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Abstract
The separation of fast (barotropic) and slow (baroclinic) motions into sub-
systems through barotropic-baroclinic splitting has been widely adopted in
layered ocean circulation models. To date, the majority of models use finite
difference or finite volume methods alongside this splitting technique. In this
paper, we present an extension of the work in Higdon (2015) to two horizontal
dimensions using an arbitrary high-order, nodal discontinuous Galerkin (DG)
method for the resulting split subsystems to develop an ocean model. We
carry out numerical tests to demonstrate the performance of the proposed
schemes, and the numerical results of the double-gyre test are compared
with those of the HYbrid Coordinate Ocean Model (HYCOM). The parallel
performance shows that the new model has a larger per-degree-of-freedom
computational cost compared to HYCOM, but achieves the same result in
terms of resolved kinetic energy in an order of magnitude faster time, with
fewer computational resources, and maintains good parallel efficiency even
with very few grid elements per computational core.
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Ocean modeling

1. Introduction

Multiple frameworks have been used to model large-scale ocean dynam-
ics computationally. A relatively simple system consists of shallow water
equations, which model a constant-density fluid for which the depth is much
smaller than the horizontal length scales of the motions of interest. This scal-
ing implies that the fluid is approximately hydrostatic. The shallow-water
system captures some of the large-scale dynamics of the ocean, but a more
complete picture requires an accounting for the effects of vertical variations
of the density of the fluid.

This accounting requires the usage of a vertical coordinate within the
fluid, and several different types of vertical coordinates are used in models
of the general circulation of the ocean. These include level (z), terrain-fitted
(σ), and isopycnic coordinates [1, 2]. The last of these is a density-related
quantity that is nearly a material coordinate within the ocean’s interior; in
this case, a vertical discretization divides the fluid into layers. The Hybrid
Coordinate Ocean Model (HYCOM) [3, 4] uses a hybrid coordinate that
employs all of these, with different coordinates in different regions.

In an isopycnic coordinate system, the fluid is split into layers with con-
stant density, each of which is governed by a shallow-water equation, resulting
in a stack of shallow-water models. This is the case that is addressed in the
present paper; a future goal is to extend this work to a hybrid vertical co-
ordinate. A stack of shallow-water models is also used in the multi-layer
shallow-water equations (MLSWE) such as Audusse [5], Bouchut and Zeitlin
[6], Izem and Seaid [7], Zhang et al. [8] among others.

1.1. Ocean time-scales
Ocean dynamics involves several space and time scales, from small-scale

turbulence through internal and external gravity waves and slow-moving
Rossby waves to the large-scale thermohaline circulation, which covers the
global ocean and can take decades to complete. The external gravity waves
are the fastest motions, with speeds up to two orders of magnitude higher
than the speed of internal waves or slower motion waves [9]. Many ocean
models use explicit time-stepping schemes due to their ease of implementa-
tion. However, these methods require relatively small time step sizes imposed
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by the Courant-Friedrichs-Lewy (CFL) condition to ensure stable numerical
simulations, resulting in computationally expensive simulations.

Given the vast separation of time scales between external and other waves,
a popular approach has been to separate the layered system into two subsys-
tems: fast (barotropic) and slow (baroclinic), known as barotropic-baroclinic
splitting [10, 11, 12]. A two-dimensional subsystem resembling shallow-water
equations models the barotropic motions of the entire ocean column, whereas
the three-dimensional subsystem represents the baroclinic motions. Each of
these subsystems can be solved with different time step sizes [13, 12, 14]. A
large time step is used to advance the baroclinic subsystem, while a smaller
time step is used to advance the barotropic subsystem, each satisfying the
appropriate CFL conditions. In this paper, we follow the splitting approach
presented in Higdon [11] and introduce the strong stability-preserving Runge-
Kutta (SSPRK) methods [15] for the barotropic subsystem. The SSPRK
methods were previously used in the splitting scheme by Lan et al. [16].

1.2. Spatial discretizations
Considering the various timescales of relevant ocean processes implies

that ocean modeling is intrinsically multiscale, and accurately representing
these physical processes presents computational challenges. The numeri-
cal methods used in ocean models should include desirable features such as
low artificial dissipation, efficient resolution of localized flow features, and
the capability to handle complex coastline geometries. High-order element-
based discontinuous Galerkin (DG) methods promise to address those needs
[17]. Similarly to the finite volume method, the domain is split into non-
overlapping elements of (in principle) arbitrary shape and size, which allows
the representation of complex geometries and control over the mesh resolu-
tion. DG uses a weak formulation of the governing equations and involves
element-wise integration where the solution in each element is represented as
an arbitrary-order polynomial, resulting in high-order spatial approximation
and low dispersive errors [18, 19]. In contrast to finite and spectral elements,
where neighboring elements are continuously coupled, the DG method allows
for discontinuous solutions. Another benefit is its excellent parallel efficiency
[20, 17, 19, 21].

Previous applications of DG methods in geophysical modeling include
the shallow water flow models [22, 23, 24, 25, 26, 27]. The shallow water
equations (SWE) DG models have also been used in the tsunami modeling
(e.g., Blaise et al. [28], Bonev et al. [29], Arpaia et al. [30]) and storm surge
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modeling (e.g., Dawson et al. [31], Beisiegel et al. [32]). Examples of the
non-shallow water ocean models that use DG methods include the Impe-
rial College Ocean Model (ICOM) [33], which solves the three-dimensional
non-hydrostatic Boussinesq equations using an unstructured mesh and an im-
plicit time-stepping scheme. The Second-generation Louvain-la-Neuve Iceo-
cean Model (SLIM) model [34] uses DG to solve the hydrostatic Boussinesq
equations with applications ranging from rivers to coastal oceans. Another
example is Thetis [35], an unstructured grid model with second-order accu-
racy in space and time, developed to simulate the coastal ocean and river-
estuary-plume systems.

