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This article is a review of MPDATA, a class of methods for the numerical simu-
lation of fluid flows based on the sign-preserving properties of upstream differencing.
MPDATA was designed originally as an inexpensive alternative to flux-limited
schemes for evaluating the advection of nonnegative thermodynamic variables (such
as liquid water or water vapour) in atmospheric models. During the last decade,
MPDATA has evolved from a simple advection scheme to a general approach for
integrating the conservation laws of geophysical fluids on micro-to-planetary scales.
The purpose of this paper is to summarize the basic concepts leading to a family
of MPDATA schemes, to review existing MPDATA options, and to demonstrate the
use of MPDATA to effectively construct two distinct types of models (elastic and
anelastic) for complex geophysical flows g 1998 Academic Press
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1. INTRODUCTION

MPDATA (multidimensional positive definite advection transport algorithm [21, 22]
is a finite-difference algorithm for approximating the advective terms in fluid equatior
MPDATA is second-order accurate, positive defiditepnservative, and computationally
efficient. It is iterative in nature. The first pass is a simple donor cell approximation, son
times called upstream differencing, that is positive definite but only first-order accurate. -
second pass increases the accuracy of the calculation by estimating and compensatir
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3 Indeed, MPDATA is sign-preserving. However, for historical reasons we shall refer to this property as posit
definiteness or, briefly, positivity.
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460 SMOLARKIEWICZ AND MARGOLIN

(second-order) truncation error of the first pass. Additional passes can be used to esti
the residual error of the previous pass and approximately compensate it. This step ma
repeated an arbitrary number of times, leading to successively more accurate solutior
the advection equation.

The basic idea [21] is to use the positive definite properties of donor cell schemes
compensate the residual truncation error. Thus MPDATA consists of a sequence of dc
cell steps. In the first pass, the velocity is the physical velocity. In the second and s
sequent passes, the velocity is calculated from the field that is being advected and
no physical significance. These velocities are termed antidiffusive, or equivalently psel
velocities.

Originally MPDATA was designed as a simple scheme for handling the transport of nc
negative thermodynamic variables (such as liquid water or water vapour) in atmosph
models [21, 22]. In atmospheric modeling, the preservation of sign during numerical :
vection is the essential aspect of the stability and accuracy in modeling water phase-ch
or chemical processes [26]. Although advection schemes designed to preserve monot
ity are also positive definite, their use for inhomogeneous transport problems does
suffice to produce monotone solutions [7] and so offers no inherent advantage. Over
years, the theory underlying MPDATA has been extended to advection—diffusion eq
tions and to arbitrary curvilinear frameworks [23], to third-order-accurate approximatio
[13], as well as to a fully monotone scheme (in the sense of FCT) [24]. More recen
MPDATA has been generalized for systems of equations with arbitrary right-hand sic
[25, 28]. The utility of MPDATA as a general solver for complex fluid problems ha
been demonstrated in the context of atmospheric dynamics for both compressible-
incompressible-type formulations of the equations of motion [28, 31]. MPDATA has al:
been used as an interpolator [27] in a class of semi-Lagrangian fluid models congruet
the Eulerian MPDATA models [28, 31], as well as a remapper in arbitrary Lagrangia
Eulerian (ALE) simulations of high-speed flows [3, 12]. Several MPDATA-based flui
models have been implemented on massively parallel platforms [1, 2, 16], demonst
ing that the local iterative character of the schemes is well-suited to distributed mem
architectures.

Generally speaking, MPDATA belongs to the class of nonoscillatory Lax—Wendrc
schemes thatincludes such classical algorithms as FCT [37], TVD [35], and ENO [9]. Hc
ever, MPDATA is qualitatively different from these other methods, which were develop
primarily in the area of high-speed flows to suppress spurious oscillations of Lax—Wendi
schemes for hyperbolic conservation laws. MPDATA was developed for meteorologi
applications—viz. high Reynolds’ number, low Mach number flows—to reduce the ir
plicit viscosity of the donor cell scheme (commonly used for nonnegative thermodynar
fields in early cloud models) while retaining such virtues as positivity, low phase error, a
simplicity of upstream differencing. As a result of its heritage, MPDATA's focus is on sig
preserving multidimensional advection rather than on monotone solutions of hyperb
conservation laws in one spatial dimension. Unlike TVD and ENO schemes, which emp
one-dimensional constructions to limit the scalar flux component, MPDATA effective
limits the magnitude of the vector velocity and so is naturally unsplit. In principle, any
these schemes can be adapted for multidimensional flows of all speeds. However, tc
knowledge, MPDATA is the first Lax—Wendroff-type of approach employed consistent
(i.e., for all dependent variables) and succesfully in geophysical fluid models of all scal

Over the last decade, MPDATA has been frequently compared with other transy
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schemes, primarily in the context of passive scalar advection (see [5, 10, 33] for rec
results). The assessments of MPDATA's relative strengths and weaknesses reported i
literature depend very much on the schemes included in comparisons, choice of test
lems, MPDATA's options, and details of implementation. The most common complair
are that the basic MPDATA is too diffusive, and enhanced MPDATA is too expensive. T
most often acknowledged virtues are MPDATA's multidimensionality, robustness, and
underlying simplicity. These advantages carry over to geophysical fluid models, wher
the relative efficiency of advection becomes less important with increasing complexity
the models [20, 31].

Present geophysical fluid models most often use a centered-in-time-and-space (C
approach in their dynamics. To mitigate spurious effects due to negative undershoot
the thermodynamic variables, these models usually adopt a “hybrid” approach where
ferent variables are transported with different advection schemes, or even the same
able uses different advection schemes (operators) in the horizontal and the vertical. F
the genuine multidimensionality and general applicability of MPDATA allow a singl
scheme for all dependent variables, thus minimizing auxiliary computations. Furthermc
MPDATA's strong (nonlinear) stability—common to all conservative sign-preserving a
vection schemes [26]—permits more liberal stopping criteria in iterative elliptic solvers [3
and allows dispensing with various filtering operations often required to stabilize geoph
ical fluid models. As a result, fluid models based solely on MPDATA appear competet
when compared to established codes of the same category [20, 31].

