Preparing a Workforce

for the New Blue Economy
People, Products and Policies

Edited by Liesl Hotaling and Richard W. Spinrad




CHAPTER 4

Ocean modeling

Eric P. Chassignet
Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University, Tallahassee, FL,
United States

Introduction

Ocean modeling is a relatively new course of study within the field of
oceanography that emerged in the 1960s and has experienced rapid growth
due to the exponential increase in computer processing capabilities
(Chassignet et al., 2019). Over the past decade, improved understanding,
numerics, grid configurations, spatial discretization, parameterizations, data
assimilation, environmental monitoring, and process-level observations/
modeling have led to significant advances in ocean circulation modeling
(see Fox-Kemper et al. (2019) for a review). Enhanced computational
capabilities and greater physical consistency in numerical formulations
(Griffies et al., 2000) have made routine resolution of oceanic flows possible
at the mesoscale on global scales, at the submesoscale on regional scales, and
to detailed harbor structures in the coastal ocean (e.g., Alvarez-Fanjul et al.,
2018; De Mey-Frémaux et al.,, 2019). Ocean circulation models have
expanded our ability to identify and characterize complex and diverse
physical mechanisms in the ocean. They can also be incorporated into data
assimilative frameworks to produce forecasts on a variety of timescales.
They can be used to produce seasonal to decadal forecasts when coupled to
atmospheric circulation models, and when fully integrated into earth system
models (ESMs), ocean circulation models are an essential component of
climate modeling. ESMs seek to simulate all relevant aspects of the Earth
system, and by integrating the interactions of atmosphere, ocean, land, ice,
and biosphere, they can be used to estimate the state of the ocean under a
wide variety of conditions. In practice, ocean numerical models consist of a
discretized solution to a set of partial differential equations describing the
ocean dynamics that are based on an approximated version of Navier—
Stokes equations (Griffies, 2004; Grifties and Treguier, 2013). Ocean nu-
merical models are typically written in FORTRAN, consisting of
20,000—200,000 lines of code, and they can take up to a decade in
community development before they are fully functional (Fox-Kemper
et al., 2019).
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Ocean models can be used to generate idealized or realistic configura-
tions that allow us to explore fundamental ocean mechanisms. However, in
order to build a physically consistent estimate of the ocean state, its evo-
lution, and ultimately reanalysis products that can describe past evolution,
ocean models are combined with data assimilation techniques to extrapolate
in space and time the sparse oceanic observations (Ferry et al., 2012; Carton
et al., 2018; Wunsch, 2018). The same data assimilation techniques are used
to generate the initial state that is used to perform short-term forecasts
(Chassignet and Verron, 2006; Dombrowsky et al., 2009; Schiller and
Brassington, 2011; Bell et al., 2015; Chassignet et al., 2018). Observational
data via data assimilation pave the way for model state estimates and
forecasts (Chassignet et al., 2009), the quality of which is strongly depen-
dent upon an ocean numerical model’s ability to accurately represent not
only the ocean dynamics that is resolved by the model grid, but also the
unresolved physics via subgrid-scale parameterizations.

Operational oceanography

Operational oceanography is defined as the systematic and long-term
routine measurement of the oceans and their rapid interpretation and
dissemination. Ocean forecasting, as a component of operational ocean-
ography, is based on the near-real-time collection of ocean observations
that are assimilated into ocean numerical models to provide forecasts
(5—10 days) (Schiller et al., 2018; Davidson et al., 2019). Ocean numerical
models are a key component of global, regional, and coastal operational
oceanography systems. A comprehensive operational system contains
models that solve governing equations for ocean currents (u, v), sea levels,
temperature (T), salinity (S), sea ice, surface waves, and concentrations of
tracers relevant to environmental or biogeochemical processes. Biogeo-
chemical forecasting systems are a combination of existing physical
forecasting systems and biogeochemical models developed either for
climate research or for ecological modeling (Ford et al., 2018).