Some distinctions between the preceding works and the present work in-
clude the following. The formulation given by Higdon [36, 11, 37] begins with
an arbitrary vertical coordinate that includes level, isopycnic, terrain-fitted,
and hybrid coordinates as special cases. While much of the development in
those papers concerns the isopycnic case and an approximation with a stack
of layers of constant density for simplicity and definiteness, the results for
that case can be extended to the general case. Additionally, in Higdon’s work,
the governing equations for mass density and momentum density are writ-
ten in conservation form, with no assumptions about compressibility. The
barotropic (i.e., fast) equations for both mass and momentum are obtained
by a vertical summation of the layer equations, resulting in the barotropic
mass and momentum equations being also in conservation form. For some
previous splittings, such as those of Bleck and Smith [10], Higdon [9], and
Kärnä et al. [35], the momentum equations are not in such a conservation
form.

This paper presents a DG implementation of the multilayer shallow water
equations based on Higdon [11] and extended to two horizontal dimensions.
We implement the model in the Galerkin Numerical Modeling Environment
(GNuME) framework. The work in Giraldo et al. [38] and the present work
are connected via this framework. The GNuME framework uses an arbi-
trary polynomial basis function expansion and offers a choice of continuous
Galerkin and discontinuous Galerkin methods [39]. The framework was pre-
viously used to construct the Non-Hydrostatic Unified Model of the Ocean
[40], and we call the current MLSWE implementation h-NUMO to signify
the hydrostatic aspect of the model. This study aims to evaluate the suit-
ability of the DG-based h-NUMO model for general ocean circulation by
comparing it with the HYCOM model using a well-established double-gyre
test case. The remainder of the paper is organized as follows. Section 2
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provides a brief overview of HYCOM. In Section 3, we introduce the govern-
ing equations and barotropic-baroclinic splitting. Section 4 is devoted to the
DG discretizations of the governing equations; the multistep time method
for the barotropic-baroclinic equations is presented in Section 5. In Section
6, we provide numerical verification using benchmarking test cases to illus-
trate the capabilities of h-NUMO and compare with HYCOM; and lastly,
the conclusion in Section 7.

2. Brief overview of HYCOM

HYCOM is a finite volume model developed on a C-grid with its dynam-
ical core predominantly based on the MICOM model [3]. The model uses
the variable splitting as outlined in Section 3.3 and split-explicit scheme to
solve barotropic and baroclinic equations (see Bleck and Smith [10]). How-
ever, in HYCOM the splitting of the governing equations is different from
the splitting used in the present paper, and the momentum equations are not
in conservation form.

The model employs all three vertical coordinates (z, σ, and isopycnic),
with different coordinates in different regions with the optimal distribution
chosen at every time step. HYCOM, with its hybrid vertical coordinate
generator, transitions smoothly between coordinate types via the continuity
equation [41]. However, one can run HYCOM by using only one of these ver-
tical coordinates. We did that in this paper by configuring HYCOM in purely
isopycnic coordinates (stacked shallow water equations) for comparison with
h-NUMO.

3. Governing equations and barotropic-baroclinic splitting in h-
NUMO

3.1. Layer equations
Assume that the fluid is in hydrostatic balance, and discretize the vertical

dimension of the ocean into Nl layers of constant density ρk, where k =
1, ..., Nl is the layer index increasing downward (see Fig. 1). We consider
equations for conservation of mass and momentum in layer k in the form
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Figure 1: Illustration of the isopycnal layered shallow water system. The quantity uk(x, t)
denotes the horizontal velocity, ρk is the density and hk(x, t) is height of k-th layer.

∂∆pk
∂t

+∇ · (uk∆pk) = 0, (1)

∂uk∆pk
∂t

+Ak + fu⊥
k ∆pk = −∇Hk + g (pk−1∇zk−1 − pk∇zk +∆τk)

+∇ · (AH∆pk∇uk).
(2)

This system is an analog for the case of two horizontal dimensions, of the
mass and momentum equations that were developed by Higdon [36] for the
case of one horizontal dimension. In this system, ∆pk is g times the mass per
unit horizontal area in layer k, so ∆pk serves as a mass variable for layer k,
uk = (uk, vk) is the horizontal velocity in layer k, f is the Coriolis parameter
defined in a beta-plane with u⊥

k = (−vk, uk)T and ∆τk is the shear stress
(discussed later). The viscosity is denoted by AH , where the subscript H
indicates that this is the viscosity in the horizontal dimensions, zk−1(x, t)
and zk(x, t) with x = (x, y) are the elevations of the top and bottom of
layer k, respectively; we measure elevation with respect to the free surface
at rest. We define pk(x, t) = P (x, zk, t) and pk−1(x, t) = P (x, zk−1, t) as the
pressures at the bottom and top of the layer k. The term

Hk(x, t) = g

∫ zk−1

zk

P (x, z, t)dz (3)

6



is the vertical integral of the horizontal pressure force, which we evaluate
using the hydrostatic assumption as

Hk(x, t) = g

∫ zk−1

zk

Pdz =

∫ pk

pk−1

αkpdp =
1

2
αk

(
p2k(x, t)− p2k−1(x, t)

)
, (4)

where αk =
1
ρk

is the specific volume. Finally, we denote the advection term
as

Ak =
∂

∂x
[uk(uk∆pk)] +

∂

∂y
[vk(uk∆pk)] .

The governing equations (1) and (2) can be viewed as defining a stack of
shallow-water models similar to Audusse [5]. The terms in the momentum
equation (2) are standard, except for the expression −∇Hk + g(pk−1∇zk−1−
pk∇zk). The terms that involve ∇zk−1 and ∇zk represent the lateral pressure
forcing acting on layer k due to tilting interfaces at the top and bottom of
that layer, and the term −∇Hk represents the lateral pressure forcing within
layer k. This representation of pressure forcing follows from a derivation
of governing equations given by Higdon [36]. That derivation begins with
the governing equations expressed in a general vertical coordinate s. In this
system, the pressure forcing presents a particular problem, as the pressure
gradient must be in a direction that is truly horizontal, which might not be in
a direction of constant s. This situation causes difficulties that are described
in Section 2.4 of that paper.