Since its origin in the early eighties, MPDATA has evolved from a simple advectic
scheme to a general approach for integrating the conservation laws of geophysical fluid
micro-to-planetary scales. In consequence, MPDATA embodies a family of schemes of v
ing accuracy and levels of complexity. The MPDATA literature is quite extensive, and cc
tinuously expanding on the finer issues of finite-difference transport [13, 18]. The purpos
this paper is twofold. Specifically, we offer to the interested reader an organized tour thro
numerous topics discussed in the MPDATA literature. For this, we summarize basic conc
underlying the design of MPDATA schemes and review the existing options. More gen
ally, we identify and assemble elements important for designing geophysical fluid mod
We start with elementary advection and finish with two diverse examples from model
geophysical flows. These examples are selected purposely from the areas dominated
tionally by CTS methods; they do not require (but do benefit from) positivity of the advecti
schemes. Consequently, they do not emphasize the obvious advantages of MPDATA—
are already many such examples in the literature—but rather illustrate how to put the er
approach to work and, in more general terms, document that modern nonoscillatory L
Wendroff type schemes offer a viable alternative to the traditional methods for geophys
flows.

The paper is organized as follows. In order to introduce the philosophy of MPDAT
schemes we focus in Section 2.1 on the elementary problem of one-dimensional transpc
a scalar field in a predetermined uniform flow. In Section 2.2, we extend the basic MPDA
to two-dimensional flows. In Section 2 we also address the stability and convergenc
the basic schemes. In Section 3, we posit a model prognostic equation for fluids to de
a general form of the MPDATA algorithm. Then we review various MPDATA option:
accomodating particular needs of different fluid models. In Section 4, we conclude
paper with examples of elastic and anelastic type fluid models built solely on MPDA]
schemes.
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2. BASIC MPDATA

2.1. One-Dimensional Advection

The model advection equation for a scalar variablan one dimension is

W d
o= a1y @)

ot
where the velocity may vary in space and time. The donor cell (or upstream) approximatic
to the advection equation (1) is written in flux form,

‘I’in+1 = ‘I’in - [F (‘Ifin, ‘Din+1, Ui+1/2> -F (\I’in_l, ‘*I’inv Ui—l/z)} s (2)
where the flux functiorF is defined in terms of the local Courant numkeby
F(WL, Vg, U) = [U]T WL + [U]"WR (3a)

U= g [U]T =05U+U]), [U]” =05U-|U]). (3b), (30, (3d)
The integer and half integer indices correspond to the cell centers and cell walls, respecti
Herest is the computational time stefx is the length of a cell, andJ]™ and U]~ are
the nonnegative and nonpositive parts of the Courant number, respectively.
Assume for simplicity that the velocity is constant abdhonnegative (cf. Section 3). A
simple truncation analysis, expanding about the time lexald spatial poinit, shows that
(2) more accurately approximates the advection—diffusion equation

ov d d ov
— =——U¥)+ — | K— 4
ot ax(u )+8x< ax)’ @
where
(8%)? 2
K= U| —-U. 5
o5t (U] ) 5

Thus (2) approximates the solution to the advection equation with a second-order el
To improve the accuracy, it is necessary to construct a numerical estimate of the e
and subtract it from (2). The classical one-step Lax—Wendroff scheme is perhaps the r
familiar example of such a procedure, using standard centered differences to approxir
the second term on RHS of (4). While MPDATA derives from the same general concep
exploits special properties of the donor cell scheme for approximating and compensa
the error.

The donor cell scheme (2) is positive definite for any velocity field and is monotor
if the velocity field is constant in space, providing that the Courant number is prope
bounded. These properties are lost in any linear combination of donor cell and cente
differencing [6]. In these terms, the basic idea underlying all MPDATA schemes can
stated very simply—use a donor cell approximation to the error term. Since the error te
is not written in a form to do this directly, it is first rewritten as

d
errofY = ™ (vPw), (6)
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where

8x)? 19w
v® = Q(|U| —UH=-—

7
25t U 9Xx ()

is a pseudo velocity. The superscfiptshows that it is the first approximation to subtracting
the error. Inside the derivative in (6), the diffusive flux in the second term of (4) is multiplie
by a factor of¥ over ¥—i.e., by unity. However, in the donor cell approximation to (6),
the factor in the numerator will be represented using an upstream value, whereas the f:
in the denominator will be approximated using a centered value. In this way, a nonlinea
is introduced and a higher-order approximation is found that still preserves positivity.
To compensate for the error between the donor cell solutith and a second-order
accurate solutiont™+1, we use the error (6) estimated at time lemel 1. A first-order
accurate estimate of the pseudo velocity (hondimensionalized for convenience) is

&) 2 Wi — e 2, A()
— 1 | —
Vit = (U1 - U )W = (U= UHAL,. (8)
where
st
VE 9
v )

In the second pass, we subtract a donor cell estimate of the error to improve the orde
the approximation. The equation of the second pass is

@ 1 D @ @ 1 1 @
v =g - [F (‘l’i( L w, Vi(+)1/2) -F (‘L’i(—)l» oY, Vi(—)l/z)]» (10)

which estimatest™* to the second-order while preserving the signiofNote that the
stability of the first pass ensures that of the second pass, flinces 1 — -1 <

[U| — U? < 1 and the assumed nonnegativity Bf together with the positivity of the
donor-cell scheme assu|re$_131/2| < 1Vi. For illustration, Table 1 summarizes a series of
elementary advection tests (uniform translation of a Gaussian pulse) for a range of sp
resolutions and Courant numbers. The numbers displayed are the logarithm base 2 c
global truncation error (evaluated as the rms error between corresponding numerical
analytic solutions; [13, 24]) that evidence the second-order convergence of the schem

TABLE 1
Logarithms Base 2 of the Global Truncation Error for a Series of Simulations Using Basic
MPDATA Where a Gaussian Pulse Is Advected over a Fixed Distance by a Constant Flow

U =0.05 U=035 U =065 U =095
8X = 208%, -9.86 -105 -113 -139
8x = 2718% ~116 —124 -133 -158
85X = 2728 ~136 —144 ~153 -178
8x = 2736 -155 -164 -173 -198
8x = 278% -175 —184 -193 -218
8X = 2756 ~195 —204 —213 —238
8x = 276 —215 224 —233 -258

