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This article is a review of MPDATA, a class of methods for the numerical simu-
lation of fluid flows based on the sign-preserving properties of upstream differencing.
MPDATA was designed originally as an inexpensive alternative to flux-limited
schemes for evaluating the advection of nonnegative thermodynamic variables (such
as liquid water or water vapour) in atmospheric models. During the last decade,
MPDATA has evolved from a simple advection scheme to a general approach for
integrating the conservation laws of geophysical fluids on micro-to-planetary scales.
The purpose of this paper is to summarize the basic concepts leading to a family
of MPDATA schemes, to review existing MPDATA options, and to demonstrate the
use of MPDATA to effectively construct two distinct types of models (elastic and
anelastic) for complex geophysical flows.c© 1998 Academic Press
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1. INTRODUCTION

MPDATA (multidimensional positive definite advection transport algorithm [21, 22])
is a finite-difference algorithm for approximating the advective terms in fluid equations.
MPDATA is second-order accurate, positive definite,3 conservative, and computationally
efficient. It is iterative in nature. The first pass is a simple donor cell approximation, some-
times called upstream differencing, that is positive definite but only first-order accurate. The
second pass increases the accuracy of the calculation by estimating and compensating the

1 The National Center for Atmospheric Research is sponsored by the National Science Foundation.
2 Los Alamos National Laboratory is operated by the University of California for the U.S. Department of Energy.
3 Indeed, MPDATA is sign-preserving. However, for historical reasons we shall refer to this property as positive-

definiteness or, briefly, positivity.
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(second-order) truncation error of the first pass. Additional passes can be used to estimate
the residual error of the previous pass and approximately compensate it. This step may be
repeated an arbitrary number of times, leading to successively more accurate solutions of
the advection equation.

The basic idea [21] is to use the positive definite properties of donor cell schemes to
compensate the residual truncation error. Thus MPDATA consists of a sequence of donor
cell steps. In the first pass, the velocity is the physical velocity. In the second and sub-
sequent passes, the velocity is calculated from the field that is being advected and has
no physical significance. These velocities are termed antidiffusive, or equivalently pseudo
velocities.

Originally MPDATA was designed as a simple scheme for handling the transport of non-
negative thermodynamic variables (such as liquid water or water vapour) in atmospheric
models [21, 22]. In atmospheric modeling, the preservation of sign during numerical ad-
vection is the essential aspect of the stability and accuracy in modeling water phase-change
or chemical processes [26]. Although advection schemes designed to preserve monotonic-
ity are also positive definite, their use for inhomogeneous transport problems does not
suffice to produce monotone solutions [7] and so offers no inherent advantage. Over the
years, the theory underlying MPDATA has been extended to advection–diffusion equa-
tions and to arbitrary curvilinear frameworks [23], to third-order-accurate approximations
[13], as well as to a fully monotone scheme (in the sense of FCT) [24]. More recently,
MPDATA has been generalized for systems of equations with arbitrary right-hand sides
[25, 28]. The utility of MPDATA as a general solver for complex fluid problems has
been demonstrated in the context of atmospheric dynamics for both compressible- and
incompressible-type formulations of the equations of motion [28, 31]. MPDATA has also
been used as an interpolator [27] in a class of semi-Lagrangian fluid models congruent to
the Eulerian MPDATA models [28, 31], as well as a remapper in arbitrary Lagrangian–
Eulerian (ALE) simulations of high-speed flows [3, 12]. Several MPDATA-based fluid
models have been implemented on massively parallel platforms [1, 2, 16], demonstrat-
ing that the local iterative character of the schemes is well-suited to distributed memory
architectures.

Generally speaking, MPDATA belongs to the class of nonoscillatory Lax–Wendroff
schemes that includes such classical algorithms as FCT [37], TVD [35], and ENO [9]. How-
ever, MPDATA is qualitatively different from these other methods, which were developed
primarily in the area of high-speed flows to suppress spurious oscillations of Lax–Wendroff
schemes for hyperbolic conservation laws. MPDATA was developed for meteorological
applications—viz. high Reynolds’ number, low Mach number flows—to reduce the im-
plicit viscosity of the donor cell scheme (commonly used for nonnegative thermodynamic
fields in early cloud models) while retaining such virtues as positivity, low phase error, and
simplicity of upstream differencing. As a result of its heritage, MPDATA’s focus is on sign
preserving multidimensional advection rather than on monotone solutions of hyperbolic
conservation laws in one spatial dimension. Unlike TVD and ENO schemes, which employ
one-dimensional constructions to limit the scalar flux component, MPDATA effectively
limits the magnitude of the vector velocity and so is naturally unsplit. In principle, any of
these schemes can be adapted for multidimensional flows of all speeds. However, to our
knowledge, MPDATA is the first Lax–Wendroff-type of approach employed consistently
(i.e., for all dependent variables) and succesfully in geophysical fluid models of all scales.

Over the last decade, MPDATA has been frequently compared with other transport
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schemes, primarily in the context of passive scalar advection (see [5, 10, 33] for recent
results). The assessments of MPDATA’s relative strengths and weaknesses reported in the
literature depend very much on the schemes included in comparisons, choice of test prob-
lems, MPDATA’s options, and details of implementation. The most common complaints
are that the basic MPDATA is too diffusive, and enhanced MPDATA is too expensive. The
most often acknowledged virtues are MPDATA’s multidimensionality, robustness, and its
underlying simplicity. These advantages carry over to geophysical fluid models, whereas
the relative efficiency of advection becomes less important with increasing complexity of
the models [20, 31].

Present geophysical fluid models most often use a centered-in-time-and-space (CTS)
approach in their dynamics. To mitigate spurious effects due to negative undershoots in
the thermodynamic variables, these models usually adopt a “hybrid” approach where dif-
ferent variables are transported with different advection schemes, or even the same vari-
able uses different advection schemes (operators) in the horizontal and the vertical. Here,
the genuine multidimensionality and general applicability of MPDATA allow a single
scheme for all dependent variables, thus minimizing auxiliary computations. Furthermore,
MPDATA’s strong (nonlinear) stability—common to all conservative sign-preserving ad-
vection schemes [26]—permits more liberal stopping criteria in iterative elliptic solvers [30]
and allows dispensing with various filtering operations often required to stabilize geophys-
ical fluid models. As a result, fluid models based solely on MPDATA appear competetive
when compared to established codes of the same category [20, 31].

