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The idea of the simple positive definite advection scheme presented previously in Monthly 
Weather Review (1 I I (1983), 479) is improved for an optional multidimensional case and is 
presented in a generalized format. The accuracy of the scheme is discussed and a review of 
existing options is presented and illustrated through numerical tests. 

1. INTR~~LJCTI~N 

In numerical modeling of physical phenomena it is often necessary to solve the 
advective transport equation for positive definite scalar functions. Numerical schemes 
of second- or higher-order accuracy can produce negative values in the solution due 
to the dispersive ripples. Lower-order schemes, such as the donor cell or 
Lax-Friedrichs, or higher-order schemes with zeroth-order diffusion added produce 
no ripples but suffer from excessive implicit diffusion. In the last ten years a possible 
resolution of this dilemma has been developed in the form of hybrid schemes, in 
which the advective fluxes are given as a weighted average of a first-order positive 
definite scheme’s fluxes and a higher-order scheme’s fluxes. The difference in deter- 
mination of the weights in the calculation of the average advective fluxes has led to 
different hybrid schemes. Two main hybrid-type schemes have been developed. One, 
the so called flux-corrected transport (FCT) method, was originated by Boris and 
Book [ I-31 and generalized by Zalesak [ 141; the other was developed by Harten and 
Zwas [ 6,9] in the form of the self-adjusting hybrid schemes (SAHS) method. Both 
methods were constructed to deal effectively with shocks and contact discontinuities. 
Solutions of the advection transport equation obtained by using FCT or SAHS 
maintain positive definiteness of the initial condition and, as can be seen from 
presented tests (Zalesak [ 141, Harten [6]), be very accurate. Unfortunately, 
application of these methods to the modeling of complex multidimensional 
hydrodynamical systems like atmospheric phenomena is rather limited due to the 
excessive computer time required. Furthermore, in many hydrodynamical systems, 
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especially in the presence of turbulent diffusion, dealing with a shock or discontinuity 
is not as important as maintaining the positive definiteness of the evaluated scalar 
quantity. Compromising between computer time efficiency and accuracy, Clark and 
Hall (4, 51 applied the idea of hybridization to the numerical evaluation of the 
cloud’s water transport equation, developing possibly the simplest known hybrid 
scheme. The numerical diffusion in this scheme is larger than in the FCT but the time 
consumption is about half of that in the FCT. Recently developed by Harten ] 7,8 1, 
the total-variation-diminishing (TVD) schemes, like FCT or SAHS, have been 
designed to treat shocks and discontinuities. The explicit version of the second-order- 
accurate TVD scheme [8] is computationally efficient enough to be considered for 
application in modeling the phenomena mentioned above (in Section 4 of this paper 
one version of the TVD scheme will be discussed in detail). All FCT, SAHS, and 
TVD methods have been constructed to maintain monotonicity of the initial 
condition which implies the maintenance of the positive definiteness of the 
transported quantity. 

This paper presents another solution. Using an iterative approach, one can 
construct from the basis of the “upstream” scheme a class of nonlinear, multidimen- 
sional, positive definite advection transport algorithms with small implicit diffusion. 
In comparison to the FCT, SAHS, or TVD schemes, the general iterative principle of 
the algorithm seems to be simple and can be easily developed from the Taylor series 
expansion applied to the “upstream” scheme [ 131. In the first iteration an “upstream” 
scheme is used in its classical sense, while each following corrective iteration 
reapplies the “upstream” scheme but with a specially defined “antidiffusive” velocity 
field. The number of iterations is optional, and each additional iteration increases the 
solution’s accuracy. Such a procedure has been applied successfully in Smolarkiewicz 
[ 131 to one-dimensional advection problems and to a multidimensional problem when 
the scheme has been used in a “time-splitting” form. In a multidimensional case when 
the scheme was applied to a combined form (the difference between the combined and 
“time-splitting” forms of the advection schemes was discussed in detail in 
Smolarkiewicz [ 12]), only the first corrective iteration gave improved results. The 
second corrective iteration unrealistically deformed the solution and in some cases 
even resulted in instability of the scheme. In [ 131, it was suggested that this error was 
caused by an effect due to the cross-derivative terms (as was also discussed in detail 
in [ 121). Introducing cross terms to the “antidiffusive” velocities eliminates this 
problem and results in a fully multidimensional unified algorithm that strictly 
maintains the positive definiteness of the transported quantity. The proposed 
algorithm represents an open family of schemes of varying levels of accuracy, 
complication, and computational efficiency. The simplest version of the scheme is 
second-order accurate in both space and time. As was shown in [ 131, it gives results 
of a quality comparable with that obtained from more complicated hybrid schemes 
while considerably reducting computational time. The most accurate and complicated 
version presented in this paper is third-order accurate in time and fifth-order accurate 
in space. In principle it is possible to construct the algorithm with an optional order 
of accuracy. For smooth initial conditions the schemes also preserve monotonicity 
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but for the shock-type initial conditions they may produce locally, in the closest 
neighbourhood of the shock, a small amplification. This amplification is significantly 
smaller than the amplitude of oscillation produced by linear schemes of a high order 
of accuracy and is of minor importance in a broad category of problems. However, 
the example of the modification of the algorithm for the case of a shock-type initial 
condition will be discussed as one of the possible options of the scheme. 

In Section 2 of this paper the basic form of the algorithm will be developed in 
general optionally dimensional form. In Section 3 such features of the scheme as 
consistency, stability, and accuracy will be discussed. Section 4 will present the 
results of some tests and compare the scheme with a version of the TVD scheme 
(because the first version of the algorithm was compared with the FCT, SAHS, and 
Clark and Hall schemes in [ 131 this comparison will not be repeated here). In 
Section 5 some of the possible options of the scheme will be discussed. 