X = 2778% —235 —244 —25.3 —27.8
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The two-pass scheme described above is the most elementary MPDATA. Equation
again can be expanded in a Taylor series, the residual error after the second pass estil
asin (6)—(8), and compensated as in (10). The entire process of estimating the residual
and compensating it can be continued, iteration after iteration, reducing the magnitud
the truncation error which remains at third-order [13]. It is worth noting that writing
computer program for such a procedure is extremely simple, as the flux function, the dc
cell scheme itself, and the form of the pseudo velocity remain the same in each iteratic

2.2. Extension to Two Dimensions

The extension of the scheme from one to two dimensions contains a subtlety origina
in the cross derivatives that appear in the truncation analysis. However, the extension
two dimensions to an arbitramy is straightforward (see Section 3.2), and for simplicity
we describe only the two-dimensional case. We assume a regular staggered mesh wit
field W stored at the cell centers (denoted by integer indices) and the velocity compone
stored at the cell edges (denoted by one half-integer index and one integer index) suck
the x-componenu is stored at (i + 1/2)8x, j8y] edges, whereas thg-component is
stored ati[sx, (j + 1/2)8y] edges.

The numerical equation for donor cell advection in two dimensions can be written

‘I’ir,]Tl = “I}ir,]j - [F(‘I’irjjv lIlin+l,j’Ui+1/2sj) - F(\Ilinfl,j’ ‘Ilir,]j’ Uifl/Z,i)}

- [F(\pirjj’ ‘I’irjj+1’ Vi.,i+l/2) - F(\I}ir,]jfl’ q/ir?j’ Vi,i—l/2>] ’ 11)

where nowd andV are the dimensionless Courant numbers

&t ot
U="2 v=2% (12)
8X 3y
and the flux functiorF has been defined in (3).
Still assuming constant velocities, we expand (11) about the cell cénfgrand time

leveln. The result is an advection—diffusion equation

AW 9 ) 9 o) + |U|(8x)2(1 |UI)82\IJ

oY __ 9 ~- 2w RO 4 o

ot X ay 26t X2
[V](8y)? 2w UVéxsy 92v

(1—|V|)a—y2 - (13)

26t st 9xay’

The idea is now to write a donor cell estimate of the truncation error and subtract it fre
the difference equation (11) to create a higher-order approximation. Note that when
write this in a form using pseudo velocities, the cross-term gives us a degree of freec
not present in the one-dimensional analysis. That is, writing (13) as

v

d d 0 d
- = _ = (gD — (D
ot ax (uw) ay(le/) + ox (u ‘-Il) + 3y (v \If) (14)

we can choose
ud U |(5%)? 19, UVSxsy 1 0w

1—jUup==——f , 15
25t - qu ax st W9y (152)
V|(8Y)2 10w UVsxsy 1 aw
p@ = VIOY)S |2(8ty) A-IVhg oo — - oy 2 8% (15b)
y ot v 9x
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where the real numbef is arbitrary. This extra freedom is useful when deriving som
more advanced options of MPDATA [13]. In a practical sense, the implementation of (3
is insensitive to the choice df (at leastinthe range g f < 1), andf = 0.5is used as a
default in all MPDATA schemes.

The pseudo velocities (15) must be evaluated at the cell edges. Their explicit form \
depend upon whether the edge is horizontal or vertical. In either case we can write
dimensionless form,

uDst

ud = ~ =U|1—|UpAL —2fuv B, (16a)
@ _ vt @ @
v = oy =|V|A—|V)BY —2(1 - fuv AD, (16b)

where AL and BY are numerical estimates at the particular edge. For example, on |
right edge of a cell

nt1 & &)
AL — [5)‘3‘1’} _ Yy m W (17a)
= = D’
2W 09X Jiapy W s v
@ @ @ &)
B0 — [S_VBTH C AW W Wik — Wi (17b)
- - [ @ 1 1
2V 3Y Jiypj 29 +)1,j+1 + \Di,j)+1 + \I'[i(+)1,j—1 + "I]i(, j)—l

wherew @ is the solution after the first donor cell pass. Other approximatiodsand B
are also possible. Those in (17) have the virtue of proper boundedness (given the stal
and positive definiteness of the original donor cell scheme) that is important for the stabi
of the multidimensional MPDATA [22]. The equation of the second pass is

\yﬁ? _ \p.ﬁl) _ [F (\,p(l,) \yi(i)l,j’ Ui(fl /2,1') _F (‘1’-(91,;, w® U'(E)l/z,j) ]

ijo i i,jo i

—[F (W00 Vi) = F (0 W5 V)], (18)
and the resulting two-pass scheme already offers second-order accuracy. Continuing |
tions further reduce the amplitude of the leading third-order error (see [13] and/or [22]
comparisons of the results using different numbers of iterations).

As in the 1D case, the stability of the first pass controls the stability of subsequ
iterations and, therefore, the stability of multidimensional MPDATA. The original proof
stability has been given in Section 3 of [22]. It follows that limiting the maximal sum ¢
absolute values of local partial Courant numbers to not exceed 0.5 (bé¢re,|V| < 0.5)
is a sufficient condition for both the stability and positivity of a multipass MPDATA ir
M < 3 spatial dimensions for an arbitrary velocity field. Furthermore, positivity and glob
conservation assure the solution boundedness i th@orm, which is equivalent to the
nonlinear stability statement [26]. Limiting the sum of local partial Courant numbers by C
is the result of assuming (in the proof) a worst case scenario where the velocity compon
flip their signs across the cell (see discussions in Section 2 of [22] and Section 6.1 of [1
In CFD applications, this rarely happens, and the heuristic limit we use for advection—
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FIG. 1. Isolines of a cone advected through six full rotations (3768 timesteps) using different variants
MPDATA. The contour interval is 0.25, and the zero contour line is not shown. Plate(a) shows the analytic solu
(identical to the intial condition), plate(b) shows the result using the classical donor cell scheme, plate(c) sh
the basic MPDATA scheme, and plate (d) shows the most accurate MPDATA option discussed in Section 3.

fact, in all MPDATA extensions—is 1.0, i.e., the standard condition for the stability of th
donor cell scheme (cf. Eq. (3-140) of Roache [17]).