Since its origin in the early eighties, MPDATA has evolved from a simple advection
scheme to a general approach for integrating the conservation laws of geophysical fluids on
micro-to-planetary scales. In consequence, MPDATA embodies a family of schemes of vary-
ing accuracy and levels of complexity. The MPDATA literature is quite extensive, and con-
tinuously expanding on the finer issues of finite-difference transport [13, 18]. The purpose of
this paper is twofold. Specifically, we offer to the interested reader an organized tour through
numerous topics discussed in the MPDATA literature. For this, we summarize basic concepts
underlying the design of MPDATA schemes and review the existing options. More gener-
ally, we identify and assemble elements important for designing geophysical fluid models.
We start with elementary advection and finish with two diverse examples from modeling
geophysical flows. These examples are selected purposely from the areas dominated tradi-
tionally by CTS methods; they do not require (but do benefit from) positivity of the advection
schemes. Consequently, they do not emphasize the obvious advantages of MPDATA—there
are already many such examples in the literature—but rather illustrate how to put the entire
approach to work and, in more general terms, document that modern nonoscillatory Lax–
Wendroff type schemes offer a viable alternative to the traditional methods for geophysical
flows.

The paper is organized as follows. In order to introduce the philosophy of MPDATA
schemes we focus in Section 2.1 on the elementary problem of one-dimensional transport of
a scalar field in a predetermined uniform flow. In Section 2.2, we extend the basic MPDATA
to two-dimensional flows. In Section 2 we also address the stability and convergence of
the basic schemes. In Section 3, we posit a model prognostic equation for fluids to derive
a general form of the MPDATA algorithm. Then we review various MPDATA options
accomodating particular needs of different fluid models. In Section 4, we conclude the
paper with examples of elastic and anelastic type fluid models built solely on MPDATA
schemes.
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2. BASIC MPDATA

2.1. One-Dimensional Advection

The model advection equation for a scalar variable9 in one dimension is

∂9

∂t
= − ∂

∂x
(u9), (1)

where the velocityu may vary in space and time. The donor cell (or upstream) approximation
to the advection equation (1) is written in flux form,

9n+1
i = 9n

i − [
F

(
9n

i , 9n
i +1,Ui +1/2

) − F
(
9n

i −1, 9
n
i ,Ui −1/2

)]
, (2)

where the flux functionF is defined in terms of the local Courant numberU by

F(9L , 9R,U ) ≡ [U ]+9L + [U ]−9R (3a)

U ≡ uδt

δx
, [U ]+ ≡ 0.5(U+|U |), [U ]− ≡ 0.5(U−|U |). (3b), (3c), (3d)

The integer and half integer indices correspond to the cell centers and cell walls, respectively.
Hereδt is the computational time step,δx is the length of a cell, and [U ]+ and [U ]− are
the nonnegative and nonpositive parts of the Courant number, respectively.

Assume for simplicity that the velocity is constant and9 nonnegative (cf. Section 3). A
simple truncation analysis, expanding about the time leveln and spatial pointi , shows that
(2) more accurately approximates the advection–diffusion equation

∂9

∂t
= − ∂

∂x
(u9) + ∂

∂x

(
K

∂9

∂x

)
, (4)

where

K = (δx)2

2δt
(|U | − U2). (5)

Thus (2) approximates the solution to the advection equation with a second-order error.
To improve the accuracy, it is necessary to construct a numerical estimate of the error
and subtract it from (2). The classical one-step Lax–Wendroff scheme is perhaps the most
familiar example of such a procedure, using standard centered differences to approximate
the second term on RHS of (4). While MPDATA derives from the same general concept, it
exploits special properties of the donor cell scheme for approximating and compensating
the error.

The donor cell scheme (2) is positive definite for any velocity field and is monotone
if the velocity field is constant in space, providing that the Courant number is properly
bounded. These properties are lost in any linear combination of donor cell and centered
differencing [6]. In these terms, the basic idea underlying all MPDATA schemes can be
stated very simply—use a donor cell approximation to the error term. Since the error term
is not written in a form to do this directly, it is first rewritten as

error(1) = ∂

∂x

(
v(1)9

)
, (6)
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where

v(1) ≡ (δx)2

2δt
(|U | − U2)

1

9

∂9

∂x
(7)

is a pseudo velocity. The superscript(1) shows that it is the first approximation to subtracting
the error. Inside the derivative in (6), the diffusive flux in the second term of (4) is multiplied
by a factor of9 over9—i.e., by unity. However, in the donor cell approximation to (6),
the factor in the numerator will be represented using an upstream value, whereas the factor
in the denominator will be approximated using a centered value. In this way, a nonlinearity
is introduced and a higher-order approximation is found that still preserves positivity.

To compensate for the error between the donor cell solution9(1) and a second-order
accurate solution9n+1, we use the error (6) estimated at time leveln + 1. A first-order
accurate estimate of the pseudo velocity (nondimensionalized for convenience) is

V (1)
i +1/2 ≡ (|U | − U2)

9
(1)
i +1 − 9

(1)
i

9
(1)
i +1 + 9

(1)
i

≡ (|U | − U2)A(1)
i +1/2, (8)

where

V (1) = v(1)δt

δx
. (9)

In the second pass, we subtract a donor cell estimate of the error to improve the order of
the approximation. The equation of the second pass is

9
(2)
i = 9

(1)
i − [

F
(
9

(1)
i , 9

(1)
i +1, V (1)

i +1/2

) − F
(
9

(1)
i −1, 9

(1)
i , V (1)

i −1/2

)]
, (10)

which estimates9n+1 to the second-order while preserving the sign of9. Note that the
stability of the first pass ensures that of the second pass, since|U | ≤ 1 H⇒ −1 ≤
|U | − U2 ≤ 1 and the assumed nonnegativity of9, together with the positivity of the
donor-cell scheme assure|A(1)

i +1/2| ≤ 1 ∀i . For illustration, Table 1 summarizes a series of
elementary advection tests (uniform translation of a Gaussian pulse) for a range of spatial
resolutions and Courant numbers. The numbers displayed are the logarithm base 2 of the
global truncation error (evaluated as the rms error between corresponding numerical and
analytic solutions; [13, 24]) that evidence the second-order convergence of the scheme.

TABLE 1

Logarithms Base 2 of the Global Truncation Error for a Series of Simulations Using Basic

MPDATA Where a Gaussian Pulse Is Advected over a Fixed Distance by a Constant Flow

U = 0.05 U = 0.35 U = 0.65 U = 0.95

δx = 20δx0 −9.86 −10.5 −11.3 −13.9
δx = 2−1δx0 −11.6 −12.4 −13.3 −15.8
δx = 2−2δx0 −13.6 −14.4 −15.3 −17.8
δx = 2−3δx0 −15.5 −16.4 −17.3 −19.8
δx = 2−4δx0 −17.5 −18.4 −19.3 −21.8
δx = 2−5δx0 −19.5 −20.4 −21.3 −23.8
δx = 2−6δx0 −21.5 −22.4 −23.3 −25.8
δx = 2−7δx0 −23.5 −24.4 −25.3 −27.8



           

464 SMOLARKIEWICZ AND MARGOLIN

The two-pass scheme described above is the most elementary MPDATA. Equation (10)
again can be expanded in a Taylor series, the residual error after the second pass estimated
as in (6)–(8), and compensated as in (10). The entire process of estimating the residual error
and compensating it can be continued, iteration after iteration, reducing the magnitude of
the truncation error which remains at third-order [13]. It is worth noting that writing a
computer program for such a procedure is extremely simple, as the flux function, the donor
cell scheme itself, and the form of the pseudo velocity remain the same in each iteration.