These difficulties are related to the task of expressing the momentum
equations as point-wise partial differential equations in terms of s and the
horizontal coordinates. The analysis in Higdon [36] side-steps these diffi-
culties by proceeding directly to an integral weak form, which is all that is
really needed for a DG method. Consider the fluid that resides in a given
layer on a given horizontal grid cell, multiply by a smooth test function on
that spatial region, and integrate by parts when appropriate. The result is
the weak formulation described in Section 4.1 of the present paper. How-
ever, for the sake of clarity, the present Section gives the result of integrating
only in the vertical direction, and the horizontal discretization is considered
later. For the vertically-integrated momentum equation, the pressure forcing
is −g

∫ zk−1

zk
∇P (x, z, t) dz, and a calculation shows that this is equal to the

pressure terms stated in Eq (2). For the case of the shallow water equations
for a single-layer fluid of constant density, Higdon [42] shows that the above
method for obtaining a weak integral form produces a formulation of pressure
forcing that is automatically well-balanced.
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3.2. Barotropic equations
We obtain the barotropic equations by vertical summation of the layer

equations (1)-(2) and introducing barotropic variables representing the fast
motion of the entire water column.

pb =

Nl∑
k=1

∆pk (5)

is g times the mass per unit horizontal area for the entire water column, and
it will serve as the barotropic mass variable, and

pbū =

Nl∑
k=1

uk∆pk (6)

is the barotropic momentum, where ū is the mass-weighted vertical average
of uk over all layers. The barotropic equations are given by

∂pb
∂t

+∇ · (pbū) = 0, (7)

∂pbū

∂t
+ Ā+ fpbū

⊥ = −∇H + g (p0∇z0 − pNl
∇zNl

+∆τ) +LAH
, (8)

where LAH
is the vertical summation of the viscosity term in the layer mo-

mentum equation (2), the barotropic advection term is

Ā =
∂

∂x

[
Qx

u

Qx
v

]
+

∂

∂y

[
Qy

u

Qy
v

]
,

with

Qx
u(x, t) =

Nl∑
k=1

uk(uk∆pk), Qy
u(x, t) =

Nl∑
k=1

vk(uk∆pk), (9)

Qx
v(x, t) =

Nl∑
k=1

uk(vk∆pk), Qy
v(x, t) =

Nl∑
k=1

vk(vk∆pk), (10)

and the total vertical integration of the horizontal pressure force gives

H(x, t) =

Nl∑
k=1

Hk(x, t). (11)
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3.3. Splitting of the prognostic variables
Following the splitting approach in Bleck and Smith (1990) also used in

the HYCOM model, let p′b denote the value of pb when the fluid is in the total
rest state, and let η(x, t) be the relative perturbation in pb(x, t), compared
to p′b(x). Then typically |η| ≪ 1, and

pb(x, t) = (1 + η(x, t)) p′b(x). (12)

Introducing this to the barotropic mass equation (7) yields

∂p′bη

∂t
+∇ · (pbū) = 0. (13)

Layer velocity is then split into barotropic and baroclinic modes as

uk(x, t) = u′
k(x, t) + ū(x, t), (14)

where u′
k is the baroclinic velocity. The baroclinic velocity u′

k varies mainly
on the slow time scales, and the fast signals in the system are confined mainly
to the barotropic velocity ū. The combination of Eq. (14) with (5) and (6)
shows that the baroclinic velocities have mass-weighted vertical average equal
to zero

Nl∑
k=1

u′k∆pk = 0,

Nl∑
k=1

v′k∆pk = 0. (15)

For a splitting of the pressure field, define a baroclinic mass variable ∆p′k
for layer k by

∆pk(x, t) = (1 + η(x, t))∆p′k(x, t). (16)

This splitting is based on the idea that external motions cause all fluid layers
to thicken or thin by approximately the same proportion [10, 11]. The factor
1 + η approximately captures the fast external signal, and the ∆p′k varies
mainly on the slow time scales.

Now let p′0(x, t) = 0, and define the baroclinic pressure at the bottom of
layer k by

p′k(x, t) =
k∑

s=1

∆p′s(x, t). (17)
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for 1 ≤ k ≤ Nl. It then follows that ∆p′k(x, t) = p′k(x, t) − p′k−1(x, t) and
that the total pressure at the bottom of layer k is

pk(x, t) = p0(x, t) +
k∑

s=1

∆ps(x, t) = p0(x, t) + (1 + η(x, t))p′k(x, t), (18)

where p0(x, t) is the atmospheric pressure.
If the atmospheric pressure p0 is constant, then p0 can be deleted from

formulas that involve the pressure forcing, in a sense that is described in
the discussions after equation (22) in Higdon [36] and after equation (66) in
Higdon [11]. This enables some simplifications for this special case, but we
will not pursue this matter here.

The preceding splittings of the velocity and mass fields imply that the
barotropic momentum fluxes in Eq.(9)-(10) can be written in the form

Qx
u(x, t) = ū(pbū) + pb

(
Nl∑
k=1

u′ku
′
k

∆p′k
p′b

)
, Qy

u(x, t) = v̄(pbū) + Spbu, (19)

Qx
v(x, t) = ū(pbv̄) + Spbu,Q

y
v(x, t) = v̄(pbv̄) + pb

(
Nl∑
k=1

v′kv
′
k

∆p′k
p′b

)
, (20)

where Spbu = pb

(∑Nl

k=1 u
′
kv

′
k
∆p′k
p′b

)
. This follows from the property (15) of

baroclinic velocities and the relation ∆pk/pb = ∆p′k/p
′
b, which follows from

the properties (12) and (16) of the mass splitting. The vertical sums in
the barotropic momentum fluxes (19)-(20) then vary primarily on the slow
time scales. The governing equations for the present model consist of the
layer equations (1)-(2) and the barotropic equations (13) and (8), combined
with enforcement of consistency (discussed in Section 5.2) between those two
subsystems.

3.4. Shear stress terms
To complete the discussion of Eq. 2 we define the shear stress term

∆τk = τk−1(x, t)− τk(x, t), (21)

where τk−1 andτk are the shear stresses acting on the interfaces k− 1 and k,
respectively. For a stratified fluid, the shear stress is given by

τk = τw + τb (22)
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where τw,b are the wind and bottom stresses.
Wind stress acts on the free surface of the fluid; however, we apply it

as linear decay to zero over a predetermined vertical distance as in HYCOM
[10], which prevents large forcing from being applied to arbitrarily thin layers.
For a prescribed depth hstress at which the wind stress decays to zero, the
pressure at that depth is pstress = gρ1hstress. The linear decay τ ∗w,k of the
wind stress τw is

τ ∗w,k = Dw,kτw, (23)

where
Dw,k =

min(pk − p0, pstress)−min(pk−1 − p0, pstress)

pstress
.