2. DEVELOPMENT OF THE ALGORITHM 

The equation to be solved is the continuity equation describing transport of the 
nondiffusive scalar quantity in M-dimensional space (the proposed algorithm was 
placed in a general M-optional format for compactness, but the author is able to 
prove the stability of the scheme for M < 3 only, which does not necessarily mean 
that the scheme is unstable in a case of M > 3): 

where w = y(t, xl,..., x”) is the nondiffusive scalar quantity, assumed to be non- 
negative; 

22 = u’(t, x1 ,..., x”‘) is the Zth velocity component, Z = l,..., M; 
t,x= (xl ,..., x”) are the time- and space-independent variables. 

To describe compactly the numerical equations that will be used later, it is convenient 
to introduce a few symbols: 

WY is a numerical approximation of the solutin of Eq. (I), defined in 
points (t”, xi), where t” = n . At, xi = (i’ AX’, i2 AX2 ,..., iM AX”), 
n=O ,..., NT, i’ = 0 ,..., NX’ and AX’ is the constant spatial increment in 
the Zth direction (in this paper the indices described by capital letters, 
e.g., “I, J,” always indicate vector components, and the indices 
described by lowercase letters, e.g., “i,j,” indicate the position on a 
grid space); 

e, = (0,O ,..., 0, 1,0 ,..., 0) is a unity vector in the Zth direction; 
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n I u. ,+C1,ZJe, is the Zth velocity component in the n th time step defined on 
a staggered grid (the Zth component is staggered f AX’ in the Zth 
direction). Later, to simplify the fomulas, the index “n” beside velocity 
symbols will be omitted where it is possible to do so without 
introducing any misunderstandings. 

With the above symbols, the well-known first-order-accuracy “upstream” scheme 
for numerical evaluation of Eq. (1) can be written in the form 

where F is the advective flux in Zth direction evaluated in the same staggered points 
as the Zth velocity component and defined as follows: 

A sufficient stability condition for the scheme in Eq. (2) can be written in the form 

(cf. Eqs. (3-140) of Roache [ 1 I]), where 

I a. It (I/z)eJ = 
I 

Ui+(t/2)e,AtlAX’. (5) 

Note that originaly u’ was not defined in xi+ C1,21eJ for Z # .Z and that this definition is 
not necessary for numerical evaluation of Eq. (1). For the stability condition it 
always can be done, at least by the appropriate arithmetical averaging (see, e.g., 
Eq. (14)). The constant GY < 1 was placed in Eq. (4) to point out that in the case of a 
divergent flow field, the traditional restriction can be insufficient and (as follows from 
experience and simple analysis of the behavior of the “upstream” scheme around the 
point in which each velocity component changes from u’ to -u’) should be replaced 
by 97 < 4. Under the condition given in (4) the scheme in (2) is positive definite, 
which means: 

The properties in Eqs. (4) and (6) of the scheme in Eq. (2), as well as its low 
computer time consumption, are very useful for the application of Eq. (2) to the 
numerical evaluation of Eq. (1). Unfortunately, the scheme in Eq. (2) is of first-order 
accuracy in both time and space and has strong implicit diffusion. The rate of the 
implicit diffusion may be easily estimated for the case of a uniform flow 
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(VI u’ = const). Expanding w;I+‘, wr+,,, WY-‘_,, in a second-order Taylor sum about the 
point (t”, xi), scheme (2) may be written as 

ary n - =- at i il $m (I + il & /0.5[lu’lAX’-Af(u’)zl~ 
i 

- J$l 0.5Atu’u’~l 1;. (7) 
J#I 

From Eq. (7) it can be seen that when At and AX’-+ 0, for all Z, Eq. (7) approaches 
Eq. (I), but during a realistic computational process the scheme in Eq. (2) with finite 
At and AX’ approximates more accurately (with second-order accuracy) an advective 
transport equation with additional diffusive terms rather than the original Eq. (1). On 
the other hand, these implicit diffusion terms are important for the stability of the 
scheme and must not be explicitly subtracted from the scheme. An intuitively obvious 
approach is to make the advection step using Eq. (2) and then reverse the effect of the 
diffusion equation 

0.5 u AX’-At(d)‘] -$- =f 0.5 At uiuJs II ‘I 
I 

(8) 
J=I 
JfI 

in the next corrective step. 
The diffusion process and the equation that describes it are irreversible. But this 

does not mean that the effect of the diffusion process cannot be reversed in time. To 
do this, one can design a process that will return to the previous state or at least to a 
state close to it. It is enough to notice that introduction of the artificial “diffusive” 
velocities ui allows one to write Eq. (8) in the form 

& -T -5 (Id’, w) at=-,y ax’ 
where 

i 
-0.5[~u’ldX’-At(u’)2]+$ 

u’d = + 5 0.5Atu’uJ$$ 
J=l 
J#I 

0 

(9) 

if w>O (10) 

if w = 0. 

Now defining “antidiffusive” velocities 

(11) 
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the reversal in time of the diffusion equation (8) may be simulated by the advection 
equation (9) with the “antidiffusive” velocities Zz’ instead of ui. Based on this 
concept, the corrective step is suggested in the form 

where w* is given by the right-hand side (r.h.s.) of Eq. (2) and 

(13) 

where 

and E is a small value, e.g., lo-“, to ensure zi’ = 0 when I&~,= I,$ = 0 or vi”,,, eJ= 
w;“, e, = K*+,-, = I&, = 0. The corrective step is again the “upstream” scheme and 
also contains implicit diffusion that again can be corrected by the next corrective 
step. The number of corrective steps is optional, so the final algorithm may be written 
in the form 

yf*)k= Wj*‘k-’ _ fl [F1(V/I*)k-‘, wl+*:;-‘, ‘;:,,,*,,, 

c-P 
-F’(,&J;“-’ ) lJ/!*y u! r ’ I-w*,e,)l (15) 

where k = l,..., IORD; (ii,‘+’ = ~Z(‘ii,~, I#*,~ ) evaluated from Eqs. (13) and (14) and 
c-j 