2.2. Extension to Two Dimensions

The extension of the scheme from one to two dimensions contains a subtlety originating
in the cross derivatives that appear in the truncation analysis. However, the extension from
two dimensions to an arbitraryM is straightforward (see Section 3.2), and for simplicity
we describe only the two-dimensional case. We assume a regular staggered mesh with the
field 9 stored at the cell centers (denoted by integer indices) and the velocity components
stored at the cell edges (denoted by one half-integer index and one integer index) such that
the x-componentu is stored at [(i + 1/2)δx, j δy] edges, whereas they-componentv is
stored at [i δx, ( j + 1/2)δy] edges.

The numerical equation for donor cell advection in two dimensions can be written

9n+1
i, j = 9n

i, j − [
F

(
9n

i, j , 9
n
i +1, j ,Ui +1/2, j

) − F
(
9n

i −1, j , 9
n
i, j ,Ui −1/2, j

)]
− [

F
(
9n

i, j , 9
n
i, j +1, Vi, j +1/2

) − F
(
9n

i, j −1, 9
n
i, j , Vi, j −1/2

)]
, (11)

where nowU andV are the dimensionless Courant numbers

U ≡ uδt

δx
, V ≡ vδt

δy
(12)

and the flux functionF has been defined in (3).
Still assuming constant velocities, we expand (11) about the cell center (i, j ) and time

leveln. The result is an advection–diffusion equation

∂9

∂t
= − ∂

∂x
(u9) − ∂

∂y
(v9) + |U |(δx)2

2δt
(1 − |U |)∂

29

∂x2

+ |V |(δy)2

2δt
(1 − |V |)∂

29

∂y2
− U Vδxδy

δt

∂29

∂x∂y
. (13)

The idea is now to write a donor cell estimate of the truncation error and subtract it from
the difference equation (11) to create a higher-order approximation. Note that when we
write this in a form using pseudo velocities, the cross-term gives us a degree of freedom
not present in the one-dimensional analysis. That is, writing (13) as

∂9

∂t
= − ∂

∂x
(u9) − ∂

∂y
(v9) + ∂

∂x

(
u(1)9

) + ∂

∂y

(
v(1)9

)
(14)

we can choose

u(1) = |U |(δx)2

2δt
(1 − |U |) 1

9

∂9

∂x
− f

U Vδxδy

δt

1

9

∂9

∂y
, (15a)

v(1) = |V |(δy)2

2δt
(1 − |V |) 1

9

∂9

∂y
− (1 − f )

U Vδxδy

δt

1

9

∂9

∂x
, (15b)
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where the real numberf is arbitrary. This extra freedom is useful when deriving some
more advanced options of MPDATA [13]. In a practical sense, the implementation of (15)
is insensitive to the choice off (at least in the range 0≤ f ≤ 1), and f = 0.5 is used as a
default in all MPDATA schemes.

The pseudo velocities (15) must be evaluated at the cell edges. Their explicit form will
depend upon whether the edge is horizontal or vertical. In either case we can write in
dimensionless form,

U (1) ≡ u(1)δt

δx
= |U |(1 − |U |)A(1) − 2 fUV B(1), (16a)

V (1) ≡ v(1)δt

δy
= |V |(1 − |V |)B(1) − 2(1 − f )UV A(1), (16b)

where A(1) and B(1) are numerical estimates at the particular edge. For example, on the
right edge of a cell

A(1) ≡
[

δx

29

∂9

∂x

]n+1

i +1/2, j

= 9
(1)
i +1, j − 9

(1)
i, j

9
(1)
i +1, j + 9

(1)
i, j

, (17a)

B(1) ≡
[

δy

29

∂9

∂y

]n+1

i +1/2, j

= 1

2

9
(1)
i +1, j +1 + 9

(1)
i, j +1 − 9

(1)
i +1, j −1 − 9

(1)
i, j −1

9
(1)
i +1, j +1 + 9

(1)
i, j +1 + 9

(1)
i +1, j −1 + 9

(1)
i, j −1

, (17b)

where9(1) is the solution after the first donor cell pass. Other approximations toA andB
are also possible. Those in (17) have the virtue of proper boundedness (given the stability
and positive definiteness of the original donor cell scheme) that is important for the stability
of the multidimensional MPDATA [22]. The equation of the second pass is

9
(2)
i, j = 9

(1)
i, j − [

F
(
9

(1)
i, j , 9

(1)
i +1, j ,U (1)

i +1/2, j

) − F
(
9

(1)
i −1, j , 9

(1)
i, j ,U (1)

i −1/2, j

)]
−[

F
(
9

(1)
i, j , 9

(1)
i, j +1, V (1)

i, j +1/2

) − F
(
9

(1)
i, j −1, 9

(1)
i, j , V (1)

i, j −1/2

)]
, (18)

and the resulting two-pass scheme already offers second-order accuracy. Continuing itera-
tions further reduce the amplitude of the leading third-order error (see [13] and/or [22] for
comparisons of the results using different numbers of iterations).

As in the 1D case, the stability of the first pass controls the stability of subsequent
iterations and, therefore, the stability of multidimensional MPDATA. The original proof of
stability has been given in Section 3 of [22]. It follows that limiting the maximal sum of
absolute values of local partial Courant numbers to not exceed 0.5 (here,|U | + |V | ≤ 0.5)
is a sufficient condition for both the stability and positivity of a multipass MPDATA in
M ≤ 3 spatial dimensions for an arbitrary velocity field. Furthermore, positivity and global
conservation assure the solution boundedness in theL2 norm, which is equivalent to the
nonlinear stability statement [26]. Limiting the sum of local partial Courant numbers by 0.5
is the result of assuming (in the proof) a worst case scenario where the velocity components
flip their signs across the cell (see discussions in Section 2 of [22] and Section 6.1 of [13]).
In CFD applications, this rarely happens, and the heuristic limit we use for advection—in
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FIG. 1. Isolines of a cone advected through six full rotations (3768 timesteps) using different variants of
MPDATA. The contour interval is 0.25, and the zero contour line is not shown. Plate(a) shows the analytic solution
(identical to the intial condition), plate(b) shows the result using the classical donor cell scheme, plate(c) shows
the basic MPDATA scheme, and plate (d) shows the most accurate MPDATA option discussed in Section 3.

fact, in all MPDATA extensions—is 1.0, i.e., the standard condition for the stability of the
donor cell scheme (cf. Eq. (3-140) of Roache [17]).