Here pk−1 and pk are pressure at the top and bottom of the k-th layer.
The bottom stress can be parameterized in linear or quadratic form. In

this work, we use the linear bottom stress given by

τb = cduNl
, (24)

where uNl
is the bottom velocity, and cd (s−1) is the friction coefficient.

Like wind stress, the bottom stress is applied as linear decay to zero over a
prescribed distance.

4. Discontinuous Galerkin method

We follow the DG method in [43] to discretize the split layered system
(1), (2), (8) and (13), and here we outline the method for completeness. The
element-based DG method in 2D decomposes the physical domain Ω ∈ R2

into Ne non-overlapping elements Ωe

Ω =
∪
e

Ωe, (25)

where each element can be of arbitrary size. Implementing the DG method
requires computing integrals over elements and their edges. In this work,
we use quadrilateral elements, but in principle, other shapes are possible
(e.g., triangles). Since the element may vary in size and shape, it would
be very expensive to compute the integrals individually over each element
in the mesh. A more effective approach is to use a change of variables to
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obtain an integral on a reference element [44, 45]. We introduce a two-
dimensional reference element I = [−1, 1]2 so that the coordinates x ∈ Ωe

in the physical domain are mapped to coordinates ξ(ξ, ζ) = Θ(x) within the
reference element using a bijective mapping Θ : Ωe → I.

For a solution variable q, let qN be its approximation on the element Ωe

in the basis expansion ψ

q
(e)
N (x, t) =

MN∑
m=1

ψm(ξm)q
(e)
m (t), (26)

where the superscript (e) denotes the element-based entity, ξm = Θ(xij),
q
(e)
N = qN(xm, t) is the grid point values and MN = (N + 1)2 with N the

polynomial order of one-dimensional Lagrange polynomial. The basis func-
tions ψm = li(ξ) ⊗ lj(ζ) are a tensor product of one-dimensional Lagrange
polynomials li and lj of order N associated with M = N+1 Legendre-Gauss-
Lobatto points ξ. The local index m in the 2D is mapped from the 1D local
indices (i, j) as m = i + 1 + jM corresponding to a distinct nodal point in
each element. To compute the integrals, we use the LGL nodal points as
quadrature points. We refer to Giraldo [43] for more details on the basis
functions and quadrature points.

In what follows, we define the quantities aL and aR as the values of a on
either side of an element edge, where the labels L and R are chosen arbitrarily,
and define the "average" value {{•}} and "jumps" [[•]] on an element edge as

{{a}} = (aL + aR)/2, [[a]] = aLnL + aRnR, [[a]] = aL · nL + aR · nR,

where nL and nR are unit normal vectors pointing in directions L and R,
respectively.

4.1. Spatial discretization
The weak form of the layer mass equation (1) is obtained over element

Ωe∫
Ωe

ψi
∂

∂t
(∆pk) dΩe+

∫
Γe

ψin·(uk∆pk)
† dΓe−

∫
Ωe

(uk∆pk)·∇ψidΩe = 0, (27)

where Γe represents the boundary of the grid element Ωe, n = (nx, ny) is an
outward-facing normal vector to the element boundary, ψi is a test function,
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and the superscript † denotes numerical flux. We discuss the computation of
the numerical flux terms later in the subsection 4.2.

Taking Uk(x, t) = uk∆pk and Vk(x, t) = vk∆pk, the weak form of the u-
component on the layer momentum equation (2) without the viscosity term
is ∫

Ωe

ψi

[
∂Uk

∂t
− fVk

]
dΩe = −

∫
Γe

ψin · (ukUk)
† dΓe +

∫
Ωe

ukUk · ∇ψidΩe

−
∫
Γe

ψinxH
†
kdΓe +

∫
Ωe

Hk
∂ψi

∂x
dΩe

+ g

∫
Ωe

ψi

(
pk−1

∂zk−1

∂x
− pk

∂zk
∂x

+∆τk

)
dΩe, (28)

where H†
k is the value of Hk at the element edge. Similarly, we compute the

v-component of the momentum is

∫
Ωe

ψi

[
∂Vk
∂t

+ fUk

]
dΩe = −

∫
Γe

ψin · (ukVk)
† dΓe +

∫
Ωe

ukVk · ∇ψidΩe

−
∫
Γe

ψinyH
†
kdΓe +

∫
Ωe

Hk
∂ψi

∂y
dΩe

+ g

∫
Ωe

ψi

(
pk−1

∂zk−1

∂y
− pk

∂zk
∂y

+∆τk

)
dΩe. (29)

We also obtain the weak form of the barotropic mass equation (13) as

∫
Ωe

ψi
∂

∂t
(p′bη) dΩe +

∫
Γe

ψin · (pbu)† dΓe −
∫
Ωe

(pbub) · ∇ψidΩe = 0. (30)

The weak forms of the barotropic momentum equations (8) are derived sim-
ilarly as in Eq. (28)-(29).

To obtain a DG discretization, within each element Ωe, we expand the
solution vector q(x, t) inside the element Ωe:

qk(x, t) ≈ q
(e)
k,N(x, t) =

MN∑
j=1

ψj(x)q
(e)
k,j(t), (31)
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where q
(e)
k,j =

[
∆pek,j, U

e
k,j, V

e
k,j

]T is the expansion coefficient corresponding to
node j with qk(x, t) = [∆pk, Uk, Vk]

T . We derive the DG discretization in
the weak form of the layer mass equation (27) which can be easily adapted
to the remaining equations. Introducing the expansion of ∆pk from Eq. (31)
into (27), we obtain∫

Ωe

ψi
d

dt

(
MN∑
j=1

ψj∆p
(e)
k,j

)
dΩe = −

∫
Γe

n · ψi (uk∆pk)
(e,†) dΓe

−
∫
Ωe

∇ψi · (uk∆pk)
(e) dΩe. (32)