In order for operational oceanography to be of maximum use, an ac-
curate representation of large-scale upper ocean structure and mesoscale
features, such as eddies and meandering fronts, is required (Fig. 4.1) (Hecht
and Hasumi, 2008). Most of the improvements in the representation of
these features during the past 10 years is the direct result of more powerful
computing platforms that allow for increased horizontal resolution. We can
now perform basin-scale simulations with grid spacing on the order of 1 km
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Figure 4.1 Sea surface temperature snapshot for the North Atlantic and Equatorial Ocean from a 1/50° (~ 1.5 km at mid-latitudes) HYCOM
numerical simulation (Chassignet and Xu, 2017). Noteworthy are the Loop Current in the Gulf of Mexico, the Gulf Stream separating at Cape

Hatteras, the Gulf Stream penetrating, meandering, and shedding eddies into the ocean interior, and tropical instability waves in the
equatorial region.
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(submesoscale resolving) (Chassignet and Xu, 2017; Ajayi et al., 2020, 2021)
and regional simulations with grid spacing on the order of 100 m (Capet
et al., 2008). However, these models are not able to account explicitly for
the full range of scale interactions that regulate ocean circulation. Because
oceanic flows are turbulent in nature, ocean circulation at a given scale is
fundamentally dependent on oceanic motions at scales ranging from global
(of order 10,000 km) to dissipative (of order 1 cm). Further, the scales of
motions explicitly represented in a particular model’s solution will be
constrained by the predetermined grid resolution of the model configura-
tion. Subgrid-scale parameterizations are needed to account for the
important physical processes that are not resolved. Parameterization choices
have a profound impact on the physical representation of boundary currents
(Chassignet and Xu, 2017) and on biogeochemical processes since they are
quite sensitive to small-scale processes (Ford et al., 2018).

In addition to capturing and predicting large-scale ocean features,
operational systems are needed to help predict the array of spatial and
temporal scales that are found near coastlines (De Mey-Frémaux et al.,
2019). Coastal oceans are geometrically constrained by jagged coastlines and
irregular bathymetry; they are driven (internally, laterally, and at the
surface) on a large range of space/timescales by buoyancy, wind, and tidal
forces (Haidvogel et al., 2000). The subsequent coastal circulation patterns
include both persistent and time-variable fronts, intense currents with
strong spatial (offshore and/or vertical) dependence, coastal trapped waves,
internally generated mesoscale variability, large horizontal water mass
contrasts, strong vertical stratification, and regions of intense turbulent
mixing in both surface and bottom boundary layers. This results in an
observational as well as a modeling challenge and requires the development
of coastal ocean forecasting systems capable of supporting societal and
management decisions and policy (Kourafalou et al., 2015a,b). Coastal
models, therefore, need to be able to resolve interactions between
nearshore, estuarine, and shelf processes (required resolution of 10—100 m),
as well as open ocean processes (required resolution of 1—10 km).
Consequently, coastal numerical models are typically nested within a
regional or global model configuration (Katavouta and Thomson, 2016;
Holt et al., 2017; De Mey-Frémaux et al., 2019). Coastal regions present an
advantage in that permanent, multivariate instrumented sites are easier to set
up than global ocean observing systems and coastal observatories can
employ many data sources that are not available for the open ocean. For
example, technologies such as telemetering moorings and fixed platforms,
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profiling floats, autonomous underwater vehicles (AUVs), Lagrangian
drifters, and surface current measuring radar can be deployed regionally.
These observational technologies are complemented by global satellite
observing networks and direct in situ observations of the subsurface ocean.
By combining coastal modeling systems and comprehensive observational
networks, coastal ocean forecasting systems facilitate the constant moni-
toring of variations in the coastal ocean and support forecasting activities.
This, in turn, allows for the delivery of useful and reliable ocean services,
such as forecasting, sustainable management of ecosystems, shipping
efficiency, mitigation of storm damage, etc.

As stated by Schiller et al. (2018), further advances in operational
oceanography will require increasingly multidisciplinary eftorts in physics,
chemistry, biology, geomorphology (especially in the littoral zone), and
information technology/visualization, as well as the exploitation of “big
data” expertise given the petabytes of model outputs generated. Apart from
the scientific challenges, continued expansion of operational oceanography
will require the recognition of the collective benefit of all its constituents
(observations, data management, prediction system, production/service
delivery, and clients). In particular, the satellite and in situ elements of
physical observing systems, as well as the sustainability and expansion
of biological and biogeochemical observing systems, are vital components
of ocean forecasting systems. The introduction of “intelligent” in situ
sensors, sensor networks/webs, and new and/or improved remote sensing
technologies will also create new opportunities. Finally, the development of
open-access web data services aligned with community conventions for
metadata descriptions has been shown to foster systems’ data exchange and
model usage, accelerate testing, validate the acceptance cycle for modeling
system enhancements, simplify the addition of new data streams, enable
operational monitoring, and allow novice users to view and download
model outputs to become the basis for higher-level ocean information
products (Wilkin et al., 2018).