For illustration, Fig. 1 displays the results of a standard solid-body rotation test (
[37, 13, 21-24]) using selected variants of MPDATA. The two-dimensional rotation te
employs a square mesh of 101 by 101 points. The angular veloeityd.1 and the velocity
components ar@u, v) = —w(y — Yo, X — Xp). The center of rotationxg, yo) is the center
of the mesh (58x, 508y). The maximum Courant numbef)| + |V|) is 0.99, and one
full rotation requires 628 time steps. The initial condition is a cone centered at the pc
(755x, 508y) and has a base diameter of 30 and a height of 4. Figures 1a—c show the ana
solution, the first-order donor cell solution, and the second-order solution using basic t
pass MPDATA, all after six rotations (more qualitative displays in a 3D perspective &
available in, respectively, Figs. 1 and 2 of [21], 8 of [22], and 1b of [27], where compariso
with other solutions are also presented). Figure 1d anticipates the discussion of the
section and displays the state-of-the-art third-order accurate two-pass MPDATA option v
the analytic summation of the infinite series of corrective iterations [13]. The schemes
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Figs. 1c and 1d use approximately 2.5 and 6 times as much computer time as the dono
algorithm.

3. REVIEW OF MPDATA OPTIONS

3.1. A Prototype Fluid Problem

Before presenting some available MPDATA options, it is instructional to introduce
generalized transport equation,

% + V- (VW) = (19)

whereG = G(x), v = v(X, t), andR = R(x, t) are assumed to be known functions. In fluid
dynamics application§ may play the role of the Jacobian of the coordinate transformatic
from the Cartesiamc to the curvilinear framework,* v may be viewed as a generalized
“advective” velocity vectov = Gx, and R may combine all forcings and/or sources.
Then bothv and R are functionals of the dependent variables rather than functions of t
independent variables (see Section 4 for examples).

In order to design a fully second-order MPDATA scheme for (19), we shall extend t
procedure discussed in Section 2 while following the development in [25, 28]. We assL
a temporal discretization of (19) in the form

Gyl - Gy

st + V. (vMH2eN = GRYYZ, (20)

Expanding (20) into a second-order Taylor series abetinst gives

REAV] 1 9v 1 4R
— — 4+ V. —|¥| =GR+ Z5tG— 2. 21
G +25tG pYe + K +25t8t) ] G +26tG 5t +0@t9.  (21)

To convert temporal derivatives into spatial derivatives, we taket) (21), resulting in

92w v AW IR
G—+V- v G— O(st 22
5zt <8t +v Bt) + O(st). (22)

Since (21) implies

av 1
—=—-=V-(W)+R St 23
ot gV )+ R+OGY, (23)
(22) may be rewritten as
%y v 1
GW:V' —E\I/Jr—v(v V\I/)+—V\II(V V) — VR +G—+(9(8t) (24)

Inserting (24) in (21) and regrouping the terms that do not cancel leads finally to the modi

4 In some instances (e.g., for the anelastic type fluid mod@lshay be a product of the Jacobian and the fluid
density (see Section 4 for examples).
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equation

aG\IJ+V (vwWw)=GR-V 1(Stlv(v V\D)+18t1V\D(V V)
ot N 2 G 2 G

+V. (%ath) +0(8t?), (25)

where allO(6t) errors due to the uncentered time differencing in (20) are now express
by spatial derivatives. Note that assuming the time levels of both the advective velo
and forcing term are + 1/2 in (20) eliminategD(5t) truncation errors proportional to
their temporal derivatives in (25). An§(5t?) approximations t@"*+%2 and R"*'/2 would
suffice for second-order accuracy in (20); particular approximations will be discussec
Section 3.4. Note also that for a 2D problem with= G — 1 = 0 and constant, (25) is
equivalent to (13) except for the termssx|u|(3%W¥/9x?) and ~8y|v|(82W/dy?) present

in (13) that derive from upwind spatial differences in the donor cell scheme. These tel
do not involve conversion from the temporal to spatial derivatives.

The O(8t) truncation errors on the RHS of (25) have two distinct components. Tt
first is solely due to advection and depends linearlydanThe second is solely due to
the forcing and its dependence dnis, in general, unknown. In the following section
we present elementary MPDATA options for homogeneous transport, while in Section
we describe how to compensate the errors due to the nonvanishing forcing. Section
elaborates on several approximations to advective velocities. Section 3.5 briefly introdt
other MPDATA options.

3.2. MPDATA Options for Homogeneous Transport

(1) Introductory remarks. With R = 0 in (19) all MPDATA schemes retain the form
of the basic scheme (Section 2), where all subsequent iterations are standard dono
scheme but with different arguments at each iteration. The first iteration uses the adve
velocityv"*Y/2 andw", whereas following iterations use pseudo velocities@ravaluated
from the preceding iterations. This is compactly written as

M
1
k k—1 k—1 k 1 1 (k k—1 k—1 I (k
U = 0 R (0w V)~ F (W 0 ).
=1

(26)
wherei = (i%, ...,iM) denotes a location on thd-dimensional regular grid is the unit
vector in thel th of M spatial directionsk is the donor cell flux function defined in (3) with
V' denoting the normalized advective pseudo velocity tim direction; integer and half
integer indices correspond to the cell centers and edges, respectivety;=ahd . ., IORD
numbers MPDATA iterations such that

vO = g PlORD - yn+l (27a, (27b)

k k k (1) 12
VIED — v (v w® G) D, = ||E/ée| Sx' (289, (28b)
With this notation (originated in [22])ORD = 1 variant of MPDATA is the classical donor
cell scheme, and various options of MPDATA differ merely by specifics of the function
form of the pseudo velocity (28a).
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(2) Solenoidal flowsV -v = 0). For solenoidal flows (e.g., incompressible or anelasti
fluid models) the standard representation of (28a) takes the form