For illustration, Fig. 1 displays the results of a standard solid-body rotation test (cf.
[37, 13, 21–24]) using selected variants of MPDATA. The two-dimensional rotation test
employs a square mesh of 101 by 101 points. The angular velocityω = 0.1 and the velocity
components are(u, v) = −ω(y − y0, x − x0). The center of rotation (x0, y0) is the center
of the mesh (50δx, 50δy). The maximum Courant number (|U | + |V |) is 0.99, and one
full rotation requires 628 time steps. The initial condition is a cone centered at the point
(75δx, 50δy) and has a base diameter of 30 and a height of 4. Figures 1a–c show the analytic
solution, the first-order donor cell solution, and the second-order solution using basic two-
pass MPDATA, all after six rotations (more qualitative displays in a 3D perspective are
available in, respectively, Figs. 1 and 2 of [21], 8 of [22], and 1b of [27], where comparisons
with other solutions are also presented). Figure 1d anticipates the discussion of the next
section and displays the state-of-the-art third-order accurate two-pass MPDATA option with
the analytic summation of the infinite series of corrective iterations [13]. The schemes in
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Figs. 1c and 1d use approximately 2.5 and 6 times as much computer time as the donor cell
algorithm.

3. REVIEW OF MPDATA OPTIONS

3.1. A Prototype Fluid Problem

Before presenting some available MPDATA options, it is instructional to introduce a
generalized transport equation,

∂G9

∂t
+ ∇ · (v9) = G R, (19)

whereG = G(x), v = v(x, t), andR = R(x, t) are assumed to be known functions. In fluid
dynamics applications,G may play the role of the Jacobian of the coordinate transformation
from the CartesianxC to the curvilinear frameworkx,4 v may be viewed as a generalized
“advective” velocity vectorv = Gẋ, and R may combine all forcings and/or sources.
Then bothv andR are functionals of the dependent variables rather than functions of the
independent variables (see Section 4 for examples).

In order to design a fully second-order MPDATA scheme for (19), we shall extend the
procedure discussed in Section 2 while following the development in [25, 28]. We assume
a temporal discretization of (19) in the form

G9n+1 − G9n

δt
+ ∇ · (vn+1/29n) = G Rn+1/2. (20)

Expanding (20) into a second-order Taylor series aboutt = nδt gives

G
∂9

∂t
+ 1

2
δtG

∂29

∂t2
+ ∇ ·

[(
v + 1

2
δt

∂v
∂t

)
9

]
= G R+ 1

2
δtG

∂ R

∂t
+O(δt2). (21)

To convert temporal derivatives into spatial derivatives, we take(∂/∂t) (21), resulting in

G
∂29

∂t2
+ ∇ ·

(
∂v
∂t

9 + v
∂9

∂t

)
= G

∂ R

∂t
+O(δt). (22)

Since (21) implies

∂9

∂t
= − 1

G
∇ · (v9) + R +O(δt), (23)

(22) may be rewritten as

G
∂29

∂t2
= ∇ ·

[
−∂v

∂t
9 + 1

G
v(v · ∇9) + 1

G
v9(∇ · v) − vR

]
+ G

∂ R

∂t
+O(δt). (24)

Inserting (24) in (21) and regrouping the terms that do not cancel leads finally to the modified

4 In some instances (e.g., for the anelastic type fluid models),G may be a product of the Jacobian and the fluid
density (see Section 4 for examples).
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equation

∂G9

∂t
+ ∇ · (v9) = G R− ∇ ·

[
1

2
δt

1

G
v(v · ∇9) + 1

2
δt

1

G
v9(∇ · v)

]
+ ∇ ·

(
1

2
δtvR

)
+O(

δt2
)
, (25)

where allO(δt) errors due to the uncentered time differencing in (20) are now expressed
by spatial derivatives. Note that assuming the time levels of both the advective velocity
and forcing term aren + 1/2 in (20) eliminatesO(δt) truncation errors proportional to
their temporal derivatives in (25). AnyO(δt2) approximations tovn+1/2 andRn+1/2 would
suffice for second-order accuracy in (20); particular approximations will be discussed in
Section 3.4. Note also that for a 2D problem withR ≡ G − 1 ≡ 0 and constantv, (25) is
equivalent to (13) except for the terms∼δx|u|(∂29/∂x2) and ∼δy|v|(∂29/∂y2) present
in (13) that derive from upwind spatial differences in the donor cell scheme. These terms
do not involve conversion from the temporal to spatial derivatives.

TheO(δt) truncation errors on the RHS of (25) have two distinct components. The
first is solely due to advection and depends linearly on9. The second is solely due to
the forcing and its dependence on9 is, in general, unknown. In the following section
we present elementary MPDATA options for homogeneous transport, while in Section 3.3
we describe how to compensate the errors due to the nonvanishing forcing. Section 3.4
elaborates on several approximations to advective velocities. Section 3.5 briefly introduces
other MPDATA options.

3.2. MPDATA Options for Homogeneous Transport

(1) Introductory remarks. With R ≡ 0 in (19) all MPDATA schemes retain the form
of the basic scheme (Section 2), where all subsequent iterations are standard donor cell
scheme but with different arguments at each iteration. The first iteration uses the advective
velocityvn+1/2 and9n, whereas following iterations use pseudo velocities and9 evaluated
from the preceding iterations. This is compactly written as

9
(k)
i = 9

(k−1)
i − 1

Gi

M∑
I =1

[
F

(
9

(k−1)
i , 9

(k−1)
i+eI

, V I (k)
i+1/2eI

)
− F

(
9

(k−1)
i−eI

, 9
(k−1)
i , V I (k)

i−1/2eI

)]
,

(26)

wherei ≡ (i 1, . . . , i M) denotes a location on theM-dimensional regular grid;eI is the unit
vector in theI th of M spatial directions;F is the donor cell flux function defined in (3) with
V I denoting the normalized advective pseudo velocity inI th direction; integer and half
integer indices correspond to the cell centers and edges, respectively; andk = 1, . . . , IORD
numbers MPDATA iterations such that

9(0) ≡ 9n, 9(I O RD) ≡ 9n+1 (27a), (27b)

V I (k+1) = V I
(
V(k), 9(k), G

)
, V I (1)

i+1/2eI
≡ uI

∣∣ n+1/2
i+1/2eI

δt

δxI
. (28a), (28b)

With this notation (originated in [22]),IORD = 1 variant of MPDATA is the classical donor
cell scheme, and various options of MPDATA differ merely by specifics of the functional
form of the pseudo velocity (28a).
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(2) Solenoidal flows(∇ ·v = 0). For solenoidal flows (e.g., incompressible or anelastic
fluid models) the standard representation of (28a) takes the form