WI*,’ = u/f, ~j*,“~~ s wr+‘, u~+(,,~,~,G ‘k{+(,,,,,,. Note that when IORD = 1 the 
algorithm in Eq. (15) is exactly the same as the classical “upstream” scheme. 
Theoretically IORD may be any value, but, as can be concluded from the performed 
tests, using IORD > 4 only negligibly improves the accuracy of the solution while 
increasing the computational costs of the scheme. In [ 131 the second term in 
Eq. (13), which compensates the effect of the cross-spatial derivatives in Eq. (7), was 
not evaluated. In a multidimensional case for IORD > 2, this neglect resulted in 
deformation of the solution or even in instability of the scheme. 
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3. CONSISTENCY,STABILITY, AND ACCURACY OF THE ALGORITHM 

The proposed algorithm is constructed from the well-known, conditionally stable, 
and consistent “upstream” scheme. To show the consistency of the entire scheme in 
Eq. (15) it is enough to show that when At, AX’ -+ 0, for all I, the corrective iterations 
(k > 1 in Eq. (15)) do not affect the solution of the first iteration (k = 1 in Eq. 15). 
From Eqs. (13), (1 l), and (10) it is easy to see that when At, AX’ + 0 then 

(-)k 
-I z.++(,,~)~, --) 0, which implies u;,~,,,,, , + 0 for all k. The latter implies that Eq. (15) 
for k > 1 converges to 

aw 0 ---= 
at (16) 

which means that the scheme is consistent. 
To show the stability of the scheme it is enough to show that stability of the first 

iteration implies stability of all subsequent iterations. An optional grid point and time 
step may be taken into consideration to prove stability for any arbitrary grid point 
and time step. The notation is simplified for this analysis by omitting the indices that 
indicate the position on the grid space. The application of Eq. (13) results in 

a’aJPiJ (17) 
J=I 
J#’ 

where ~2’ is related to U’, as in Eq. (5), and <’ and J?” are the Aw*/w* ratios in 
Eq. (13). Because all w* values have been obtained from the positive definite 
“upstream” scheme, V,,, It,/, I/?” 1 < 1. Because of Eq. (4), V, 1 a’1 < g < 1, which 
implies 0 < Ia’1 - (a’)’ < 0.25 in Eq. (17). Using this information, it can be shown 
that 

lii’I<]a’I--(a’)*++Ia’j t laJI. 
J=1 
J#’ 

(18) 

Because of Eq. (4) 

f IaJI=C. 
J=I 

The sum of Eq. (18) over all I and the use of Eq. (19) lead to 

5 )G’J<C+tC*-+ 5 la’\*. 
‘=I I=1 

(19) 

(20) 

581/54/2-9 
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From the Schwartz’s inequality, 

(21) 

which allows us to write Eq. (20) in the form 

-F ~~‘~<c+fC2((M-3)/M). 
,kl 

(22) 

The r.h.s. of the inequality in (22) is less than or equal to C for M< 3 so finally 

which results in 

(23) 

(24) 

Additionally, the maximum values of the r.h.s. of Eq. (22) are 4, i, and C for M = 1, 
2, and 3, respectively. This is an important conclusion because even if the original 
velocity field is nondivergent the “antidiffusive” velocity field is divergent. So, to be 
positive that the whole scheme is stable, it is safer to ensure that te r.h.s. of Eq. (24) 
is less than or equal to f . Finally, we have proved that for M = 1,2 the stability of 
the first iteration implies the stability of the whole scheme, and for M = 3 this is true 
if the constant y7 in Eq. (4) is less than or equal to f . The performed tests, e.g., 
M= 3 and V = 0.95, suggest that the algorithm is always stable if the original 
“upstream” scheme is stable, but this conclusion is still unproved for M > 3. 

Because each iteration of the algorithm is in the form of the “upstream” scheme, 
fulfilling the stability criteria ensures that the scheme is positive definite. 

The scheme is nonlinear even in the case of a uniform velocity field. According to 
Harten [8, p. 61, stability and consistency are the only necessary conditions for its 
convergence. From Eqs. (12) and (13) it is easy to see that when At, AX’ + 0, for all 
1, the scheme converges to an “upstream” scheme. The latter point, as well as the 
results of the performed tests, suggests that convergence of the scheme is at least as 
well ensured as for the “upstream” scheme. 
The algorithm’s order of accuracy can be determined by estimating the truncation 
error. It can be shown and confirmed by the results of tests that the scheme is at least 
second-order-accurate in space. When time dependence of the velocity field can be 
ignored the scheme is also second-order-accurate in time. Let’s assume for the sake of 
simplicity that the considered scheme has IORD = 2 and that the specified velocity 
field is time independent and nondivergent. Although for development of Eq. (7) a 
uniform velocity field has been assumed it is easy to show that to obtain Eq. (7) it is 
enough to assume a nondivergent velocity field (in Section 5 of this paper it will be 
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shown how to generalize the scheme for a divergent velocity field case). To simplify 
the calculation it will be assumed that M = 1 in (1). Under these assumptions I*, 
given by the first iteration of the scheme, is a second-order-accurate solution of 
Eq. (7), and can be written in the form 

2 
ly* = If -jt;+At -& (uly) dt + Tj 

f”+At a 

f” 
zKa~dt+02(AX,At)Ar (25) 

where K, = +(IaI - a’), a = u At/AX, and O’(AX, At) is a second-order small term 
AX, At dependent. Similarly w”+ ‘, given by the second iteration of the scheme, is a 
second-order-accurate solution of Eq. (7) with w*, u’ instead of w, u, which can be 
written in the form 

