order scheme and that of the low order 
scheme, which has been "limited" in such a way as to ensure the resulting scheme is 
TVD. 

There are two main differences between the approach adopted here and that of 
Boris and Book [ I ]  (and later Zalesak [24]). Firstly the FCT algorithm was essentially 
a two-step procedure, whereas here we adopt a single-step approach; and secondly 
the FCT limiter was constricted by unity whilst we allow a more generous upper limit. 

For clarity of approach we first consider the linear scalar equation 

The second order Lax-Wendroff scheme [8] may be written as 

where here 

It is seen that (3.2) is in fact the result of a first order scheme 

with an additional term 

added. That is, the numerical flux of the Lax-Wendroff scheme is that of the first order 
scheme (3.3) plus an additional flux 

We shall refer to this extra flux as an antidiffusive flux. 
Since it is well known that the Lax-Wendroff scheme is not TVD, we try to 

remedy this by adding only a limited amount of the antidiffusive flux (3.5) to the first 
order scheme, i.e. 

where qk is some form of limiter, taken to be nonnegative so as to maintain the sign 
of the antidiffusive flux. 

Like Roe [14], Van Leer [22] before him and more recently Chakravarthy and 
Osher [2] we take the limiter to be a function of consecutive gradients (in the linear 
case), i.e., qk= q(rk)  where 

We now seek to choose the function q ( r )  in such a way that the limited antidiffusive 
flux (3.5) is maximized in amplitude subject to the constraint of the resulting scheme 
being TVD. 
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Viewing the scheme (3.6), a possible choice of the coefficients Ck-l/2, Dk+1/2 in 
(2.15) is 

Reorganization of the expression for Ck-]/2 gives 

and a bound on Ck-I/2 of 

where 

Therefore for Ck-1/2, Dk-1/2 to satisfy the TVD inequalities (2.16), which in this case 
reduce to 

it is easily seen that we must have @ 5 2  in (3.11). If, in addition to requiring cp(r) to 
be nonnegative we also insist on 

then the bound (3.11) reduces to 

Hence for the scheme (3.6) to be TVD the limiter function cp(r) must lie in the shaded 
region of Fig. l a ,  which also illustrates the cp functions needed to give both the 
Lax-Wendroff scheme and the second order upwind scheme of Warming and Beam 
[231, 

which is also non-TVD. 
To maximize the antidiffusive flux that we add to the first order scheme, we need 

to maximize the limiter cp(r) subject to the TVD constraints; so an obvious choice is 

(3.14) cp(r) =min (2r, 2), r >0, 

which is the upper boundary of the region in Fig, l a .  However, there is one final 
constraint that we impose on cp(r) and that is that the resulting scheme (3.6) be second 
order accurate whenever possible. We note here that since cp(r) =0 for r <0, second 
order accuracy must be lost at extrema of the solution. 

On viewing Fig. l a  it is noticed that both second order schemes depicted there 
pass through the point cp(1) = 1, which is a general requirement for second order 
accuracy (as well as Lipschitz continuity of cp(r)). We also note that any second order 
scheme relying only on the points (ukP2, ukPl, uk, u ~ + ~ )  must be a weighted average of 
the Lax-Wendroff scheme and the Warming and Beam upwind scheme (cf. Van Leer's 
[22] approach of using Fromm's scheme, the arithmetic average of these two schemes, 
as a starting point), i.e. 
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(a) TVD region. 

(b) Second order TVD region. 

FIG.  1 .  TVD regions. 

with 

(We specify an internal average here, i.e. 0 S 195 1,  since numerical tests on external 
averages showed the resulting scheme to be overcompressive causing sine wave data 
to give square wave type solutions.) 

Since pLW(r) = 1and qwe(r) = r, this reduces to 

(3.16) q ( r )  = 1-@(r)+ r6(r) = 1+ fl(r)(r- I ) ,  

and q ( r )  is now confined to lie in the region shown in Fig. lb. Note that the condition 
q(1) = 1 is automatically imposed. 

We shall later show that the upper boundary of this region is equivalent to Roe's 
compressive transfer function ("superbee" [16] see § 4) and that the lower boundary 
is equivalent to Roe's minmod transfer function [20] and is a special case of limiters 
used by Harten [ S ] ,  and Chakravarthy and Osher [2], [12]. We shall also show that 
Van Leer's limiter [22] is a smooth curve lying within the region. 
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A class of flux limiters which include both extremes of the upper and lower 
boundaries may be defined as 

(3.17) cp,(r) =max (0, min (Qr, I ) ,  min (r, Q,)), 1 SQ, 5 2 

which as Q, varies from 2 to 1 moves across the whole region from top to bottom. 
Note that cp,(r) is a monotone increasing function and has a symmetry of 

(We shall later see that Van Leer's limiter also possesses these properties.) This 
symmetry ensures that backward and forward facing gradients are treated in the same 
fashion. A typical cp,(r) is sketched in Fig. 2a. We shall assume for the remainder of 

(a) Irmiters. (b) Van Leer's limiter. 

0 

0 

( c )  Chakravarrhy-Osher limiter. 