V I (k+1)
i+1/2eI

=

∣∣V I (k)
i+1/2eI

∣∣ −
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)2

0.5
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)
 9
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− 9
(k)
i

9
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+ 9
(k)
i
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i+1/2eI

V J(k)
i+1/2eI(
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+ 9
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− 9
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i−eJ
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(k)
i+eI +eJ

+ 9
(k)
i+eJ

+ 9
(k)
i+eI −eJ

+ 9
(k)
i−eJ

(29a)

where

V J(k)
i+1/2eI

≡ 1

4

(
V J(k)

i+eI +1/2eJ
+ V J(k)

i+1/2eJ
+ V J(k)

i+eI −1/2eJ
+ V J(k)

i−1/2eJ

)
. (29b)

Equations (29) are finite difference representations of the expression under the divergence
operator in the second term on the RHS of (25) normalized by9, plus the pseudo velocity
component (proportional to the absolute value ofV) accounting for the truncation errors due
to the upwind spatial differencing (3) in (26). By design, the resulting scheme (26)–(29) is
fully second-order accurate (while sign preserving) for a smooth solenoidal flowv(x, t) and
stationary functionG(x), given properly bounded local Courant numbersG−1V(1) (cf. the
discussion following (18) in Section 2.2 of this paper, and note that the advective velocity
itself is proportional toG).

(3) Divergent flows(∇ · v 6= 0). For divergent flows (e.g., compressible or elastic
fluid models; or anelastic models with the alternate-direction implementation of MPDATA)
the truncation error term proportional to flow divergence on the RHS of (25) becomes
significant. Since the character of the model rarely changes in the course of simulation,5

we incorporate the compensation of this error as a special option (rather than a default) into
MPDATA programs. Such an optional extension of (29) may be written, for example, as

V I (k+1)
i+1/2eI

= · · · − 1

2

V I (k)
i+1/2eI(

Gi+eI + Gi
) (

V I (k)
i+3/2eI

− V I (k)
i−1/2eI

)
− 1

2

V I (k)
i+1/2eI(

Gi+eI + Gi
) M∑

J=1;J 6=I

(
V J(k)

i+eI +1/2eJ
+ V J(k)

i+1/2eJ
− V J(k)

i+eI −1/2eJ
− V J(k)

i−1/2eJ

)
,

(30)

where the omitted terms are those in (29). This correction is insignificant in solenoidal flows
even though the pseudo velocities are in general divergent (Section 5.1 in [22]). Although
the expression in (30) might be written in a more compact form, we purposely retain (here
as well as in other formulas) the form resembling our actual FORTRAN coding.

(4) Transporting fields of variable sign.So far, we have assumed that the transported
field 9 is exclusively either nonnegative or nonpositive. This assumption is important for

5 Switching from compressible to incompressible model formulation may occur, e.g., in time-dependent geo-
metry [15].
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the stability, accuracy, and, generally speaking, for the design of MPDATA. However, it
enters MPDATA schemes explicitly only in the pseudo velocity formulae, in theA andB
terms∼19/

∑
9 of the finite difference approximations to the(1/9)(∂9/∂xI ) ratios—

cf. (8), (17), and (29). Note that these terms are bounded when9 is of a constant sign. When
9 changes sign,|A| and|B| are unbounded leading to arbitrarily large pseudo velocities
and unstable schemes. MPDATA can be extended to transport of variable-sign fields in a
number of ways. Below we outline a few that have proven useful in applications.

The simplest and most common way is to replace all9s in (8), (17), and (29) with|9|s.
This exploits the relationship

1

9

∂9

∂xI
≡ 1

2µ

1

(92)µ

∂(92)µ

∂xI

∣∣∣∣
µ=1/2

= 1

|9|
∂|9|
∂xI

.6

The results are, practically, insensitive to the value ofµ; howeverµ = 1/2 is the optimal
choice as it merely requires replacing9 with |9| in the pseudo velocity formulae derived
for the constant-sign fields and is computationally the most efficient.

An alternate approach exploits the mass continuity equation (Section 4 in [23]). Multi-
plying Eq. (19)—with9 = χ being the fluid density (elastic systems), or with9 = χ ≡ 1
and a steady reference density included inG (anelastic systems); see Section 4—by an
arbitrary constantc and adding the resulting equation to (19) leads to

∂G(9 + cχ)

∂t
+ ∇ · (v(9 + cχ)) = G R. (31)

This illustrates another class of degrees of freedom in MPDATA. First, the arbitrary constant
c can be chosen to assure positivity of9n [23, 13]. Second, it makes MPDATA susceptible
to asymptotic linear analysis asc ↗ ∞ [23]. Third, MPDATA itself can be linearized
around an arbitrary large constant leading straightforwardly to a two-pass scheme that
differs technically from the basic algorithm only in two details: at the second iteration, the
donor cell flux function in (26) takes the value unity in its first two arguments, and the
pseudo velocities in (29) replace each9 with unity in the two “

∑
9” denominators. This

asymptotic form of MPDATA is a realization of the classical Lax–Wendroff algorithm (cf.
Section 4 in [23]). Combined with a nonoscillatory enhancement (Section 3.5.3) it makes
a viable scheme for transporting momenta in fluid models (see Section 4 for examples).

3.3. Inhomogeneous Transport: Compensating the Source Error Term

The compensation ofO(δt) truncation error in (25) dependent on the advective fluxes of
the source term is important for preserving the global accuracy and stability of forward-in-
time (FT) approximations (20) [25, 28]. This particular error term appears in those “naive”
approximations to (19) that simply combine an FT advection scheme for homogeneous
transport with anO(δt2) approximation ofRn+1/2. Ignoring this error leads to spurious
∼O(δt) sinks/sources of “energy”92 and, eventually, to nonlinear instability (Appendix A
in [28]). Compensating this error toO(δt2) only requires subtracting a first-order-accurate
approximation from the RHS of (20). This can be further upgraded and/or simplified depend-
ing upon a particular approximation adopted for representingRn+1/2 in (20). We discuss
below two important cases.

6 For a discussion of some formal issues at9 → 0 see Section 3.2 in [23].
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First we assume thatRn+1/2 can be written as 0.5(Rn + Rn+1), whereRn+1 is anO(δt2)

accurate approximation toR at t = (n + 1)δt . Then a simple, efficient, and fully second-
order accurate MPDATA realization of (20) can be compactly written as

9n+1
i = MPDATA

(
9n + 0.5δt Rn, Vn+1/2, G

) + 0.5δt Rn+1
i . (32)

In the above equation, MPDATA symbolizes the homogeneous-transport algorithm dis-
cussed in Section 3.2. Advecting the auxiliary field9n + 0.5δt Rn not only compensates
the truncation error due to the source term but it also has the physical interpretation of
integrating the forces along a parcel trajectory rather than at the grid point. This makes (32)
congruent to semi-Lagrangian approximations (see Section 2 in [28]) and facilitates unified
fluid models that integrate the equations of motion, optionally, in the Eulerian (point-wise)
or Lagrangian (trajectory-wise) sense [31]. Note that (32) may be viewed as a paraphrase
of the Strang splitting [34].