+ O’(AX, At) At (26) 

where K, = K, - 2Ki. From Eq. (13), 

;=(dX)ZK iav/*+()*(AX At) 
At = iy* i?x 

3 * (27) 

After using Eqs. (25) and (27) in (26) and omitting the third term of the r.h.s. of (26) 
as a higher-order small term, Eq. (26) can be written in a form 

2 f”+At a 

w nil=~.-jt~+At~(ur)dt+~j 

1” 
zKegdl 

(AX) 2 
i 

t”+At a 
-- 

At t” 
xK^zdi 

+ (AX)2 
J^ 

(“+At a 

At ,n 
ax K, z dt 

I 
ds + O’(AX, At) At. (28) 

Note that the first-order small diffusive terms compensate each other and Eq. (28) 
may be rewritten as 

v “+‘=yn-jf”+At?&,)df 
1” 

+ 02(AX, At) At. (29) 



334 PIOTR K. SMOLARKIEWICZ 

Because the third term on the r.h.s. of (29) is of the leading order (LIX)~A~, Eq. (29) 
may be finally written in the form 

w (my) c-i? + O*(AX, At) At (30) 

which means that vnt i is a solution of Eq. (1) that is second-order-accurate in time 
and space. The same conclusion could be reached in a more heuristic manner. It is 
enough to note that the corrective step compensates the first-order small diffusive 
term with the accuracy to the first order of the first-order small term. This means that 
the residual of the compensation is a second-order small term. It is still unclear 
whether increasing the number of iterations increases the order of accuracy of the 
scheme or only decreases the amplitude of the existing O’(AX, At) At error in (30). 

From Eqs. (13) and (15) it can be concluded that a two-iteration scheme 
(IORD = 2) results in a three-point scheme while a three-iteration scheme 

Y=L0G21TRUNC. ERRBRI 
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FIG. 1. The dependence of the measure of the truncation error on the number of halvings of the grid 
and time increments. The curves Sl-S8 represent schemes with IORD = 1-8, respectively. 
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(IORD = 3) results in a five-point scheme. Generally an IORD-iteration scheme 
determines gradients of fluxes on the basis of the information from 2 * IORD-1 
points. To illustrate the behavior of the truncation error the following test has been 
performed. In a uniform one-dimensional velocity field the initial condition in the 
form of the Gauss-type function has been assumed. After an arbitrarily chosen fixed 
time period, T = NT + At, the average error per time and per space step between the 
numerical and analytical solutions has been evaluated as follows: 

TRER(NT, NX) E F (iy(T, xi) - y$“)*/(NT. NX) 
I 

l/2 
(31) 

i=l 

where t&T, xi); t,uy’ are the analytical and numerical solutions, respectively, at the 
point (T, xi). Dividing successively At, AX by 2 and doubling simultaneously NT, 
NX, the sequence of TRER(NT, NX) has been obtained. The dependence of the 
log,(TRER) on the number of halvings of the original At, AX is presented in Fig. 1 
for different IORD’s and the chosen Courant number 0.5. The curves Sl, S2, S4, S6, 

Y=LBG$TRUNC. ERRBRI 

-5.0 I I I I I I 

-10.0 

-25.0 

0.0 1 .o 2.0 3.0 4.0 5.0 6.0 7.0 
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FIG. 2. As in Fig. 1 but for a leapfrog-trapezoidal scheme second-order-accurate in time and second- 
(L2) to eight- (L8) order accurate in space. 
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and S8 are equivalent to IORD = 1, 2, 4, 6, and 8, respectively. In Fig. 2 the same 
dependence is presented but for the well-known leapfrog-trapezoidal scheme (Zalesak 
[ 14, Appendix]), which is second-order-accurate in time and second-, fourth-, sixth-, 
and eighth-order-accurate in space. The curves L2, L4, L6, and L8 represent the 
different versions of the leapfrog scheme. Note that the quantity TRER defined in 
Eq. (31) does not represent the truncation error according to its definition [ 10, p. 201 
but rather some measure of that error. So, the order of the accuracy of the various 
schemes cannot be estimated directly from the plots presented in Figs. 1 and 2. 
Generally the truncation error may be written in the form 

truncation error - (Llt)yC, + C*(dX)~-~-~~ + * * *) (32) 

where pI, pX are the leading orders of the truncation in time and space, respectively, 
and C,, C, are coefftcients that are generally solution and Courant number 

Y=L0G21TRUNC. ERRBRI 

-5'o F 

-40.0 I I I I / I 1 

0.0 1 .o 2.0 3.0 4.0 5.0 6.0 7.0 

NUMBER OF DT.DX HQLVINGS 

FIG. 3. As in Fig. 1 but for an IORD = 2 scheme. Curves Cl, C2, and C3 are for CFL = 0.25, 0.5, 
and 0.75, respectively. 
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dependent. From (32) it can be seen that when At = 2-” At,, AX = 2-” AX,,, and n is 
“big,” then 

log, (tr. error ) N -ptn + 
1 
log*(C, + CA if k=h 
h3, c, if Px>Pt. 