2
1) *) Q)
VD = v | - (V'+1/Ze'> Vit — Vi
i+1/2¢ i+1/2¢ 05 (Gi+e| + Gi) \Ijl(-t)a + w(k)
M TCERVEICHEE
Z Vi+1/2e. V|+1/29|
J=1 1 (Gi+e| + GI)
(k) (k) (k) (k)
LI’H—e. +e + \I}|+eJ “I’|+e, e; ‘pi—ej (29a)
(k) (k) (k) (k)
\I}i+e| +€; + \I}H—ej + “I}|+e| + \Ili—ej
where
T 1
Jky _ J(k) J(k) J(k) J(k)
Vitijoe = 2 (Vi+e| 11726, T Vit1/ze, T Vite —1/2e, T ViZ 1/2eJ> . (29b)

Equations (29) are finite difference representations of the expression under the diverg
operator in the second term on the RHS of (25) normalized pplus the pseudo velocity
component (proportional to the absolute valu¥ aiccounting for the truncation errors due
to the upwind spatial differencing (3) in (26). By design, the resulting scheme (26)—(29
fully second-order accurate (while sign preserving) for a smooth solenoidal flow) and
stationary functiorG(x), given properly bounded local Courant numb@érstvV® (cf. the
discussion following (18) in Section 2.2 of this paper, and note that the advective veloc
itself is proportional tdG).

(3) Divergent flows(V - v # 0). For divergent flows (e.g., compressible or elastic
fluid models; or anelastic models with the alternate-direction implementation of MPDAT.
the truncation error term proportional to flow divergence on the RHS of (25) becorr
significant. Since the character of the model rarely changes in the course of simlati
we incorporate the compensation of this error as a special option (rather than a default)
MPDATA programs. Such an optional extension of (29) may be written, for example, a:

1 (k)

T (VI NV N
(Gite + Gi)
1 V|I+(§2e. M VL0 VLD VRO vI®
- 2 (Gl+e| n G lez‘]:#( i+e +1/2e; + i+1/2e; — Vi+e —1/2e; — i—l/ZeJ) ’

(30)

where the omitted terms are those in (29). This correction is insignificant in solenoidal flc
even though the pseudo velocities are in general divergent (Section 5.1 in [22]). Althot
the expression in (30) might be written in a more compact form, we purposely retain (h
as well as in other formulas) the form resembling our actual FORTRAN coding.

(4) Transporting fields of variable sign.So far, we have assumed that the transporte
field ¥ is exclusively either nonnegative or nonpositive. This assumption is important |

5 Switching from compressible to incompressible model formulation may occur, e.g., in time-dependent ¢
metry [15].
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the stability, accuracy, and, generally speaking, for the design of MPDATA. However,
enters MPDATA schemes explicitly only in the pseudo velocity formulae, inAtaad B
terms~AW/ > W of the finite difference approximations to thiey &) (aW/ax') ratios—
cf. (8), (17), and (29). Note that these terms are bounded Whsiof a constant sign. When
W changes sign,A| and|B| are unbounded leading to arbitrarily large pseudo velocitie
and unstable schemes. MPDATA can be extended to transport of variable-sign fields
number of ways. Below we outline a few that have proven useful in applications.

The simplest and most common way is to replac&alliin (8), (17), and (29) with¥|s.
This exploits the relationship

190 1 1 awdHr 1oy
Wax! T 2u (W2)H Hx! u=12 %] Ax! '

The results are, practically, insensitive to the valugphowevery = 1/2 is the optimal
choice as it merely requires replacidgwith || in the pseudo velocity formulae derived
for the constant-sign fields and is computationally the most efficient.

An alternate approach exploits the mass continuity equation (Section 4 in [23]). Mul
plying Eq. (19)—with¥ = x being the fluid density (elastic systems), or with= y =1
and a steady reference density includedsir(anelastic systems); see Section 4—by ar
arbitrary constant and adding the resulting equation to (19) leads to

IG(¥ +cy)

ot +V-VW¥+cy) =GR (32)

This illustrates another class of degrees of freedom in MPDATA. First, the arbitrary const
¢ can be chosen to assure positivitydt [23, 13]. Second, it makes MPDATA susceptible
to asymptotic linear analysis &s / oo [23]. Third, MPDATA itself can be linearized
around an arbitrary large constant leading straightforwardly to a two-pass scheme
differs technically from the basic algorithm only in two details: at the second iteration, t
donor cell flux function in (26) takes the value unity in its first two arguments, and t
pseudo velocities in (29) replace eaghwith unity in the two “Y"W¥” denominators. This
asymptotic form of MPDATA is a realization of the classical Lax—Wendroff algorithm (cf
Section 4 in [23]). Combined with a nonoscillatory enhancement (Section 3.5.3) it mal
a viable scheme for transporting momenta in fluid models (see Section 4 for examples

3.3. Inhomogeneous Transport: Compensating the Source Error Term

The compensation @ (5t) truncation error in (25) dependent on the advective fluxes c
the source term is important for preserving the global accuracy and stability of forward-
time (FT) approximations (20) [25, 28]. This particular error term appears in those “naiv
approximations to (19) that simply combine an FT advection scheme for homogene
transport with an?(8t?) approximation ofR"/2, Ignoring this error leads to spurious
~(@(8t) sinks/sources of “energy? and, eventually, to nonlinear instability (Appendix A
in [28]). Compensating this error 8(5t?) only requires subtracting a first-order-accurate
approximation fromthe RHS of (20). This can be further upgraded and/or simplified depe
ing upon a particular approximation adopted for represer®fig/? in (20). We discuss
below two important cases.

6 For a discussion of some formal issuesvat> 0 see Section 3.2 in [23].
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First we assume th®"*%2 can be written as O(R" + R"*1), whereR™1 is an®(5t?)
accurate approximation B att = (n + 1)§t. Then a simple, efficient, and fully second-
order accurate MPDATA realization of (20) can be compactly written as

Wt = MPDATA (W" + 0.58tR", V"2 G) + 0.55t R™™. (32)

In the above equation, MPDATA symbolizes the homogeneous-transport algorithm
cussed in Section 3.2. Advecting the auxiliary figld + 0.55t R" not only compensates
the truncation error due to the source term but it also has the physical interpretatiot
integrating the forces along a parcel trajectory rather than at the grid point. This makes |
congruent to semi-Lagrangian approximations (see Section 2 in [28]) and facilitates uni
fluid models that integrate the equations of motion, optionally, in the Eulerian (point-wis
or Lagrangian (trajectory-wise) sense [31]. Note that (32) may be viewed as a paraph
of the Strang splitting [34].