F I G .  2. Limiters. 

this section that the limiter function cp(r) is a general limiter which lies within the 
region of Fig. l b  and now propose an extension of the above ideas to the nonlinear 
equation (2.1). We take the underlying first order scheme to be an E-scheme and add 
both limited positive and negative fluxes. That is, using the definitions of § 2, we have 
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where 

and 

noting that in these definitions the superscript does not indicate the sign of the quantity. 
This gives possible choices of the TVD coefficients Ck+1/2, Dk+l12of (2.15) as 

ck+i/2= v:+1/2{1 +a~+i/2[Q(r:+i)/r:+i-Q(r:)l) 

and 

from which, using the general bound (3.11), we see 

Ck+1/22 v:+,/~{I - 2 0 for (0 5 2, 
and similarly 

D k + 1 / 2 2 0  f 0 r @ s 2 .  

Hence the first two inequalities of the set (2.16) are satisfied and we now investigate 
the third, CFL like, inequality of that set. We have 

5 (v:+1/2- vk+1/2)(1 +@/2), 

and therefore, if the first order E-scheme satisfies the CFL condition (2.26), then 
comparison of (3.23) with (2.20) shows that the second order scheme must satisfy the 
CFL condition 

in order to guarantee that it is TVD. 
We note that away from sonic points either v:+,,~ or vi+112 is zero and the scheme 

is TVD for @ up to 2 under the original CFL condition (2.26). An alternative to the 
reduced CFL condition (3.24) is therefore to revert to the underlying E-scheme, i.e. 
Q = 0, at sonic points; however, this causes the limiting function Q to be discontinuous 
and adds an extra complexity to implementation (since Q is then no longer a function 
of just r). Therefore it is not favoured by the author. 

Although this paper deals only with the scalar case, we remark that the notion 
of flux limiters is readily extendable to systems of conservation laws where hf+,/, and 
(Afk+l12)' become vectors. The ratio rk+1/2 must now be redefined. This is achieved 
using inner products with a suitable vector, e.g. 

where the vector v depends on the actual Riemann solver used as will suitable definitions 
of v;+ , /~ .  (See, for example, [2], [12], [15].) 
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There remains one other concern for the approximation to the nonlinear equation, 
and that is one of entropy satisfaction, i.e., convergence towards the correct physical 
solution. Although no rigorous analytical proof for a general explicit flux limiter scheme 
is known, we have come across no numerical evidence to suggest entropy violation 
and even some evidence to support entropy satisfaction. Since the underlying first 
order scheme is supposed entropy satisfying, it is reasonable to conjecture that if, by 
addition of the limited antidiffusive flux, diffusion at expansions is not decreased, then 
the second order scheme is entropy satisfying. 

To investigate this the most convenient form of the scheme to us is that of (2.15), 
where Ck-,/2, Dktl12 are defined as in (2.19) for the first order scheme, and as in 
(3.22) for the second order scheme. These coefficients may be considered as indicating 
right and left moving diffusion respectively; hence if the magnitude of these coefficients 
as defined in (3.22) for the second order scheme is not less than the first order versions 
(2.19), then the diffusion is not decreased. (The coefficients are already known to be 
of the same sign). 

Although we have not been able to show this in general, we can do so at a sonic 
expansion, which is where entropy violations in other schemes have been known to 
occur. For convex f ( u )  a sonic expansion may be characterized by the condition 

This implies that v:- = >0. Recalling the definition of r+ (3.21) and v f0, v ; + ~ ~ ~  
(2.11), it is seen that 

r: =0, r;+, f 0. 

Therefore the term 

[P(r:+I)/r;+l -P(r;)l 

in (3.22) is nonnegative and hence Ck+l/2 for the second order scheme is not less in 
magnitude than Ck+1/2 for the first order scheme (cf. (2.19)). A similar argument holds 
for Dk+l12suggesting entropy satisfaction of the second order scheme. 

4. Comparison of limiters. In this section we study schemes proposed by Van 
Leer [22], Roe [14], [20] and [17] and Chakravarthy and Osher [2] and investigate 
their relationship to the framework of limiters set up in the previous section. Although 
others (e.g., Boris and Book [I], Zalesak [24] and Le Roux [9]) have proposed schemes 
involving forms of flux limiters, they do not fall into the framework considered here, 
not being expressible as functions only of the ratio r. For this reason we do not study 
them here. 

Since the various schemes are presented by their authors in different formulations, 
we first translate the schemes into a common formulation, using notation from $ 5  2 
and 3 where applicable. The resulting limiters are then compared. 

4.1. Van Leer. In [22] Van Leer averages nonconservative limited versions of 
the Lax-Wendroff and Warming and Beam schemes to give a conservative limited 
version of Fromm's scheme (the arithmetic average of the two schemes). The parameter 
he uses as a "smoothness monitor" is 

which is the reciprocal of the ratio rk (3.7) used in the previous section. The averaged 
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scheme is written as 

where the function S(0)  is defined to be 

The equation (4.2) may be manipulated to  give 

which is in the form of (3.6) with 

(4.5) (Pk = $ ( ( l - S ( o k ) ) + ( l + S ( e k ) ) / o k ) .  