(33) 

The relation in (33) explains the shape of the curves in Figs. 1 and 2. Note that for 
a “big” n all lines L2-L8 have the same slope, and the lines L4-L8 are identical. 
Generally it can be concluded that the slopes of the lines in Figs. 1 and 2 illustrate 
the order of truncation error in time while the shift between the lines for the same 
type of scheme is related to the order of the truncation in space. Comparing S2 with 
L2 and S4-S8 with L4-L8 in Figs. 1 and 2, it can be seen that S2 has the same 
slope as L2 and lies entirely below L2 while S4-S8 have greater slopes than L4-L8 
and lie entirely below them. To make a final conclusion it is necessary to present the 
dependence of the TRER quantity on the Courant number. In Figs. 3 and 4 the two- 
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-35 .o 
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0.0 1 .o 2.0 3.0 4.0 5.0 6.0 7.0 

NUMBER 0F DT.OX HRLVINGS 

Fk. 4. As in Fig. 3 but for a leapfrog-trapezoidal scheme second-order-accurate in both time and 
space. 
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iteration scheme and second-order in the time and space leapfrog scheme are 
compared for Courant numbers Cl = 0.25, C2 = 0.5, and C3 = 0.75. From Figs. 3 
and 4 it can be seen that for all Courant numbers the lines for the two-iteration 
scheme have the same slopes as the lines for the leapfrog scheme. It also can be seen 
that the curves in Fig. 3 lie entirely below the curves in Fig. 4. These features suggest 
that the two-iteration scheme is second-order-accurate in time and space. In Figs. 5 
and 6 the same comparison is presented for a four-iteration scheme and a second- 
order accuracy in time and fourth-order accuracy in space leapfrog scheme. 
Comparing Figs. 1, 2, and 5, it can be concluded that the greater slope for S4-S8 
than for L4-L8 does not indicate a difference in order of accuracy in time between, 
say, S4 and L4 but rather some particular dependence of the truncation error on the 
Courant number. Comparing Figs. 5 and 6 it can be noticed that the values of TRER 
for the four-iteration scheme are smaller than those for the 2/4-leapfrog scheme but 
have a different dependence on the Courant number. Note that Cl in Fig. 5 lies above 
Cl but below C3 in Fig. 6. This suggests that the four-iteration scheme is fourth- 
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FIG. 5. As in Fig. 3 but for an IORD = 4 scheme. 
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FIG. 6. As in Fig. 3 but for a leapfrog-trapezoidal scheme second-order-accurate in time and fourth- 
order-accurate in space. 

order-accurate in space and generally that increasing the number of iterations 
increases the order of accuracy in space. It also can be concluded that the truncation 
error reaches a minimum for Courant number 0.5. 

4. RESULTS OF TESTS 

Two- and three-dimensional solid-body rotation tests were performed to 
illustrate the behavior of the proposed algorithm. The one-dimensional version of the 
scheme was tested in [ 131. The two-dimensional case used 101 points in each 
direction with AX’ = AX’ = AX = 1, At = 0.1, and a constant angular velocity of 
o = 0.1. The velocity components are u1 = -w(x’ -xc’) and u2 = o(x’ - xo’), 
where (xo’, xc?) = (50 AX, 50 AX), One full rotation around the point (xo’, x0*) was 
equivalent to 628 time steps. In this circumstance the constant B in the stability 
criterion (4) was 0.99. A cone was used as the initial condition with a base radius of 
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1.5 AX and a maximum value of 4.0 at the point (xm’, xm’) = (75 AX, 50 AX) 
(Fig. 7). For all tests performed the same boundary conditions were used. The first 
partial spatial derivative in the normal direction was assumed to vanish at the 
outflow boundary (vanishing of the second derivative does not ensure the positive 
definiteness of the scheme). The undisturbed value of the field was assumed at the 
inflow boundary. The solution after six full rotations (3768 time steps) is presented in 
Figs. 8, 9, and 10 for the scheme in Eq. (15) with IORD = 2, 3, and 4, respectively. 
The maximal values of the presented solutions are 2.16, 3.17, and 3.25, respectively, 
and the “energy” error ER2 is 0.52, 0.20, and 0.14, where ER2 is defined as 

ER2 = 1 - ij; I,Y’(x’, x2, t) dx’ dx* + 1.’ (outflow(v2) dtl[ 
-0 

x , ( I,u*(x’, x2, 0) dx’ dx* i‘ 
. -I 
1 (34) 

FIG. 7. Initial condition for the two-dimensional tests. The scale values in left-front and right-back 
corners are -2 and 4, respectively. The scale values are the same in all figures. 
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FIG. 8. Solution for an IORD = 2 scheme after six full rotations (3768) time steps. 

where c signifies the whole domain of xi, x2. All versions of the scheme that were 
considered are in a conservative form, and the error of the conservation of v/ was to a 
roundoff error level of 10-12. Furthermore, the minimum value of the solution 
obtained was 0. It can be seen, by comparing Figs. 8, 9, and 10 and taking into 
consideration that when a simple “upstream” scheme (IORD = 1) is used the solution 
almost vanishes [ 13, Fig. 21, that significant improvements of the algorithm’s 
accuracy are obtained when IORD changes between 1 and 4. For IORD > 4 the 
differences between two successive IORD schemes are unnoticeable on the figures, 
e.g., for IORD = 6 the maximum value of the tested solution is 3.27 and ER2 is 0.12. 
When the results presented in Figs. 8, 9, and 10 are compared with the equivalent 
results obtained from the time-splitting form of the one-dimensional version of the 
scheme [ 13, Figs. 13, 14, and 151 it can be concluded that the combined form of 
time-differencing gives slightly better results than time-splitting. The results shown in 
Figs. 8, 9, and 10 have been compared with the solutions obtained from the second- 
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FIG. 9. As in Fig. 8 but for an IORD = 3 scheme. 

order-accurate explicit version of the TVD scheme [8, following Theorem 4.3 and 
Eqs. (3.5) with q = 0, (3.10), (3.16b) with E = 0, (4.1), (4.5), (4.8) with i= 01. 
Figure 11 shows the solution after six rotations for the time-splitting form of the 
chosen version of the TVD scheme. Solution maximum and ER2 values are 1.63 and 
0.52, respectively. In Fig. 12a the same solution is presented, but for the scheme 
applied in a combined time-differencing form. Solution maximum and ER2 are 1.52 
and 0.60. Comparing Fig. 12a with Fig. 11, it can be seen that the combined form of 
the scheme results in a deformation of the solution (elongation normal to the 
direction of motion); this is especially clear in Fig. 12b, where the solution is shown a 
quarter of a rotation earlier than in Fig. 12a. This deformation is typical for all 
multidimensional higher-order schemes that do not take into account the cross- 
spatial-partial derivatives [ 12, 131. It can also be concluded that the chosen version 
of the TVD scheme is even more diffusive than the IORD = 2 version of the 
proposed algorithm. Computer time consumption for both schemes is practically the 
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FIG. 10. As in Fig. 8 but for an IORD = 4 scheme. 

same, i.e., about three times that required for the simple “upstream” scheme. For 
versions of the scheme with IORD = 3 and 4, computer time consumption is about 
five and seven times that required for the “upstream” scheme. Compare this with the 
FCT scheme [ 131, which requires about eight times the “upstream” amount. 