Rearranging the summation, derivative, and integral gives
MN∑
j=1

∫
Ωe

ψiψjdΩe

d∆p
(e)
k,j

dt
= −

∫
Γe

n · ψi (uk∆pk)
(e,†) dΓe

−
∫
Ωe

∇ψi · (uk∆pk)
(e) dΩe, (33)

which can be represented in matrix form as

M (e)d∆p
(e)
k

dt
= −f

(e)
k + a

(e)
k , (34)

where ∆p
(e)
k is the solution vector of size MN that contains ∆p(e)k,j within the

element e, M (e) is the mass matrix with its ij-th entry given by

M
(e)
ij =

∫
Ωe

ψiψjdΩe =

MQ∑
l=1

wkJ
(e)(ξl)ψi(ξl)ψj(ξl), (35)

where i, j = 1, . . . ,M, e = 1, . . . , Ne, wl and J (e) are the quadrature weights
and determinant of the Jacobian evaluated at the quadrature point ξl, and
MQ is the number of quadrature points. The quantity f

(e)
k in Eq. (34) is a

vector resulting from the integration of the first term on the right-hand side
of Eq. (33), with its entries define as

f
(e)
k,j =

∫
Γe

n · ψj (uk∆pk)
(e,†) dΓe =

MQ∑
l=1

w
(f)
l J (e)(ξl)ψjln · (uk(ξl)∆pk(ξl))

(e,†)

(36)
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where the superscript (f) denotes the edge lying on Γe. The term a
(e)
k in Eq.

(34) is a vector resulting from the evaluation of the second integral in the
right-hand side of Eq. (33), with its entries given by

a
(e)
k,j =

∫
Ωe

∇ψj · (uk∆pk)
(e) dΩe =

MQ∑
l=1

wlJ
(e)(ξl)∇ψj(ξl) · (uk(ξl)∆pk(ξl))

(e) .

(37)
The DG discretization Eq. (34) of the mass equation can be rewritten in

a simple form as

d∆p
(e)
k

dt
=
(
M (e)

)−1
r
(e)
k , (38)

where r
(e)
k , k = 1, . . . , Nl is obtained from the combination of the terms in

the right-hand side of the equation (34).
The DG discretization of the weak form momentum equations (28)-(29)

are obtained in a similar way as in the case of mass equation. The final form
of the DG discretization of the momentum equations are given by

dU
(e)
k

dt
− fV

(e)
k =

(
M (e)

)−1
r
(e)
U,k, (39)

dV
(e)
k

dt
+ fU e

k =
(
M (e)

)−1
r
(e)
V,ke, (40)

where r
(e)
U,k, k = 1, . . . , Nl is a vector of size MN obtained from the spatial dis-

cretization of the right-hand side of the equation (28) and r
(e)
V,k, k = 1, . . . , Nl

is a vector of size MN obtained from the spatial discretization of the right-
hand side of v-momentum equation (29) within the element e. The quantity
U

(e)
k and V

(e)
k are the solution vectors of size MN within the element e.

The DG discretizations of the barotropic equations are obtained in a
similar way as described for the baroclinic equations in the proceedings

d(ηp′
b)

(e)

dt
=
(
M (e)

)−1
r
(e)
b , (41)

dU
(e)
b

dt
− fV

(e)
b =

(
M (e)

)−1
r
(e)
b,U , (42)
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dV
(e)
b

dt
+ fU

(e)
b =

(
M (e)

)−1
r
(e)
b,V , (43)

where (ηp′
b)

(e),U
(e)
b and V

(e)
b are the solution vectors within the element e for

the barotropic mass, u-momentum and v-momentum respectively. The quan-
tities r

(e)
b , r

(e)
b,U and r

(e)
b,V are vectors obtained from the spatial discretization

of the right-hand side of the equation (7) and (8).

4.2. Numerical flux terms
Since the DG method allows for discontinuities between element solutions,

we need to calculate numerical fluxes between the element edges. Here, we
outline the choices we have made for the numerical fluxes computation in
different equations:

1. In solving the barotropic subsystem, we solve a Riemann problem for
linearized barotropic equations. Riemann solvers [46] are a natural
choice for computing the interface fluxes in Finite volume and DG
methods. Section 6 of Higdon [42], which concerns the shallow water
equations, gives a detailed development and solution of the Riemann
problem for this case, with the final conclusions stated in equations
(47)-(48) of that paper. To derive the linear barotropic equations, we
assumed that the velocity is small and neglected the Coriolis term. De-
noting the wave speed by c =

√
gD, where D denotes the constant

depth of the fluid at the rest state, the Riemann solution to the lin-
earized equations is

(p′bη)
† = {{p′bη}}+

1

2c
[[p′bū]] (44)

(p′bū)
† = {{p′bū}}+

c

2
[[p′bη]] . (45)

These interpolated values of p′bū are used as values of mass fluxes
pbū at cell edges in the weak form of the barotropic mass equation,
and the interpolated values of p′bη are used to compute the vertically-
integrated horizontal pressure forcing at cell edges in the weak forms of
the barotropic momentum equations. Further details on these matters
are given in Section 6.3 of Higdon [42].

2. In the layered equation for the mass variable (27) and the momentum
equations (28) and (29), we use centered fluxes. To compute the flux
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Figure 2: Multilayer system with spatial variation in pressure forcings on each cell edge.
The green dots represent the points of intersections of the edge (red markers) between the
left and right elements Ω1 and Ω3.

contribution of a variable q at a given edge, we take the average of its
values from that edge’s left-hand and right-hand sides. We also tried
upwind fluxes, but the computational results were very similar to the
centered fluxes results.

4.3. Pressure forcing at cell edges
We compute the pressure within each grid element using Eq. (4) and de-

termine the pressure at each cell edge following the idea developed in Higdon
[11]. Here, we outline the main ideas of this method and refer to the earlier
paper for details. Consider the baroclinic state of the fluid as highlighted
in Fig. (2) where the interfaces of the layers are not necessarily continuous
across cell edges due to the density difference between the layers. The total
pressure at the left and right sides of an edge is given by

pL(z) =
(
1 + η†

)
p′L(z), (46)

pR(z) =
(
1 + η†

)
p′R(z), (47)

17



where η† is from Eq. (44), p′L and p′R denote the left and right side values of
p′. The pressure at a cell edge can be approximated as

P (z) =
1

2
(pL(z) + pR(z)) , (48)

and the contribution from the pressure along the cell edge in the weak forms
(28) and (29) at the edge Γe can be represented as

H†
k = g

∫ zk−1,R

zk,R

P (z) dz =
1

2
g

∫ zk−1,R

zk,R

pL(z) dz +
1

2
g

∫ zk−1,R

zk,R

pR(z) dz.