Second we consider the alternate case, wRré’? is already a knowi®(5t?) approx-
imation toR att = (n+ 1/2)4t. Then, a fully second-order scheme for (19) can be writte
as

WL = MP DATA(U", V™2, G) + MPDATA* (R™V2, 0.5V %2, G),  (33)

where both MPDATASs refer to the homogeneous-transport algorithms in Section 3.2. N
that MPDATA* may use different options than MPDATA. In particular, for overall second
order acuracy it can be the cheap&RD = 1 (i.e., donor cell) scheme. Note also that in
a computer program the two terms in (32) or (33) may be evaluated separately at se\
distinct stages (see Section 4 for examples).

3.4. Approximating the Advective Velocities

Estimating the advective velocity in (20) at the intermediate 1/2 time level results
in cancellation of the~At(dv/dt) truncation errors in (25). Temporal staggering of the
advective velocity may be approximated by linear interpolation or extrapolation

1 1
Vn+1/2 — E(Vr'l-‘v-l 4 Vn), Vn+1/2 — E(3vr'l _ Vn—l), (34a)’ (34b)

either of which maintains second-order accuracy in (32) or (33). The linearity of the
proximations in (34) is advantageous in anelastic systems, where it eNsuvdsY2 = 0
(givenV - v" = 0Vn). Formula (34a) is an obvious choice in hybrid models [23], wher
the momenta are integrated with centered-in-time-and-space schemes and the thern
namic variables employ FT approximations. Then evaluation of the velocities prior to
thermodynamic variables ensures the availabilitysf in (34a). One advantage of (34a)
is that it does not affect computational stability [28]. The approximation (34b) is a natu
choice in models where all variables are evaluated with FT transport algorithms. Compz
to (34a), the theoretical disadvantages of (34b) are: increased memory requirement, a |
amplitude of the truncation error, and a more restrictive stability condition—(34b) m
require half of the time-step allowed in (34a) [28]. In practice, (34a) and (34b) offer simil
overall accuracy in hybrid anelastic models [23], while satisfactory performance of (34b
the fully FT fluid models has been documented in [25] and [31] for the elastic and anela
models, respectively.
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The stability of FT approximations (20) for elastic fluids may be augmented using
nonlinear extrapolation consistent with the Lagrangian counterpart of (19) for moment:

P2 = g " V\“/”% + ﬁ”%,

(35)
whereV is the specific momentum with the corresponding fordﬁwand the convective
term employs a first-order-accurate upwind differencing for the spatial discretization [2
Although neithef/ norR may appear explicitly in (19), they are both known functionals o
the dependent variables. AX(§t?) approximation to/"+%2 in (32) or (33) can be readily
recovered from (35). In elastic FT models, (35) allows a time-step up to four times lart
than does (34b) [28].

3.5. Other Options

The options discussed so far are the most elementary. Other options may further enh
the overall accuracy, reduce computational costs, or simplify the coding. The MPDA
literature contains numerous discussions of additional degrees of freedom. Here we
the reader’s attention to a few of these.

(1) “Third-order-accurate” scheme. The analysisin Sections 2.1 and 2.2 can be repeate
using a third-order Taylor series expansion that leads to a positive definite and third-or
accurate advection algorithm for the constant coefficient case [13]. For variable flows
G # 1in (19), the scheme is only second-order accurate with its leading error proportio
to the second derivatives of the transporting velocities @nédts primary advantage is a
more uniform distribution of the truncation error as a function of the Courant number [1.
At a given resolution, this preserves better the solution symmetries and benefits probl
dependent on passive scalar advection such as pollutant transport in smooth flows.
option complicates thEDRD = 3 basic scheme substantially. For a 3D flowt: (u, v, w)
inanx = (X, y, z) framework, the “third-order” corrections to the pseudo velocities in (29
are straightforward finite difference approximations to expressions like

§x2 (3U|U] 2u3 1920 sx8yV 202\ 1 92w
U=— (- U)o+ U -] =
6 G G? W 9x? 2G G / W oxay
dx8zW 2U2\ 1 3°w 28y8zZUVW 1 3w
+ (O] P e e (36)
2G G /) Woxoz 3G W oyoz

whereU, V, W denote respective local Courant numb¥rsit/§x'. The remaning two
componentsdV andsW) of the “third-order” correction are obtained by the symmetric
permutation.

(2) Recursive pseudo velocitiesAs more elaborate features are incorporated intt
MPDATA, the formulae for the pseudo velocities become more complicated, and the res
ing schemes become computationally more intensive. MPDATA options such as, for ex:
ple, a monotonicity-preserving third-order-accurate scheme may benefit from yet ano
degree of freedom. Instead of repeating successive MPDATA iterations, one may cons
an alternate scheme that employs the two-pass scheme with the pseudo velocity de
assuming the summation of an infinite number of MPDATA iterations [13]; see Fig. 1
for illustration. Although this special recursive pseudo velocity itself is quite complicate
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and does not benefit simple MPDATA schemes, it can offer savings up to 50% when c
bined with other options. Also the recursive velocities provide an efficient option for tho
programs whose architecture penalizes numerous passes.

(3) Nonoscillatory option. The algorithm in (26)—(30) preserves sign but not mono
tonicity of the transported variables [22—24] and, in general, the solutions are not f
of spurious extrema. In most cases preservation of sign is adequate [26]. When requ
MPDATA can be made fully monotone [24] by employing FCT formalism [37] to limit
the pseudo velocities. In fact, MPDATA is very well suited for this for a number of re:
sons. First, the initial MPDATA iteration is the donor cell scheme—a low-order monotol
scheme commonly used as the reference in the FCT design. Second, assuring monoto
of subsequent iterations provides a higher-order accurate reference solution for the next
ation with the effect of improving the overall accuracy of the resulting FCT scheme. Thil
since all MPDATA iterations have similar low phase errors characteristic of the donor ¢
scheme [23], the FCT procedure mixes solutions with consistent phase errors. This ber
significantly the overall accuracy of the resulting FCT scheme (see Fig. 5 in [24] and"
accompanying discussion).