In the three-dimensional case the number of grid points chosen was 41 in each 
direction with AX’ = AX2 = AX3 = AX = 2.5, At = 0.2, and a constant angular 
velocity n = (o/2, w/2, w(2)- ‘12), where o = 0.1. The velocity components are 
U’ = -fi3(x2 - xo2) + LJ2(x3 ---03), u2 = R3(x1 - xo’) - L?‘(x’ - xo3), and u3 = 
412(x1 - xol) + 01(x2 - xo2), where (xo’, xo2, xo3) = (2OdX, 20 AX, 20 AX). The 
initial condition was a sphere with the radius 7 AX and linearly variable density from 
0 on the edge to a maximum value of 4 in the center (20 AX- 7 AX(6)-“2, 
20 AX- 7 A/Y(6)- ‘I2 20 AX+ 14 AX(6)-1’2). In Fig. 13 the values greater than or , 
equal to 0.5 are plotted. The sphere is rotating around the diagonal axis of the grid 
space that passes through the corner shown in Fig. 13. One full revolution around the 
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FIG. 1 I. As in Fig. 8 but for the time-splitting version of the TVD scheme. 

point (xo’, xo2, xo”) is equivalent to 314 time steps. The maximum value of the 
Courant number G? in the stability condition (4) is 0.95. In Figs. 14 and 15 the values 
greater than or equal to 0.5 of the solutions after five revolutions are shown for the 
four-iteration scheme (15) and time-splitting TVD scheme, respectively. The 
maximum solution values are 1.67 and 0.55 and the ER2’s are 0.63 and 0.88, respec- 
tively, for both schemes. The results for the combined form of the TVD scheme are 
not presented because the maximum solution value is SO.50 (ER2 = 0.91). From 
Fig. 14 it can be seen that the solution is deformed, i.e., elongated toward the center 
of the rotation. Because similar difficulties in a two-dimensional advective transport 
problem have been solved by introducing the second-order cross terms explicitly to 
the scheme, it was suspected that taking into account the third-order cross terms 
would solve “deformation trouble” in a three-dimensional case. Repeating the whole 
procedure discussed in Section 2 but applying the third-order Taylor series expansion 
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FIG. 12a. As in Fig. 8 but for the combined version of the TVD scheme. 

instead of the second-order one leads to a corrected form of the “antidiffusive” 
velocity: 

where 

-1 u. 1+ (l/2)+, = (~~+(1/2&&(13) + G+m I (35) 

-1 u. l I 
I+(l/z)e, = - - 3( Ui+(l12)el kw2 - M+~l,2~eJ3 At*) 

x( 

oYL,- u/T - vi%., + WiTZJ 

sum of the above terms + E)(M’)* 
M 

+ c ~f2M+(1/2)c,)2 d+(1/2)c, 
.J=l 
J#I 
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* 
X 

- wi+c,+s-c,- wi*+c,+e,-e, - d&.-e, 
(sum of the above terms + E) AXJ AXL ’ (36) 

Note that the structure of the scheme remains the same as in Eq. (15) and only new 
terms are included in the “antidiffusive” velocities. Extending the results of Section 3 
it can be concluded that this newly obtained version of the algorithm is third-order- 

FIG. 12b. As in Fig. 12a but shown a quarter of a rotation earlier. 
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FIG. 13. Initial condition for the three-dimensional tests. All points in which the value of a function 
is greater than or equal to 0.5 are plotted. 

FIG. 14. Solution for the IORD = 4 scheme after five rotations. The values greater than or equal to 
0.5 are plotted. 

51X1/54/2-IO 
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FIG. 15. As in Fig. 14 but the time-splitting version of the TVD scheme. 

FIG. 16. 

scheme. 

As in Fig. 14 but for a modified, third-order-accurate in time version of the IORD 
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accurate in time (when the original velocity field is time independent) and third- or 
higher-order-accurate in space depending upon the number of iterations. The 
application of four iterations to the new version of the algorithm produces the results 
shown in Fig. 16 after five rotations. The maximum field value and ER2 are 2.69 and 
0.54, respectively. It can be seen that the deformation that occurred with the basic 
version of scheme has almost totally vanished. Also, the implicit diffusion of the 
scheme is significantly decreased. On the other hand, the time-splitting form of the 
original scheme gives results similar to those shown in Fig. 14 (maximum 
value = 1.73, ER2 = 0.62). Finally, it can be concluded that including all third-order 
terms explicitly in the scheme is essential to eliminate the occurring deformation and 
improve the sol,ution’s accuracy. The results obtained suggest (there is not enough 
evidence to form a stronger conclusion) that isotropic distribution of the truncation 
error can be reached only for those advection schemes that are at least the same 
order of accuracy in both time and space as the dimensionality of the problem. The 
results obtained in [ 121 (the cross terms have been applied explicitly to different 
types of schemes) suggest that this formulated hypothesis is generally applicable. 