Second we consider the alternate case, whereRn+1/2 is already a knownO(δt2) approx-
imation toR at t = (n + 1/2)δt . Then, a fully second-order scheme for (19) can be written
as

9n+1
i = M P DATA(9n, Vn+1/2, G) + MPDATA∗(Rn+1/2, 0.5Vn+1/2, G), (33)

where both MPDATAs refer to the homogeneous-transport algorithms in Section 3.2. Note
that MPDATA∗ may use different options than MPDATA. In particular, for overall second-
order acuracy it can be the cheapestIORD = 1 (i.e., donor cell) scheme. Note also that in
a computer program the two terms in (32) or (33) may be evaluated separately at several
distinct stages (see Section 4 for examples).

3.4. Approximating the Advective Velocities

Estimating the advective velocity in (20) at the intermediaten + 1/2 time level results
in cancellation of the∼1t (∂v/∂t) truncation errors in (25). Temporal staggering of the
advective velocity may be approximated by linear interpolation or extrapolation

vn+1/2 = 1

2
(vn+1 + vn), vn+1/2 = 1

2
(3vn − vn−1), (34a), (34b)

either of which maintains second-order accuracy in (32) or (33). The linearity of the ap-
proximations in (34) is advantageous in anelastic systems, where it ensures∇ · vn+1/2 = 0
(given∇ · vn = 0 ∀n). Formula (34a) is an obvious choice in hybrid models [23], where
the momenta are integrated with centered-in-time-and-space schemes and the thermody-
namic variables employ FT approximations. Then evaluation of the velocities prior to the
thermodynamic variables ensures the availability ofvn+1 in (34a). One advantage of (34a)
is that it does not affect computational stability [28]. The approximation (34b) is a natural
choice in models where all variables are evaluated with FT transport algorithms. Compared
to (34a), the theoretical disadvantages of (34b) are: increased memory requirement, a larger
amplitude of the truncation error, and a more restrictive stability condition—(34b) may
require half of the time-step allowed in (34a) [28]. In practice, (34a) and (34b) offer similar
overall accuracy in hybrid anelastic models [23], while satisfactory performance of (34b) in
the fully FT fluid models has been documented in [25] and [31] for the elastic and anelastic
models, respectively.
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The stability of FT approximations (20) for elastic fluids may be augmented using a
nonlinear extrapolation consistent with the Lagrangian counterpart of (19) for momenta

ṽn+1/2 = ṽn − ẋn · ∇ṽn 1t

2
+ R̃n 1t

2
, (35)

whereṽ is the specific momentum with the corresponding forcingR̃, and the convective
term employs a first-order-accurate upwind differencing for the spatial discretization [28].
Although neither̃v nor R̃ may appear explicitly in (19), they are both known functionals of
the dependent variables. AnO(δt2) approximation toVn+1/2 in (32) or (33) can be readily
recovered from (35). In elastic FT models, (35) allows a time-step up to four times larger
than does (34b) [28].

3.5. Other Options

The options discussed so far are the most elementary. Other options may further enhance
the overall accuracy, reduce computational costs, or simplify the coding. The MPDATA
literature contains numerous discussions of additional degrees of freedom. Here we draw
the reader’s attention to a few of these.

(1) “Third-order-accurate” scheme. The analysis in Sections 2.1 and 2.2 can be repeated
using a third-order Taylor series expansion that leads to a positive definite and third-order-
accurate advection algorithm for the constant coefficient case [13]. For variable flows and
G 6= 1 in (19), the scheme is only second-order accurate with its leading error proportional
to the second derivatives of the transporting velocities andG. Its primary advantage is a
more uniform distribution of the truncation error as a function of the Courant number [13].
At a given resolution, this preserves better the solution symmetries and benefits problems
dependent on passive scalar advection such as pollutant transport in smooth flows. This
option complicates theIORD = 3 basic scheme substantially. For a 3D flowv = (u, v, w)

in anx = (x, y, z) framework, the “third-order” corrections to the pseudo velocities in (29)
are straightforward finite difference approximations to expressions like

δU = δx2

6

(
3U |U |

G
− 2U3

G2
− U

)
1

9

∂29

∂x2
+ δxδyV
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)
1

9

∂29

∂x∂y

+ δxδzW

2G

(
|U | − 2U2
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)
1

9
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− 2δyδzUVW

3G2

1

9

∂29

∂y∂z
, (36)

whereU, V, W denote respective local Courant numbersV I δt/δxI . The remaning two
components (δV andδW) of the “third-order” correction are obtained by the symmetric
permutation.

(2) Recursive pseudo velocities.As more elaborate features are incorporated into
MPDATA, the formulae for the pseudo velocities become more complicated, and the result-
ing schemes become computationally more intensive. MPDATA options such as, for exam-
ple, a monotonicity-preserving third-order-accurate scheme may benefit from yet another
degree of freedom. Instead of repeating successive MPDATA iterations, one may consider
an alternate scheme that employs the two-pass scheme with the pseudo velocity derived
assuming the summation of an infinite number of MPDATA iterations [13]; see Fig. 1d,
for illustration. Although this special recursive pseudo velocity itself is quite complicated
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and does not benefit simple MPDATA schemes, it can offer savings up to 50% when com-
bined with other options. Also the recursive velocities provide an efficient option for those
programs whose architecture penalizes numerous passes.

(3) Nonoscillatory option. The algorithm in (26)–(30) preserves sign but not mono-
tonicity of the transported variables [22–24] and, in general, the solutions are not free
of spurious extrema. In most cases preservation of sign is adequate [26]. When required,
MPDATA can be made fully monotone [24] by employing FCT formalism [37] to limit
the pseudo velocities. In fact, MPDATA is very well suited for this for a number of rea-
sons. First, the initial MPDATA iteration is the donor cell scheme—a low-order monotone
scheme commonly used as the reference in the FCT design. Second, assuring monotonicity
of subsequent iterations provides a higher-order accurate reference solution for the next iter-
ation with the effect of improving the overall accuracy of the resulting FCT scheme. Third,
since all MPDATA iterations have similar low phase errors characteristic of the donor cell
scheme [23], the FCT procedure mixes solutions with consistent phase errors. This benefits
significantly the overall accuracy of the resulting FCT scheme (see Fig. 5 in [24] and the
accompanying discussion).