(49)
For the configuration illustrated in Figure 2, consider the vertically inte-
grated pressure force exerted on the fluid in region Ω3 by the fluid that is
immediately to the left of Ω3. The later expression at the dashed edge (red
markers) is then

H†
2 =

1

2
g

∫ z1,R

z2,R

pL(z) dz +
1

2
g

∫ z1,R

z2,R

pR(z) dz. (50)

The second integral is straightforward since the interval of integration
is the entire vertical extent of layer k. The first integral requires that the
interval of integration be represented as a union of subintervals, and that
leads to

1

2
g

∫ z1,R

z2,R

pL(z) dz =
1

2
g

∫ z2,L

z3,L

pL(z)dz+
1

2
g

∫ z1,L

z2,L

pL(z)dz+
1

2
g

∫ z∗1,L

z1,L

pL(z)dz.

(51)
The integrand pL(z) uses left limits of p′, which is why we use the left-

side values (zk,L) of zk instead of right-side values (zk,R) in the integrals that
appear on the right side of Eq. (51).

4.4. Viscosity terms
We rewrite the viscous term ∇· (AH∆pk∇uk) in the baroclinic equations

(2) by introducing split variables and assuming constant viscosity AH

∇ · (AH∆pk∇uk) = AH∇ · ((1 + η)∆p′k∇(u′
k + ū)) . (52)
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Further assuming that η(x, t) is negligible for this term, we have (1+η)∆p′k ≈
∆p′k and arrive at

∇ · (AH∆pk∇uk) = AH∇ · (∆p′kGu,k +∆p′kGū,b) , (53)

where Gu,k = ∇u′
k and Gū,b = ∇ū.

The barotropic viscosity term is the sum of the layer viscosity terms

LAH
= AH∇ ·

(
Nl∑
k=1

∆p′kGu,k +Gū,b

Nl∑
k=1

∆p′k

)
. (54)

We implement the viscosity terms using the local discontinuous Galerkin
method [36, 47, 48].

5. Time integration

5.1. Methods for the layer equations and barotropic equations
For the layer equations, (1)-(2), we use a two-level predictor-corrector

time method that is described in detail in Higdon [11]. This method uses
a relatively long time step that is appropriate for the slow motions in the
system; denote this time step by ∆t = tn+1 − tn, where tn and tn+1 are
consecutive time levels.

For the vertically-integrated barotropic equations, we use a shorter time
step ∆tbtp = ∆t/Nbtp, where Nbtp is a positive integer. In contrast to the two-
level method used in Higdon [11] for the barotropic equations, here we use
a strong-stability-preserving Runge-Kutta method [49], as it enables greater
efficiency by allowing a longer time step. The particular method used here
has order 3 and has 5 stages, and we denote the method by SSPRK35.

We anticipate that, in the near future, we will undertake a more system-
atic and thorough investigation of Runge-Kutta methods and related meth-
ods for usage in the present context.

5.2. Consistency between the layer equations and the barotropic equations
At the end of each of the long time steps, the vertical sums of the layer

variables ∆pk and uk∆pk should equal the barotropic variables pb and pbū,
respectively. However, this is not necessarily the case, as different numerical
approaches are used to solve the two sets of equations. To correct such
inconsistencies, we make adjustments to ∆pk and uk∆pk at each long time
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step. These adjustments are at the level of numerical truncation error, since
in the analytical case the vertical sums of the layer variables are exactly equal
to the corresponding barotropic variables.

For the mass equations, we achieve consistency with a flux-adjustment
method that is described in detail by Higdon [11]. Here, the lateral mass
fluxes in the layers, for a given long time interval [tn, tn+1], are adjusted so
that their vertical sums are equal to the time averages of the barotropic
fluxes over all of the short substeps of [tn, tn+1]. It is noted in Section 4.2.3 of
Higdon [11] that this adjustment provides a kind of time filtering for the layer
mass equations. Also, the adjustment of lateral mass fluxes does not entail
any transport of mass between different fluid layers, which is consistent with
the fact that the governing equations (1)-(2) do not allow for any exchange
of mass between layers.

For the momentum equations, consistency is obtained at each horizontal
location, at each long time step, by adding a small depth-independent veloc-
ity to the horizontal velocity in each layer. This depth-independent velocity
amounts to an adjustment to the model’s representation of the barotropic ve-
locity ū. The exact values of ū vary on the fast time scale, which ultimately
is the motivation for using a barotropic-baroclinic splitting. Before the ad-
justment of ū, for a given time step and horizontal location, the barotropic
velocity that is available is the value that can be obtained from the solution
of the layer equations, which are computed with the long time step. A cal-
culation shows that the adjustment of velocity has the effect of replacing the
long-time-step value of ū with the value that is obtained stably with short
barotropic substeps. In analogy with the mass equations, this adjustment
provides a kind of time filtering for the momentum equations.

The time filtering in the layer mass and layer momentum equations en-
ables a long time step to be used for these equations, even though the layer
equations themselves admit motions on the fast time scales. The layer equa-
tions with this filtering can be regarded as “baroclinic” equations for model-
ing the slow motions in the system.

6. Results

To demonstrate the capabilities of the model, we first evaluated the mass
conservation of the split system in h-NUMO by running a lake-at-rest test
case. Then, we used a double-gyre test case [50] to compare h-NUMO and
HYCOM across a range of resolutions, order of polynomials, and viscosity.
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In h-NUMO, we define the resolution as an average distance between nodal
points. The grid consists of elements, each of which, in turn, has a grid of
nodal points used to construct approximation polynomials. Since the degrees
of freedom are located at nodal points, this was a natural choice for defining
resolution.

In our simulations, we used the p4est library [51] for managing mesh and
related data structures and partitioning the data between parallel processes.
We generate structured grids using p4est and for unstructured grids in Sec-
tion 6.5, we used Gmsh [52] software to create a primary grid for p4est.

6.1. Well-balanced test
In the standard formulation of SWE or MLSWE, the pressure term in

the momentum equation involves the gradient of elevation of the bottom
boundary of the fluid layer, which can act as a static forcing term that
causes a stationary fluid to move. To avoid issue Higdon [42] proves and
verifies for SWE that representing the pressure term in momentum equations
as an integral weak form (equations (28) and (29)) ensures the system is well-
balanced. This proof applies to a single-layer hydrostatic fluid of constant
density. For the multi-layer case, the same method of proof can be applied
on any grid cell for which no layer interface intersects the bottom topography
in the interior of that cell.