By using the relationship Ok = l / r k  and the definition (4.3), we get an expression for 
the limiter as a function of r as 

Note that cp,,(r) 2 0 ,  with 

(0, r S O ,  

showing it to be monotone increasing and satisfying the symmetry property 

By sketching this limiter as in Fig. 2b it is seen that it lies within the second order 
TVD region established in P 3. 

Van Leer extends his scheme to the nonlinear equation merely by substituting 
vk+,,, for v; however, there is no reason why the method of extension used in 9 3 
should not be used. 

4.2. Roe. Roe's second order scheme [14],  [17],  [20] is presented in "increment" 
formulation rather than more classical numerical flux formulation. For a given cell 
(xk, xkcl) an increment or fluctuation is calculated, 

which is then added to the value of u at the downwind neighbour (left v <0 ,  right 
v >0 )  of the cell to  obtain a first order scheme at the next time level, 

where S k + l , 2 = ~ g n  Next suitably calculated flux (see below) bk+112 is ( v ~ + ~ / ~ ) .  a 
transferred across the cell against the direction of flow to give a second order 
TVD scheme: 

The complete process is illustrated in Fig. 3, and it is easily seen that the transferred 
flux bk+1,2 is a form of antidiffusive flux. 
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b b 


t i ne  t + A t/ 

time t 
v 

k+g > 0 "k++< 0 X k + l  

FIG. 3. Roe's scheme. 

The transferred fluxes are defined to be a function of the quantity ak+l12gk+l/2 
and its upwind neighbour, where 

(4.12a) bk+1/2=B(ffk+1/2gk+1/2,ffk-1/2gk-1/21 for vk+l/2> 0 

and 

(4.12b) bk+l/2 =B(ffk+l/2gk+l/2, (~k+3/2gk+3/2) for ~ k + l / 2<O. 

The original definition of B(x, y) was taken to be 

(4.13) B(x, y) =minmod (x, y) 

where 

x if I x l ~ l y l ,
minmod (x, y) = 

Y if I~I>IYI,  

but more recently B(x, y) is often taken as 

minmod (x, y), xy >0, 
xy 5 0. 

To convert B(x, y) to a flux limiter, we merely divide by x, to give (using (4.15)) 

qR(r) = q l ( r )=max (0, min (r, I)), 

where pl = cpa with @ = 1 and r =  ylx. So the transfer function (4.15) of Roe is 
equivalent to the lower boundary of the region of Fig. lb .  

Recently Roe [16] proposed a highly compressive transfer function "superbee" 
defined by 

1 Ymaxmod (x, y), - 5 - 5 2 ,
2 x 

Y l Y2minmod (x, y), -< -o r  - > 2 ,
x 2  x 





F i r s t  Order 
s t  order 

"weeeec-

(a) Square wave initial data. (b) sin' waue rriitial dutu. 

FIG. 4 .  Linear utluection test problem. 
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a good shock resolution but the contact is not very sharp, whereas in Fig. 5c, q2gives 
a sharp contact and shock, but due to the low CFL condition for this limiter the scheme 
is not TVD at the shock. Van Leer's limiter, qv,,gives better resolution of both the 
contact and shock compared to (F~ ,as seen in Fig. 5d, but q,, gives a still sharper 
shock although a less sharp contact (Fig. 5e). 

Finally, a couple of experiments using different limiters for different fields were 
tried, and the results can be seen in Fig. 6. For Fig. 6a (F,was used in the nonlinear 
fields and p2in the linear field, thus giving a very sharp contact and shock without 
overshoot. By using Van Leer's limiter, p ~ , ,in the nonlinear fields instead of q,,the 
sharpness of the shock is slightly improved still further as seen in Fig. 6b. 

t ENERGY 
3- 9 

_4___*  + 

, 0. 5 I .  0 

( a )  F~rsrorder 

3.00 1 ENERGY 
C 

hi--
i 0. 5 1.0 

(e )  pco 

F I G .  5 Sod's problem. 
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3.00 ; ENERGY -I 

2.25 :-\; 

1.50 + 

* --a 1 

-	 I 0. 5 1.0 i 0. 5 1.0 

(a) pi on nonlinear fields. 	 (b) p, on nonlinear fields. 

FIG. 6. Sod's problem, p, on lrnear field. 

6. Concluding remarks. We have investigated the derivation of high resolution 
second order accurate schemes by means of adding a limited antidiffusive flux to a 
general entropy-satisfying first order scheme. Constraints on the limiters, as functions 
of gradient ratios, have been obtained so that the resulting scheme is TVD. and a class 
of limiters proposed which satisfy these constraints. Flux limiters used by Roe and 
Chakravarthy and Osher have been studied and shown to be equivalent to members 
of the class in various cases, in particular a low diffusion limiter proposed by Roe 
which gives surprisingly good results in the linear case. Van Leer's flux limiter has also 
been investigated and shown to satisfy the TVD constraints and to exhibit results 
nearly as good as Roe's whilst being more reliable. It is demonstrated how good results 
can be obtained by using different limiters on different characteristic fields of systems 
of conservation laws. 
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