(4) Diffusion. The simulation of diffusive transport illustrates especially well the flex
ibility of the MPDATA approach. In particular it shows that, from the viewpoint of finite
difference approximation, the distinction between advection and forcing in (19) may
arbitrary. Consider a special case of (19), where V - (K VW). The resulting advection—
diffusion problem can be integrated to the second-order using algorithms (32) or (33) v
R or R™%/2 denoting suitable first-order-accurate estimatas.alternate option draws
from the underlying idea of the basic MPDATA itself, i.e., the formal equivalence betwe
the diffusion and advection equations on a discrete mesh (section 3.2 in [23]). The
fusive flux may be formally written in a form of advective flikVW¥ = —QW, where
Q =—(K/W)VV (if ¥ # 0; 2 = 0 otherwise). Adding a first-order-accurate estimate fo
Q"2 to the advective velocity ™ in (28b) transforms the advection—diffusion problem
into a simple MPDATA advection.

In geophysical applications, where flows exhibit large Reynolds’ numbers, the diffusi
terms are typically evaluated to first-order. This is justified because significant diffusi
enters the equations of motion only as a consequence of subgrid-scale turbulence mc
where the diffusivityK ~ O(x'). This eliminates the need for a predictor step—a:
R™12 R ~ R andQ™Y2 ~ Q" ~ Q"1 both with accuracy t@(st)—and opens
new possibilities for further simplifications (see Section 4.2 for an example).

4. EXAMPLES OF APPLICATIONS

Here we supplement the theory of the preceding sections with two examples. Th
illustrate designs of FT finite difference fluid models (20) based solely on the MPDAT
approach for both elastic and anelastic systems with, respectively, explicit and implicit
time) approximations of the pressure forces. The first problem, a shallow-fluid flow or
rotating sphere, has been proposed in [36] for evaluating the accuracy and efficienc
numerical methods for global scale dynamics and has become a benchmark in the 1

7 Although (32) could be used with implicit methods for diffusive fluxes, here we emphasize the explicit diffusi
schemes typical of geophysical models.
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Its solution evolves through coupling of wave propagation and material motions leading
some steepening of planetary waves, but otherwise remains smooth. The second pro
is a benchmark from the area of small scale dynamics—large eddy simulation (LES]
convective planetary boundary layer [14], complicated by the addition of topography.
contrast to the first problem, here the flow is fully 3D and turbulent. For finite differen
FT methods the issues to address are the accurate time-centering of the pressure-gr:
and inertial forces, proper incorporation of the metric terms, and minimization of diffusi
errors. Inadequate treatment of the forces and metric terms can be a source of unphy
oscillations or even lead to computational instability [28]. Excessive numerical diffusi
will prevent the steepening of the wave in the first problem and will result in unphysic
turbulence spectra in the second.

4.1. Shallow Fluid on the Sphere

The equations expressing conservation of mass and momentum in a shallow fluid 1
on a rotating sphere (cf. section 2.6 in [36]) each has the form of the generalized trans
equation (19)

BS—:D + V. (vd) =0, (37a)
BC;tQX +V-(VQy) =GRy, (37b)
3G

ato +V.-(vQ,) =GR, (37¢)

whereG = hyhy, (with h, andhy representing the metric coefficients of the general orthog
onal coordinatesy, y)), and® = H — H, is the depth of the fluid (wittH andH, denoting
the heights of the free surface and the bottom, respectiv@lyg: (Pxhy, ®yhy) is the
momentum vector with corresponding forcifigs

(P + Ho) 1
Rc = _h_xq)T HRANeT (Qy X QX ) O (352)
g APHH) 1 dhy
Ry = —hyob—ay f Qy co <Qy ™ Qx ) Qx- (38b)

Here g is the acceleration of gravity anél is the Coriolis parameter. The Lagrangian
counterpart of (37), employed for predicting advective velocities via (35), reduces to

DV 9 .
— = V)i=R 39
Dt <8t X ) (39)

where? = (1/®)Q, andR = (1/®)R. The advective velocity and the specific momentum
V are related through = (v, hy, dyhy).

The integration of the discrete equations over a time-step using the model algorithm (
proceeds in four distinct steps. First, the advective Courant numbers atitHe' 2 time

8 In contrast to a common approach for high-speed flows, it is not advantageous to include pressure ir
momentum flux.
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level are computed using appropriate fields atttiene level in (35). Second, the first term
on the RHS of (32) is evaluated for the mass and momentum fields. Third, the new val
of the pressure forces are recovered from the updated depth. At this stage the only unkr
elements required to solve (32) are the inertial forces (second and third terms on the |
of (38)] at then + 1 time level. An updated solution for the momentum within a cell may
be compactly written as

1
Q=Q + ;ALF(Q), (40)

whereQ refers ton + 1 time level,Q* denotes all known terms [i.e., the first term on the
RHS of (32), plus half of the new pressure force], &@) represents the inertial part of
the forces in (38). The simple implicit vector formula (40) is solved by means of success
iterations with one iteration sufficing for a second-order-accurate solution (Section 4
[28]). The implicit character of (40) is dictated not by stability, but rather by accuracy ai
computational efficiency.

For illustration, we simulate the evolution of a Rossby—Haurwitz wave described in [3
The current experimental setup assumes in (37)—(39) the spherical coordinates,
y = 0, hy = acosf, andhy = a, wherei, 6, anda denote longitude, latitude, and the
sphere’s radius, respectively. The uniform, unstaggered hrasisists of 128 points in
longitude, and 64 points in latitude. The time-step is limited by the propagation speec
the gravity wave [28]; see [16] for optional designs relaxing the stability condition. Figu
2a shows the initial condition. Over several days, we expect this initial pattern to mc
from west to east with little change of shape (expect for a slight steepening of the w
in mid-lattitudes) and angular velocity2.5 x 10°° rad s* [36]. Figure 2b shows the
numerical solution after 5 days of integration using the linearized MPDATA for diverge
flows (Section 3.2.3 and 3.2.4; for an equivalent solution using basic MPDATA for diverge
flows see Section 4 in [28]). This solution is in good agreement with theoretical estima
(0.34r7 displacement after 5 days andl00 ms* maximal velocity of the flow), as well as
with predictions of a spectral model [8, 11].