We verify the well-balanced property of the DG schemes for the multi-
layer equations, where we evaluate the h-NUMO with the lake at rest test.
We have initialized fluid with densities ρk = 1027.01037 + 0.2110 × (k −
1) kg/m3, k = 1, . . . , Nl and the layer interface positions zk = −40/Nl m,
where Nl is the number of layers. The horizontal extend of the domain was
(x, y) ∈ [0, 2000]× [0, 2000] m2 with wall boundary conditions on both ends
and the bottom topography is given by

Zb(x, y) = 3
(
1 + cos

( πr
250

))
, (55)

where r =
√

(x− 1000)2 + (y − 1000)2 as shown in Fig. 3.
For this test, we use a 4th order polynomial interpolation, resulting in a

50 m grid resolution, and the test ran until t = 5 days simulation time. The
barotropic time step ∆tbtp = 1.8 s is chosen according to the DG method
time restriction [53]. The baroclinic time step is ∆t = 100 s, resulting in 56
barotropic substeps per baroclinic time step.
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Figure 3: Initial conditions of lake-at-reset free surface and interface of the second layer
with no-flat bottom topography.

In this test case, in the absence of external forcing (e.g., wind), the free
surface should remain stationary, and water velocity should be zero through-
out the simulation. Fig. 4 panel (a) illustrates the elevation of the free
surface above the initial state at the cross-section (y = 1000 m) at t = 3
hours and panel (b) shows the maximum deviation (L∞ norm) of the free
surface as a function of time until t = 5 days. This time corresponds to the
barotropic wave traveling approximately 12000 times through the domain at
the speed approximated by c ≈

√
gD with D = 40 m, which is sufficient

to show the long-term behavior of the test case. We see that the L∞ norm
remains at 10−13 level throughout the simulation, which indicates that the
spurious errors do not significantly grow with time. In panels (c) and (d), we
present the cross-section of the water velocity at 3 hours and 5 days, respec-
tively. The change in the velocity does not significantly grow with time. The
increase in the number of layers from 2 to 20 layers has not deteriorated both
the free-surface and velocity results, suggesting that the model does well in
preserving the lake at rest conditions. Therefore, the model is able to resolve
more complex flows accurately.

6.2. Perturbation of baroclinic wave propagation
To test whether h-NUMO captures the wave propagation speeds cor-

rectly, we add a small perturbation to the interface of the second layer of the
well-balanced test case with a flat bottom topography. The initial interface
position of the layers are z0 = 0 m, z1 = −20 + 0.5

(
1 + cos

(
πr
250

))
m and

z2 = −40 m. The viscosity, wind stress, and bottom friction are neglected for
this test. The test case set-up is shown in Fig. 5, with the initial condition
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(a) Cross section of free surface elevation at t = 3
hours
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(c) Cross section of u-velocity at t = 3 hours
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(d) Cross section of u-velocity at 5 days
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Figure 4: Free surface. Panel (a) shows a cross-section of the free surface at time t = 3
hours with 2, 4, and 20 layers, and panel (b) shows the infinity norm of the free surface
solution over 5 days. Panel (c) and (d) show the cross-section of the u-velocity in the top
layer at 3 hours and 5 days respectively.

(with exaggerated vertical scale) in panel (a) and the solution at t = 3 hours
in panel (b).

We ran the simulation for different thicknesses of the top layer (while
keeping the total water depth at D = 40 m) and measured the speed with
which the baroclinic perturbation of the layer interface is moving. Fig. 6
shows the comparison of those measurements with the analytical prediction
by Mandli [54]. The yellow dashed line represents the absolute error between
the theoretical and measured wave speeds, which remains below 10−3 regard-
less of the chosen layer thickness. The theoretical wave speeds formulation
in Mandli [54] is an approximation, and there is also measurement error,
so having absolute errors close to 10−3 confirms that our scheme accurately
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(a) Initial condition (b) After 1.5 hours

Figure 5: Free surface and interface of the second layer. Panel (a) shows the initial
conditions with the perturbation in the second layer, and panel (b) shows solutions after
1.5 hours of simulation. The perturbation vertical scale is exaggerated in both panels.
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Figure 6: Wave speed as a function of depth of the first layer and absolute error between
the theoretical and measured speed (a). Comparison of the wave speeds obtain using
different numbers of barotropic substeps per baroclinic time step (b). The baroclinic time
step is ∆t = Nbtp∆tbtp, where the barotropic time step is fixed at ∆tbtp = 1.8 s.

captures baroclinic waves.
We also analyze how different numbers of barotropic substeps per baro-

clinic time step, Nbtp, affect the wave speed. We consider h1 = h2 = 20 m, a
fixed ∆tbtp = 1.8 s and calculate ∆t = Nbtp∆tbtp. Fig. 6 (b) shows the mea-
sured wave speed for different Nbtp, where the highest we can take to have a
stable simulation for this problem is 70. We observe that the measured wave
speeds oscillate around the theoretical speed (cbcl = 0.1434 m/s). The results
in panel (b) show that the wave speed does not depend on the number of
Nbtp.
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6.3. Double-gyre circulation
We consider an idealized double-gyre test [50] to validate h-NUMO’s abil-

ity to simulate the mesoscale and submesoscale processes and compare the
results with HYCOM. The domain is a closed rectangular ocean basin with a
flat bottom. The forcing is spatially varying wind stress with intense western
boundary currents, which, together with Coriolis force, results in a counter-
clockwise circulation in the northern part and a clockwise circulation in the
southern part of the domain.

The horizontal extent is L = 2000 km in both the zonal and the meridional
direction. The depth of the basin is D = 10 km consisting of two layers, with
the upper and lower layers initially having h1 = 1.5 km and h2 = 8.5 km
depths, respectively. The densities in the layers are ρ1 = 1027.01037 kg/m3

, ρ2 = 1027.22136 kg/m3. The Coriolis force is prescribed using a beta-plane
approximation centered at 45◦ N, with a parameter f = f0 + β(y − L/2),
where f0 = 9.3 × 10−4 s−1 and β = 2−11 m/s. We consider two different
values of the horizontal viscosity AH = 50 m2/s and AH = 500 m2/s, the
dimensionless bottom drag coefficient in the linear bottom stress (Section
3.4) is cd = 10−7 s−1, and we assume no shear stress between layers. The
system is forced by a purely zonal wind stress τ = (τx, 0), where τx =
−τ0 cos(2πy/L), and τ0 = 0.1 N/m2. We considered two different velocity
boundary conditions: free-slip and no-slip. Each model year consists of 360
days, divided into 12 months, with 30 days per month.