Earth system modeling (ESM)

Variations of ocean circulation are dynamically coupled with that of sea ice,
waves, and atmospheric physics. Ocean circulation models are only one
component of an ESM. The coupled systems that form an ESM allow for
improved representation of physical processes across oceanic boundaries,
which is necessary for short-range forecasts as well as for seasonal to climate
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timescales (Brassington et al., 2015). As stated by Harris et al. (2018), the
value of genuinely coupled models is that adjustments in one model can
immediately and proximately influence the other model. For example, the
lack of any feedback in ocean-only models on atmospheric forcing vari-
ables, such as temperature, winds, or humidity, can result in erroneousness
(see e.g., Griffies et al., 2009). This is especially true if the atmospheric
forcing used is obtained from an atmosphere model integrated with a
significantly different ocean surface boundary condition. Differences in
areas of ice cover are especially problematic in this regard because heat and
moisture fluxes over the open ocean are very different from those over sea
ice. Also, a high-resolution coupled system of the coastal ocean that takes
into account the nonlinear feedback between the atmosphere and the upper
ocean via a wave interface will reduce ocean prediction errors, particularly
under extreme conditions (Staneva et al., 2017; De Mey-Frémaux et al.,
2019). Deterministic modeling systems are fairly accurate when applied to
short-term weather time scales. However, longer subseasonal-to-seasonal
scales require ensemble-based modeling systems that can represent the
inherent uncertainty and predictability. Several competing priorities exist as
such modeling systems continue to evolve. First, is the need for refined
resolution to improve the fidelity of resolved flow features. Second, the
representation of otherwise missing processes and feedbacks will require
increased component complexity/capability. And third, extraction of a
signal from the noise will require more ensemble members (Hewitt et al.,
2017). Further, in order to fully incorporate biogeochemical models in the
forecasting systems, additional work will be needed (see next section for an
example).

Initially, the scales at which ocean circulation models were able to
represent oceanic properties and physical processes were significantly larger
than the mesoscale (horizontal scales in the neighborhood of 100 km and
approximately 3-month timescales). However, in order to be of maximum
use, the ocean circulation model component of an ESM must be able to
represent the wide range of oceanic physical processes that today’s ocean
models are capable of as a result of increases in computing power and of the
improved physical consistency of their formulations. For example, today’s
global ocean circulation models are able to resolve oceanic flows down to
the submesoscale (horizontal scales on the order of 10 km or less; Chas-
signet and Xu, 2017) and to account for internal wave and internal tides
(Shriver et al., 2012). Fig. 4.2 shows the impact of increasing horizontal grid
spacing on the representation of small-scale features in the Gulf of Mexico.
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Figure 4.2 Modeled Gulf of Mexico surface relative vorticity (¢/f with f = 107* s ")
depicting the flow rotation and shear as a function of horizontal grid spacing (8, 4, 2,
and 1 km, respectively). In addition to the loop current penetrating in the Gulf interior
and large separated loop current eddies, one can observe an increased number of
small-scale features that arise when the model horizontal resolution is increased.

Example: Gulf of Mexico oil spill modeling

The 2010 Deepwater Horizon (DwH) oil spill occurred in an area that
encompasses a broad variety of oceanographic environments and ecosys-
tems. The DwH spill originated over the deep outer shelf, where it could
potentially have been transported seaward over the abyssal region of the
Gulf of Mexico or onto shelves of varying width and toward coasts with
sandy shores or wetlands. One of the most important components of this
area’s circulation, hydrography, and biogeochemistry is the Mississippi
River. Among other things, the river supplies nutrients fueling produc-
tivity, freshwater that contributes to upper ocean stratification, and
sediments that can interact with oil in the water column. Over the
Texas—Louisiana shelf to the west, seawater properties (temperature,
salinity, turbidity, and currents) are very different than what is found in the
deeper location of DwH, and low oxygen (hypoxic) conditions occur each
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summer. While analysis of the DwH surface oil transport shows that a
relatively small fraction of oil from the spill drifted over the Texas—
Louisiana shelf, under different forcing regimes, a substantial quantity of the
oil could have advected over this shelf and been deposited on the seafloor
through sedimentation/flocculation. Further, it is presumed that microbial
activities, which are quite significant and diverse in these areas, have a
substantial impact on biodegradation and the accumulation of petroleum in
the water column and marine sediments of the deep ocean. Given that
toxic oil constitutes unknown threats to benthic organisms, many of which
are harvested for human consumption, the ability to predict the eventual
fate of oil and its impact on ecosystems is critical. Additionally, ongoing oil
and gas extraction activities taking place in the Gulf of Mexico increase the
likelihood of large spills in the future.