5. SOME POSSIBLE OPTIONS OF THE SCHEME 

In the previous sections the basic form of the algorithm has been presented and 
discussed in detail. The different assumptions on the truncation of the Taylor series 
expansion in the first step of the scheme development were shown to lead to the new 
versions of the algorithm. Using the same logical procedures as in the previous 
sections, one can construct many new schemes. Some of the existing options will be 
described below. 

5.1. Divergent Flow Field 

To obtain Eq. (7) a uniform velocity field had been assumed. When u’ E z./(x), 
Eq. (7) takes the form 

0.5 At u’ : x 
n 

J=l axJ i 
(37) 

where the terms that are not written explicitly are the same as in (7). Note that (37) 
proves that (7) and (13) are valid not only for a uniform velocity field but for any 
velocity field that is time independent and nondivergent. Using (37) results in a new, 
corrected form of (13): 

-1 
ui+(l/Z)c,= ‘** -0.25 At ~:+(~,~)e~~:+(3/2)e,- ui-(l,2jeyAx’ 

- 0.25 At u:+c1,2jc, Jil @:+cl,2,e,+ 4+w2kJ+ e, 

J#I 

J J 
- ui-(l/2)e,- Ul-(1/2)c,+e, YAXJ (38) 
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where the terms omitted are the same as in (13). When the original velocity field is 
nondivergent the new terms in (38) are insignificant. They vanish in the second 
iteration of the scheme, while in higher iterations they are always an order smaller in 
AX than the original terms. It has been found that application of Eq. (38) to the tests 
presented in Section 4 practically does not affect the previously obtained results. On 
the other hand when the velocity is strongly convergent, application of Eq. (38) to the 
problem of the evolution of the droplet size distribution due to the evaporation-con- 
densation process improves the results (William Hall, personal communication). 

5.2. Time-Dependent Velocity Field 

When the time dependence of the velocity field is taken into account, Eq. (7) 
should be written in the form 

(39) 

FIG. 17. Initial condition for the “shock-type initial condition problem” tests. Scale values in 
corners are the same as for Fig. 7. 
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where the terms not written explicitly are the same as in (7). The “antidiffusive” 
velocity (13) is written in the form 

n 
-r 

%+ (l/Z)e, = . . . +0.5&g 
i+(l/Z)e, 

where the omitted terms are the same as in (13). It is still unclear how to properly 
approximate the velocity time derivative in (40) in the case of a nonlinear equation 
such as the momentum equation. In applications in which time dependence of the 
velocity field is given a priori, Eq. (40) may be used in the second iteration of the 
scheme. Tests performed where the angular velocity from the previous section was 
allowed to be time dependent, w - cos(a a t), suggest that the effect of Eq. (40) is 
negligible. This problem will be investigated more systematically in the future. 

FIG. 18. Solution for the IORD = 4 scheme after one revolution. 
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5.3. Schemes with a Higher Order of Accuracy in Time 

In Section 4 the development of the scheme that is third-order-accurate in time was 
presented. One can, similarly, construct schemes with an optional order of accuracy 
in time and space. Increasing the order of accuracy of the scheme results in 
additional terms in Eq. (7) and dramatically complicates the form of the “antidif- 
fusive” velocity (13). It has been found that the application of the versions of the 
scheme that are third- and fourth-order-accurate in time, in both a time-splitting and 
a combined form, has little effect on the results of the two-dimensional tests from the 
previous section. It has been found that the third- or fourth-order accurate in time 
version of the scheme may have an important application to the “moving shock” 
problem. 

5.4. The Shock-Type Initial Condition Problem 

To illustrate the behavior of the scheme for a shock-type initial condition it is 
convenient to repeat the test proposed by Zalesak [14]. In the case of the two- 

FIG. 19. As in Fig. 18 but for the IORD = 2 scheme. 
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FIG. 20. As in Fig. 18 but for the TVD scheme. 

dimensional test from the previous section the cone is replaced by a cylinder (with 
the same base radius, amplitude, and position as the cone) with a deep groove, as 
shown in Fig. 17. In Figs. 18, 19, and 20 the solutions after one revolution (as in 
[14]) are shown for IORD = 4, IORD = 2, and a combined TVD scheme. The 
maximum values and ER2 are, respectively, 4.76 and 0.28; 3.82 and 0.46; and 3.34 
and 0.50. It can be seen that while the TVD scheme nearly maintains the flat shape 
of the cylinder’s top, the proposed algorithm (especially for IORD = 4) creates an 
artificial maxima. This effect is an obvious consequence of the scheme structure 
and will always occur in the closest neighbourhood of the shock or contact discon- 
tinuity. In the category of problems in which this local amplification is unacceptable 
it is possible to eliminate this effect, for example, by turning off the corrective 
procedure in the closest neighbourhood of the shock. As an example, the semi- 
empirical “switch” is presented: 
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(414 

where the constant ES was found experimentally to be IO-’ > ES > 0.3 . 10P2. The 
switch is constructed only after the first iteration of the scheme, and it remains 
constant in all consequent iterations. Note that SW is usually equal to unity and 
turns to zero when 

aw n - 
ax i+(l/Z)e, 

=o 

FIG. 21. As in Fig. 18 but for the time-splitting version of the IORD = 4 scheme with the switch 
(4 1) applied. 
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and I&+ o,zje, # 0. Modified “antidiffusive” velocity takes the form 

(4’ (-)k 
I 

%+w2)e, = ( ~:+u,2&m~ x W+w2~e,9 k = l,..., IORD - 1. (42) 

The optimal value of the constant ES in (41b) was found to be 0.3 x 10e2 for all 
cases tested. Larger values of the ES produce more diffusive solutions, while smaller 
ones do not eliminate the amplification effect totally. The solutions for the IORD = 4 
scheme applied in a time-splitting and a combined form are shown in Figs. 21 and 22, 
respectively. The slight difference between these two solutions is caused by the switch 
rather than the scheme itself. The switch should not be universally applied because it 
affects the solutions for non-shock-type initial conditions. In Fig. 23 the solution after 
six rotations of the cone is shown for the IORD = 4 scheme with the switch (41a, b) 
applied. The solution obtained is less diffusive than for the TVD scheme 

FIG. 22. As in Fig. 21 but for the combined scheme. 
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(Figs. 12a, b) but significantly more diffusive than for the original IORD = 4 scheme 
(Fig. 10). The universal character of the constant ES is still unknown and in this 
point the switch presented needs to be improved. In its current form it should be 
interpreted only as an example indicating one of the possibilities of the shock 
problem solution. 