4.2. Convective Boundary Layer over a Steep Hill

The nonhydrostatic anelastic model used in this section has been described in [31]. F
we consider a stratified nonrotating fluid whose undisturbed (hydrostatic ambient) stat
described by the profiles of the potential temperature and the veléxity: O.(zc), and
Ve = Ve(2Zc), respectively (recall that the subscriptrefers to Cartesian coordinates). The
standard terrain-following system of coordinatesy, z] = [xc, Yc, H(zc —h)/(H —h)]
assumes a model depithand an irregular lower boundahy= h(xc, yc). The coordinate
transformation enters the governing equation of motion through the coefficients of
metric tensorG'? = (9x'/3x&)(3x7/9xE), and the Jacobian of transformati@ =
Det{dxc/9x} = (Det{G'?})~Y/2,

Given the assumptions above, the anelastic conservation laws for momentum and en
may be written in the form resembling (19),

*

ap*v
ot

+ V- (VW) = p*FY + p*DY, (41)

° Note that on an unstaggered grid (40) is fully local and so it can be solved individually, cell by cell.
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96.7 M/S
=

x/Pi

FIG.2. Geopotential perturbation (I-W— 1, whereH = 8 km) and the flow vectors for the Rossby—Haurwitz
wave test problem: (a), the initial condition; (b), numerical solution after 5 days using a second-order accu
MPDATA scheme. The contour interval is 0.05.

whereW denotes any of the three Cartesian velocity components (v) or the potential
temperatur®, andp* = pG with p = p(zc) denoting the reference “Boussinesq” density
(cf. [15]). The advective velocity* = p*(u, v, w) satisfies the anelastic mass conservatiot
law,
9pGu  3pGv  3pGw
pGuU | 3pGy  Ip

=V.V' =0, (42)
ax dy 3z

wherew = zis the “vertical” component of transformed (contravariant) velocity related t
the Cartesian (covariant) velocity components through

o =G tw + G¥Bu + GZv. (43)

The associatedFandD¥ terms on the RHS of (41) represent, respectively, the resolve
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and subgrid-scale part of the total forcings. The subgrid-scale terms are fairly complex
standard—their explicit form is unimportant for the current discussion. Here, we emplo
turbulence model based on the prognostic turbulent kinetic energy (TKE) equation follow
[19]. The resolved forcings take the explicit form

u_ 09 309 v_ 0@ 5309
FY = P~ G P a(U—Ue), F'= 3y G 52 a(v—ve) (449, (44b
FY = _% +9(0 — Be) /0 —a(w —we), F®=—a/(0— 0. (440), (440

Here ¢ is the pressure perturbation with respect to the undisturbed environmental prc
normalized by. The potential temperatué® = ®(zc), in the denominator of the buoyancy
term in (44c), refers to the reference state. The attenuation forcings absorb gravity w:
in the vicinity of the open boundaries of the model.

The integration of the discrete equations over a time-step uses (32) on a regular
staggered mesh. It proceeds in several distinct steps. First, the advective Courant 1
bers at then + 1/2 time level are computed using (34b). Second, the first term on tl
RHS of (32) is evaluated fau, v, w,and © fields. This is also a convenient stage to up-
date the TKE variablee(= +/TKE in our case), which takes a particularly simple form
e+l = MPDATA(€" + 6tR®", V%2 G) as the subgrid-scale physics is approximate
only to the first-order (Section 3.5.4). In the third step, the vector of preliminary valu
of dependent variables generated in the preceding step is projected onto solenoidal f
[4]. This requires a straightforward algebraic inversion of the implicit system compos
of four equations (32), and the formulation of the boundary value problem for press|
¢"1 implied by the continuity constraint (42) and the relation (43). The resulting ellif
tic equation is solved (subject to appropriate boundary conditions) using the generali
conjugate-residual approach (see [29-31] for further details). Having advanced all mc
variables in time, the last step evaluates all forcings required in the second step of the
cycle.

For illustration, we highlight the results of large-eddy simulation of the convective boun
ary layer past a steep hill—an extension of a standard problem in Cartesian geometry |
The specific model setups are similar to those in [32]. We assume a Boussinesq |
(P2 = © 5 = 0) with ve = 0; ©c = O for zz < 500 m and increases linearly aloft. A
uniform heat flux is imposed along the surface of an axially symmetric steep cosine
(Figs. 3a and b). The mesh consistadNok x Ny x Nz = 65 x 65 x 51 grid points with
8x = 8y = 50 mand5z = 30 m. The time stept = 10 s results in maximal Courant num-
ber <1 throughout the entire integratiohl{ = 1500 time steps). The boundary conditions
are periodic inx andy and rigid inz (a weak gravity-wave absorber is employed near th
upper boundary).

Figure 3a shows a vertical cross section through the normalized subgrid-scale viscc
field K/ = Krkedt(6x2 + 8y? + 6z°)~1, at T = N6t when the boundary layer is well
developed. In the reference run with flat lower boundary (not shown), the model reprodu
the standard results [14]. Figure 3b shows horizontal cross sectianfiadfl atzc: = 360m
= 0.52z, wherez is the height of the boundary layer in the reference run at this san
time. Finally, Fig. 3c, shows the power spectrawofor the current and the reference runs.
the influence of the hill on the shape of the boundary layer (Fig. 3a), on the formation
coherent structures (Fig. 3b), as well as on the selection of scales (Fig. 3c) is appa
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FIG. 3. Large-eddy simulation of convective boundary layer over a steep hill. Plate (a) shows vertical, cer
cross section through the field of normalized subgrid-scale viscosity with the field’s maximum, minimum, &
countour interval equal 2>410°2,2.4 x 104, and 12 x 10*, respectively. Plate (b) shows horizontal cross
section through the field of vertical velocity at = 360 m with the field’s maximum, minimum, and countour
interval equal, respectively, 1.5,0.5, and 0.125 mis. Plate (c) shows the spectra of the resolved vertical velocity
fluctuations at, = 360 m for the current simulation (solid line) and the reference run over flat boundary (dash
line).

The simulations reported employed classical MPDATA for solenoidal flows (Section 3.2
and its linearized variant (Section 3.2.4), respectivelydand momenta; both schemes
incorporated the nonoscillatory option (Section 3.5.3).
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