(4) Diffusion. The simulation of diffusive transport illustrates especially well the flex-
ibility of the MPDATA approach. In particular it shows that, from the viewpoint of finite
difference approximation, the distinction between advection and forcing in (19) may be
arbitrary. Consider a special case of (19), whereR ≡ ∇ · (K∇9). The resulting advection–
diffusion problem can be integrated to the second-order using algorithms (32) or (33) with
Rn+1 or Rn+1/2 denoting suitable first-order-accurate estimates.7 An alternate option draws
from the underlying idea of the basic MPDATA itself, i.e., the formal equivalence between
the diffusion and advection equations on a discrete mesh (section 3.2 in [23]). The dif-
fusive flux may be formally written in a form of advective fluxK∇9 ≡ −Ω9,where
Ω = −(K/9)∇9 (if 9 6= 0;Ω = 0 otherwise). Adding a first-order-accurate estimate for
Ωn+1/2 to the advective velocityV(1) in (28b) transforms the advection–diffusion problem
into a simple MPDATA advection.

In geophysical applications, where flows exhibit large Reynolds’ numbers, the diffusion
terms are typically evaluated to first-order. This is justified because significant diffusion
enters the equations of motion only as a consequence of subgrid-scale turbulence models,
where the diffusivityK ∼ O(δxI ). This eliminates the need for a predictor step—as
Rn+1/2 ≈ Rn+1 ≈ Rn andΩn+1/2 ≈ Ωn ≈ Ωn+1, both with accuracy toO(δt)—and opens
new possibilities for further simplifications (see Section 4.2 for an example).

4. EXAMPLES OF APPLICATIONS

Here we supplement the theory of the preceding sections with two examples. These
illustrate designs of FT finite difference fluid models (20) based solely on the MPDATA
approach for both elastic and anelastic systems with, respectively, explicit and implicit (in
time) approximations of the pressure forces. The first problem, a shallow-fluid flow on a
rotating sphere, has been proposed in [36] for evaluating the accuracy and efficiency of
numerical methods for global scale dynamics and has become a benchmark in the field.

7 Although (32) could be used with implicit methods for diffusive fluxes, here we emphasize the explicit diffusion
schemes typical of geophysical models.
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Its solution evolves through coupling of wave propagation and material motions leading to
some steepening of planetary waves, but otherwise remains smooth. The second problem
is a benchmark from the area of small scale dynamics—large eddy simulation (LES) of
convective planetary boundary layer [14], complicated by the addition of topography. In
contrast to the first problem, here the flow is fully 3D and turbulent. For finite difference
FT methods the issues to address are the accurate time-centering of the pressure-gradient
and inertial forces, proper incorporation of the metric terms, and minimization of diffusive
errors. Inadequate treatment of the forces and metric terms can be a source of unphysical
oscillations or even lead to computational instability [28]. Excessive numerical diffusion
will prevent the steepening of the wave in the first problem and will result in unphysical
turbulence spectra in the second.

4.1. Shallow Fluid on the Sphere

The equations expressing conservation of mass and momentum in a shallow fluid flow
on a rotating sphere (cf. section 2.6 in [36]) each has the form of the generalized transport
equation (19)

∂G8

∂t
+ ∇ · (v8) = 0, (37a)

∂GQx

∂t
+ ∇ · (vQx) = G Rx, (37b)

∂GQy

∂t
+ ∇ · (vQy) = G Ry, (37c)

whereG ≡ hxhy (with hx andhy representing the metric coefficients of the general orthog-
onal coordinates (x, y)), and8 ≡ H − Ho is the depth of the fluid (withH andHo denoting
the heights of the free surface and the bottom, respectively).Q ≡ (8ẋhx, 8ẏhy) is the
momentum vector with corresponding forcings8

Rx = − g

hx
8

∂(8 + Ho)

∂x
+ f Qy + 1

G8

(
Qy

∂hy

∂x
− Qx

∂hx

∂y

)
Qy, (38a)

Ry = − g

hy
8

∂(8 + Ho)

∂y
− f Qx − 1

G8

(
Qy

∂hy

∂x
− Qx

∂hx

∂y

)
Qx. (38b)

Here g is the acceleration of gravity andf is the Coriolis parameter. The Lagrangian
counterpart of (37), employed for predicting advective velocities via (35), reduces to

Dṽ
Dt

≡
(

∂

∂t
+ ẋ · ∇

)
ṽ = R̃, (39)

whereṽ = (1/8)Q, andR̃ = (1/8)R. The advective velocityv and the specific momentum
ṽ are related throughv = (ṽxhy, ṽyhx).

The integration of the discrete equations over a time-step using the model algorithm (32)
proceeds in four distinct steps. First, the advective Courant numbers at then + 1/2 time

8 In contrast to a common approach for high-speed flows, it is not advantageous to include pressure in the
momentum flux.
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level are computed using appropriate fields at then time level in (35). Second, the first term
on the RHS of (32) is evaluated for the mass and momentum fields. Third, the new values
of the pressure forces are recovered from the updated depth. At this stage the only unknown
elements required to solve (32) are the inertial forces (second and third terms on the RHS
of (38)] at then + 1 time level. An updated solution for the momentum within a cell may
be compactly written as

Q = Q∗ + 1

2
1tF(Q), (40)

whereQ refers ton + 1 time level,Q∗ denotes all known terms [i.e., the first term on the
RHS of (32), plus half of the new pressure force], andF(Q) represents the inertial part of
the forces in (38). The simple implicit vector formula (40) is solved by means of successive
iterations with one iteration sufficing for a second-order-accurate solution (Section 4 in
[28]). The implicit character of (40) is dictated not by stability, but rather by accuracy and
computational efficiency.

For illustration, we simulate the evolution of a Rossby–Haurwitz wave described in [36].
The current experimental setup assumes in (37)–(39) the spherical coordinatesx = λ,

y = θ, hx = a cosθ, andhy = a, whereλ, θ , anda denote longitude, latitude, and the
sphere’s radius, respectively. The uniform, unstaggered mesh9 consists of 128 points in
longitude, and 64 points in latitude. The time-step is limited by the propagation speed of
the gravity wave [28]; see [16] for optional designs relaxing the stability condition. Figure
2a shows the initial condition. Over several days, we expect this initial pattern to move
from west to east with little change of shape (expect for a slight steepening of the wave
in mid-lattitudes) and angular velocity∼2.5 × 10−6 rad s−1 [36]. Figure 2b shows the
numerical solution after 5 days of integration using the linearized MPDATA for divergent
flows (Section 3.2.3 and 3.2.4; for an equivalent solution using basic MPDATA for divergent
flows see Section 4 in [28]). This solution is in good agreement with theoretical estimates
(0.34π displacement after 5 days and∼100 ms−1 maximal velocity of the flow), as well as
with predictions of a spectral model [8, 11].