In the special case of a shock occurring on the “lee” side of the initial condition, a 
monotonicity-preserving solution is provided by the third-order-accurate in time 
version of the algorithm (36). In Figs. 24a and 24b the results of the one-dimensional 
tests (U = AX= 1, At = 0.5) are shown, respectively, for the basic (13) and modified 
(36) versions of the scheme. For comparison, the solutions for the TVD scheme are 
also plotted (dashed lines). It can be seen that application of the “antidiffusive” 
velocities given by Eq. (36) totally eliminates the amplification effect produced by the 
basic version of the algorithm. The solution obtained is less diffusive than the one 

FIG. 23. Solution after six rotations for the scheme shown in Fig. 22 but applied to the initial 
condition in Fig. 7. 
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produced by the TVD scheme. On the other hand, when the shock occurs on the 
“wind” side of the initial condition, the amplification effect produced by the basic 
version of the scheme (Fig. 25a) transforms to oscillations for the modified version of 
the algorithm (Fig. 25b). This result suggests a different construction of the switch 
than previously discussed. For example, if in the first term of the one-dimensional 
version of Eq. (36) z&lx) 2 is replaced by the sign (I$ - w&J ] U] (LQ2, the result 
will be a scheme with properties similar to those of the tested version of the TVD 
scheme. 

5.5. Practical Simpll&ation of the Scheme 

In cases when computational etXciency is essential for a problem one may find the 
IORD = 2 scheme is the only practical one to apply. Although this simplest version 
of the algorithm produces results of the quality comparable with that of the TVD 
scheme, it is significantly less accurate than the versions with IORD > 2. In [ 131 a 
simple compromise between accuracy and computational efficiency was presented. 

-‘O-: 

40.0 60.0 

X 

i 

FIG. 24a. Different stages of the shock (heavy solid line) propagation (40, 80, 120 time steps). Solid 
lines: IORD = 4 scheme; dashed lines: TVD scheme. 
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FIG. 24b. As in Fig. 24a but for IORD = 4 third-order-accurate in time scheme. 

Because usually the antidiffusive velocities are smaller than the ones allowed by the 
stability criteria, it is possible to increase them by multiplying by some factor SC. 

-1 u - (4+(1,*&q. (13) x SC* i+ I/2 - (43) 

It was found experimentally that even a small increase of SC over unity (e.g., 
SC = 1.06) significantly improves the solution for the IORD = 2 scheme. In Fig. 26 
the solution of the two-dimensional test from Section 4 is shown after six rotations for 
the IORD = 2 scheme with Eq. (43) applied and SC = 1.06 (cf. Fig. 8). The maximum 
solution value and ER2 are, respectively, 3.17 and 0.3 1. It was found that the optimal 
value of the coefficient SC depends upon the CFL number and dimensionality of the 
problem. The character of this dependence is still unknown. In some problems it may 
be worthwhile to tune SC using some simple tests. 

The scheme can also be simplified in a different way. In the presented basic version 
of the algorithm the general form of the “antidiffusive” velocity is z? = G(w*, u). It 
was found that the form zi = li(w, U) can be used as well. This new form of the 
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FIG. 25a. As in Fig. 24a but for a shock occurring on the “wind” side of the initial condition. 
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FIG. 25b. As in Fig. 24b but for an initial condition as in Fig. 25a. 
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“antidiffusive” velocity results in slightly larger truncation errors but gives final 
results close to those produced by the original algorithm. Using this information, the 
“antidiffusive” velocity for the IORD = 2 scheme may be modified, that is, 

or 
U;nodified = 22 + qu’, ly*) (444 

kodified = zi + qu; I//). (44b) 

In Fig. 27 the solution of the cone rotation test after six revolutions is shown for the 
IORD = 2 scheme with (44a) applied. The maximum solution value and ER2 are 
3.02 and 0.23, respectively (cf. Figs. 8 and 26). The disadvantage of this method is a 
more restrictive stability criterion of Q < 0.5 in (4). 

FIG. 26. As in Fig. 8 but with SC = 1.06 in Eq. (43) applied. 
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FIG. 27. As in Fig. 8 but with Eq. (44a) applied. 

6. CONCLUSIONS 

1. Using an iterative approach based upon the “upstream” scheme, a class of 
fully multidimensional, nonlinear, computationally efficient positive definite advective 
transport algorithms has been constructed. The simplest version of the developed 
schemes is second-order-accurate in both time and space. The most accurate version 
tested in this paper is third-order-accurate in time and fifth-order-accurate in space. 
In principle it is possible to construct an algorithm with an optional order of 
accuracy in time and space. 

2. Results presented in this paper suggest that there exists a general connection 
between the distribution of the truncation error of any advection scheme and the 
dimensionality of the problem. It is suggested that to ensure that the numerical 
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solution of the advection equation be free of strong artificial deformations it is 
necessary to use schemes of at least the same order of accuracy in both time and 
space as the dimensionality of the problem. 

3. The procedures were discussed whereby the basic form of the algorithm can 
be modified, depending on the user’s requirements. Among others, such options as a 
generalization of the scheme for a divergent flow field case or the construction of a 
monotonicity-preserving scheme have been mentioned. 
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