Ocean circulation models increase our ability to understand this com-
plex system and associated diverse physical mechanisms. And now that
critical novel interactions, such as hydrocarbon biodegradation and floc-
culation, can be represented in the coupled system (Morey et al., 2020), a
modeling framework can be used to simulate oil in the marine environ-
ment, including its interaction with ecosystems and sediments and predict
where ecosystems may be affected. So, whereas biodegradation might have
been included in oil models for removal of oil from the system as a simple
decay parameterization, in reality it is a complex process mediated by
diverse microbial taxa that convert hydrocarbons into biomass, carbon
dioxide, and more refractory forms of organic carbon. Similarly, floccula-
tion is commonly included via parameterizations in sediment transport
models, but the formulations used have rarely accounted explicitly for
either the biological constituents of the water column or the presence of oil.
Yet, flocculation is likely to be an important link facilitating transport
between oil in the water column and the sediments at the seafloor, both in
deep water and over the shelf. The role of flocculation is especially
important within turbid river plumes and during storms when significant
resuspension occurs. Fig. 4.3 shows a snapshot from the DwH oil model
developed by the Consortium for Simulation of Oil-Microbial Interactions
in the Ocean (CSOMIO, http://CSOMIO.org). CSOMIO has developed
a modeling system that dynamically couples components for simulating
ocean hydrodynamics, oil transport, dispersion and weathering, oil-mineral
aggregate (OMA) formation, flocculation and settling, and the lower
trophic-level marine ecosystem (Dukhovskoy et al., 2021). It is an adap-
tation and extension of the Coupled Ocean-Atmosphere-Wave-Sediment
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Figure 4.3 Modeled vertical and horizontal distribution of oil on May 7, 2010. The
CSOMIO oil plume model is based on a Lagrangian approach that describes the oil
plume dynamics by advecting and diffusing individual “floats” representing a cluster of
oil droplets. The chemical composition of oil is described in terms of three compo-
nents (saturates, aromatics, and heavy oil including resins and asphaltenes). Oil
droplets are characterized by size and chemical structure (mass fraction of com-
pounds). The oil plume model simulates rise velocity of oil droplets based on ambient
ocean flow and density fields and density and size of the oil droplets. The oil model
also includes weathering processes and surface wind drift. A key component of the
CSOMIO model is Lagrangian—Eulerian and Eulerian—Lagrangian mapping of the oil
characteristics. This mapping is necessary for the interaction between the ocean-oil
module with the sediment and biology models.

Transport (COAWST) modeling system (Warner et al., 2010). A biogeo-
chemical modeling component incorporating a microbial model (Genome-
based EmergeNt Ocean Microbial Ecosystem (GENOME); Coles et al.,
2017) is implemented in the system and adapted for the presence of
hydrocarbons. The sediment transport component of COAWST (the
Community Sediment Transport Modeling System, CSTMS) is modified
to include computationally efficient flocculation parameterizations for
OMAs developed from laboratory experiments. The ocean modeling
component of COAWST (the Regional Ocean Modeling System, ROMS)
is modified to simulate three-dimensional oil transport and compositional
changes (weathering). These modeling components are linked together
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using a two-way Lagrangian—Eulerian mapping technique enabling
interaction between all of the modeling components for tracking of
hydrocarbons from a source blowout to deposition in sediment, microbial
degradation, and evaporation while being transported through the ocean.
This component can be run offline to increase computational speed.

Perspective

Ocean circulation model design is an active field of study that has matured,
in large part, because of strong cross-disciplinary collaborations and the
consolidation of efforts among different groups involved in the various
applications and dimensions of ocean circulation and ESMs. Ocean circu-
lation model design often calls for entire scientific teams focused on the
development or improvement of models. Continued improvement to
ocean circulation models depends heavily upon ocean observing networks
and the critical role that sustained satellite observations and in situ obser-
vations play in the routine assessment of model skills and limitations over
different timescales ranging from days to decades. A great deal can be
learned from targeted field observations geared toward documenting spe-
cific oceanic processes so that they can be better represented in ocean
models.