4.2. Convective Boundary Layer over a Steep Hill

The nonhydrostatic anelastic model used in this section has been described in [31]. Here,
we consider a stratified nonrotating fluid whose undisturbed (hydrostatic ambient) state is
described by the profiles of the potential temperature and the velocity:2e = 2e(zC), and
ve = ve(zC), respectively (recall that the subscriptC refers to Cartesian coordinates). The
standard terrain-following system of coordinates [x, y, z] = [xC, yC, H(zC − h)/(H − h)]
assumes a model depthH and an irregular lower boundaryh = h(xC, yC). The coordinate
transformation enters the governing equation of motion through the coefficients of the
metric tensorGI J = (∂xI /∂xK

C )(∂xJ/∂xK
C ), and the Jacobian of transformationG =

Det{∂xC/∂x} = (Det{GI J })−1/2.
Given the assumptions above, the anelastic conservation laws for momentum and entropy

may be written in the form resembling (19),

∂ρ∗9
∂t

+ ∇ · (v∗9) = ρ∗F9 + ρ∗D9, (41)

9 Note that on an unstaggered grid (40) is fully local and so it can be solved individually, cell by cell.
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FIG. 2. Geopotential perturbation (H /̄H −1, whereH̄ = 8 km) and the flow vectors for the Rossby–Haurwitz
wave test problem: (a), the initial condition; (b), numerical solution after 5 days using a second-order accurate
MPDATA scheme. The contour interval is 0.05.

where9 denotes any of the three Cartesian velocity components (u, v, w) or the potential
temperature2, andρ∗ ≡ ρ̄G with ρ̄ = ρ̄(zC) denoting the reference “Boussinesq” density
(cf. [15]). The advective velocityv∗ ≡ ρ∗(u, v, ω) satisfies the anelastic mass conservation
law,

∂ρ̄Gu

∂x
+ ∂ρ̄Gv

∂y
+ ∂ρ̄Gω

∂z
= ∇ · v∗ = 0, (42)

whereω ≡ ż is the “vertical” component of transformed (contravariant) velocity related to
the Cartesian (covariant) velocity components through

ω = G−1w + G13u + G23v. (43)

The associated F9 andD9 terms on the RHS of (41) represent, respectively, the resolved
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and subgrid-scale part of the total forcings. The subgrid-scale terms are fairly complex but
standard—their explicit form is unimportant for the current discussion. Here, we employ a
turbulence model based on the prognostic turbulent kinetic energy (TKE) equation following
[19]. The resolved forcings take the explicit form

Fu ≡ −∂φ

∂x
− G13∂φ

∂z
− α(u − ue), Fv ≡ −∂φ

∂y
− G23∂φ

∂z
− α(v − ve) (44a), (44b)

Fw ≡ −∂φ

∂z
+ g(2 − 2e)/2 − α(w − we), F2 ≡ −α′(2 − 2e). (44c), (44d)

Hereφ is the pressure perturbation with respect to the undisturbed environmental profile
normalized by ¯ρ. The potential temperature2 = 2(zC), in the denominator of the buoyancy
term in (44c), refers to the reference state. The attenuation forcings absorb gravity waves
in the vicinity of the open boundaries of the model.

The integration of the discrete equations over a time-step uses (32) on a regular un-
staggered mesh. It proceeds in several distinct steps. First, the advective Courant num-
bers at then + 1/2 time level are computed using (34b). Second, the first term on the
RHS of (32) is evaluated foru, v, w,and2 fields. This is also a convenient stage to up-
date the TKE variable (e ≡ √

TKE in our case), which takes a particularly simple form
en+1 = M P DATA(en + δt Re|n, Vn+1/2, G) as the subgrid-scale physics is approximated
only to the first-order (Section 3.5.4). In the third step, the vector of preliminary values
of dependent variables generated in the preceding step is projected onto solenoidal flows
[4]. This requires a straightforward algebraic inversion of the implicit system composed
of four equations (32), and the formulation of the boundary value problem for pressure
φn+1 implied by the continuity constraint (42) and the relation (43). The resulting ellip-
tic equation is solved (subject to appropriate boundary conditions) using the generalized
conjugate-residual approach (see [29–31] for further details). Having advanced all model
variables in time, the last step evaluates all forcings required in the second step of the next
cycle.

For illustration, we highlight the results of large-eddy simulation of the convective bound-
ary layer past a steep hill—an extension of a standard problem in Cartesian geometry [14].
The specific model setups are similar to those in [32]. We assume a Boussinesq fluid
(ρ,zC

= 2,zC = 0) with ve = 0; 2e = 2 for zC ≤ 500 m and increases linearly aloft. A
uniform heat flux is imposed along the surface of an axially symmetric steep cosine hill
(Figs. 3a and b). The mesh consists ofN x × N y × Nz = 65× 65× 51 grid points with
δx = δy = 50 m andδz = 30 m. The time stepδt = 10 s results in maximal Courant num-
ber <∼1 throughout the entire integration (Nt = 1500 time steps). The boundary conditions
are periodic inx andy and rigid inz (a weak gravity-wave absorber is employed near the
upper boundary).

Figure 3a shows a vertical cross section through the normalized subgrid-scale viscosity
field K ′ = KTKEδt (δx2 + δy2 + δz2)−1, at T = Ntδt when the boundary layer is well
developed. In the reference run with flat lower boundary (not shown), the model reproduces
the standard results [14]. Figure 3b shows horizontal cross sections ofw field atzC = 360m
= 0.52zi , wherezi is the height of the boundary layer in the reference run at this same
time. Finally, Fig. 3c, shows the power spectra ofw for the current and the reference runs.
the influence of the hill on the shape of the boundary layer (Fig. 3a), on the formation of
coherent structures (Fig. 3b), as well as on the selection of scales (Fig. 3c) is apparent.
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FIG. 3. Large-eddy simulation of convective boundary layer over a steep hill. Plate (a) shows vertical, center
cross section through the field of normalized subgrid-scale viscosity with the field’s maximum, minimum, and
countour interval equal 2.4×10−3, 2.4 × 10−4, and 1.2 × 10−4, respectively. Plate (b) shows horizontal cross
section through the field of vertical velocity atzc = 360 m with the field’s maximum, minimum, and countour
interval equal, respectively, 1.5,−0.5, and 0.125 ms−1. Plate (c) shows the spectra of the resolved vertical velocity
fluctuations atzc = 360 m for the current simulation (solid line) and the reference run over flat boundary (dashed
line).

The simulations reported employed classical MPDATA for solenoidal flows (Section 3.2.2)
and its linearized variant (Section 3.2.4), respectively, for2 and momenta; both schemes
incorporated the nonoscillatory option (Section 3.5.3).
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