In order to meet the evolving needs of operational oceanography and
ESM end users, ocean circulation models will need to be able to account
explicitly for a comprehensive range of physical scales due to the multiscale
nature of oceanic flows. Improving the performance of ocean circulation
models on modern high-performance computing platforms will allow for
broadening the spectrum of resolved scales in the models by increasing the
horizontal and vertical resolution. The current trend is toward massively
paralle] machines with heterogeneous multicore architectures (Giles and
Reguly, 2014). But while modern platforms can deliver a peak performance
in the Petaflops range, existing ocean circulation models are unable to fully
exploit this potential. The computational intensity (i.e., floating point
operations per memory access) of ocean models is very low because they are
dominated by stencil operations (typical of discretized partial differential
equations) and typically run at ~5% of the peak speed of the system. Also,
ocean models have a very small vertical dimension, typically O(10), so they
scale more like 2-D domains than 3-D domains. The ability of an ocean
model to take advantage of massively parallel computers is limited by the
communication overhead, load imbalance, latency, and inputs/outputs
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overhead inherent to the spatial 2-D domain decomposition cores one has
to make to distribute the tasks evenly to all the processors. Sustained col-
laborations between ocean modelers and computer scientists will be needed
to overcome single processor and scalability issues (Chassignet et al., 2019).
Practical approaches will likely involve more hybrid parallel programming
in order to more efficiently exploit memory hierarchy and innovative al-
gorithms for solving the set of partial differential equations that govern
ocean dynamics, for instance, parallelization in time in addition to spatial
domain decomposition (Schreiber et al., 2017).

A quick Internet search for “ocean modeling jobs” shows that there is
great demand for ocean modeling computing skills. This is driven by several
factors. In academia, the emphasis on climate research not only implies
strong cross-disciplinary collaborations, but a need for students and postdocs
with good programming skills to further develop and refine ESMs. The
main challenge facing academia in attracting young and talented pro-
grammers is an incompatibility between model developments that may
require many years to reach fruition and high rates of publication now
becoming the norm for advancement of early career scientists.

There is also a strong need for qualified applicants in government lab-
oratories because there is a push to develop the next generation of ESMs to
address national needs. For example, in a bid to regain global leadership in
weather forecasting, the National Oceanic and Atmospheric Administration
(NOAA) is establishing an Earth Prediction Innovation Center (EPIC) to
address longstanding challenges in translating research advances into
operational forecasts (https://owaq.noaa.gov/Programs/EPIC). This center
will accelerate community-developed scientific and technological ad-
vancements into the operational applications for numerical weather pre-
diction by supporting a Unified Forecast System (UES) community model.
NOAA is working closely with entities in the weather enterprise (public,
private, and academic) to accelerate the transition of research to operations,
share the current status and future of community-based ESM, and identify
emerging technologies. The Energy Exascale Earth System Model (E3SM)
project at the US Department of Energy (DOE) is another example of an
ongoing, state-of-the-science earth system modeling, simulation, and
prediction project that optimizes the use of DOE laboratory resources to
meet the science needs of the nation and the mission needs of DOE. It
focuses on (1) the hydrological cycle and how more realistic portrayals of
features important to the water cycle (clouds, aerosols, snowpack, river
routing, land use) will affect simulations of river flow and associated
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freshwater supplies at the watershed scale; (2) uptake of CO, by land and
ocean ecosystems; and (3) cryosphere—ocean interactions and the impacts
of ocean—ice shelf interactions on the melting of the Antarctic ice sheet, the
global climate, and sea level rise (https://climatemodeling.science.energy.
gov/program/earth-system-model-development).

Ocean modeling employment opportunities in the private sector fall
into two categories, one that works closely with government agencies as
contractors in order to supplement the federal workforce to address national
needs as described earlier and one that provides operational oceanographic
products and ocean services to the public at large. Many of these products
and services cover a wide range of applications; address real-world issues
related to public safety, the maritime industry, and environmental conser-
vation efforts; and are provided and/or disseminated in a systematic and
routine manner to end users. Examples include warnings (coastal floods, ice
and storm damage, harmful algal blooms and contaminants, oil spill, etc.),
optimum routes for ships, and prediction of seasonal or annual primary
productivity, ocean currents, ocean climate variability, etc. The field’s
evolution and fast-paced advances mean that the growth potential for this
sector is high, with many future training and job opportunities (see Op-Ed
in this volume on the Rutgers Operational Oceanography program). It is
fair to say that the multidisciplinary nature of operational oceanography
makes it an exciting scientific career path, particularly for those interested in
research or the assimilation of new technological advances and methods.
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