We use HYCOM simulations with resolutions of 10 km and 20 km as refer-
ences and design the h-NUMO runs to match those settings. We configured
HYCOM in the same way as h-NUMO using purely isopycnic coordinates
with the same number of layers, densities, wind stress, and linear bottom
drag. For HYCOM, we define the resolution as the width of a finite vol-
ume grid cell, while in h-NUMO, we use the average distance between nodal
points. An important aspect of the DG method is that the resolution can be
controlled by both the element size and the interpolating polynomial order,
so it is possible to have comparable resolutions using small elements with low
polynomial order and large elements with high polynomial order. However,
one has to keep in mind that the information carried by a degree of free-
dom in the nodal polynomial expansion used in the DG methods is not the
same as in the case of the discretization used in HYCOM, as it represents
not only a point value of the solution but is a weight used in the high-order
polynomial expansion, which contributes to the continuous approximation
of the solution inside the entire element. Fig. 7 shows a schematic of both
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Figure 7: Schematic of the grid in HYCOM (left) and h-NUMO (right). In both cases,
the gridded area is a square with a side of 40km. HYCOM covers it with a uniform grid of
4x4 volumes. h-NUMO uses a single element with a grid of 5x5 non-uniformly (4th order
polynomial) distributed Legendre-Gauss-Lobatto points. For the sake of comparison, we
consider both cases as having the same "resolution".

HYCOM and h-NUMO grids for 10 km resolution. We used 2nd, 4th, and
6th-order polynomials in this study.

6.3.1. Simulations with free-slip boundary condition
Fig. 8 shows the sea-surface height (SSH), which is the difference between

the average depth of the fluid at rest and the total depth of the fluid at a given
time, for 20 km and 10 km resolutions using free-slip boundary condition. For
the 20 km resolution, h-NUMO was configured with 4-th polynomial order
and time step ∆t = 600 s for the baroclinic equations and ∆tbtp = 30 s for
the barotropic equations, while in HYCOM ∆t = 450 s, ∆tbtp = 22.5 s. The
value of ∆tbtp is limited by the CFL condition, which is different for both
methods. For both codes, we kept the ratio of 20 barotropic substeps per one
baroclinic time step. Due to the Coriolis effect and the wind stress, the flow
develops two gyres with counterclockwise circulation in the northern half and
clockwise in the southern half of the domain. As the simulation progresses,
the flow becomes more complex and develops eddies by year 10 (not shown
here) for viscosity AH = 50 m2/s. Fig. 8 (a)-(b) shows that the eddies
are more pronounced by year 20. For the higher viscosity AH = 500 m2/s,
some eddies start appearing in the northern boundary of the domain by
year 20 (top panels (c)-(d)). Overall, the jet in the middle of the western
boundary is similar in both models, and the general flow patterns are the
same. The solutions from the two models are not point-wise identical due
to the different numerical schemes used and the sensitivity of the non-linear
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(a) HYCOM: AH=50 m2/s
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(b) h-NUMO: AH=50 m2/s
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(c) HYCOM: AH=500 m2/s
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(d) h-NUMO: AH=500 m2/s
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(e) HYCOM: AH = 50 m2/s
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(f) h-NUMO: AH=50 m2/s

-18

-14

-14

-14

-1
0

-1
0

-1
0

-10 -10

-6

-6

-6

-6

-6

-6

-2

-2

-2 -2

-2

-2

2

2

2

2

2

22

6

6

6

6

6

6

10

10

10

1
0

1
4

1
4

(g) HYCOM: AH=500 m2/s
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(h) h-NUMO: AH=500 m2/s
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Figure 8: Snapshots of the sea-surface height at 20 years with h-NUMO and HYCOM
using the free-slip boundary condition and viscosity AH = 50 m2/s and AH = 500 m2/s.
The results in top panels (a)-(d) are obtained with 20 km resolution, while the results
in bottom panels (e)-(h) are obtained with 10 km resolution. The contour interval is
2 centimeters, with lower elevations in the northern region and higher elevations in the
southern region.

equations to perturbations. The differences between snapshots are partially
due to the phase shift in the oscillations of the currents.

To obtain the results in Fig. 8 (e)-(h) with 10 km resolution (where we
increase the number of elements), we decreased the barotropic time step to
∆tbtp = 20 s while keeping the 20 barotropic substeps to a baroclinic time
step ratio in h-NUMO. In HYCOM, the baroclinic time step was ∆t = 225s,
and the barotropic time step was ∆tbtp = 11.25s. Fig. 8 (e)-(f) shows that
at a higher resolution, the flow is more complex, and the middle western
boundary jet is stronger in h-NUMO compared to HYCOM. Similar to the
20 km resolution, the general circulation of the flow is similar in both codes,
with more developed meanders and eddies for viscosity AH = 50 m2/s. In
both codes, Fig. 8 (c)-(d) and (g)-(h) show that the eddies are less noticeable
for viscosity AH = 500 m2/s than the viscosity AH = 50 m2/s, which makes
sense as we expect higher viscosity to diffuse more energy.

To analyze the redistribution of water in the ocean and the ocean dynam-
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Figure 9: Comparision of sea surface height variability over the last five years (15-20) for
the viscosity value AH = 50 m2/s, AH = 500 m2/s and the free-slip boundary condition.
The results in top panels (a)-(d) are obtained with 20 km resolution, while the results in
bottom panels (e)-(h) are obtained with 10 km resolution. The contour line is after every
5 millimeters.

ics across the resolved scales in both models, Fig. 9 shows a comparison of
the sea surface height variability for the last 5 (15-20) years of the model runs
at 20 km and 10 km resolutions. In panels (a)-(b) and (e)-(f) of Fig. 9, where
the viscosity is 50 m2/s, both codes have similar SSH variability patterns.
However, the variability is higher in the middle of the western boundary
in h-NUMO than in HYCOM. Similarly, at a higher viscosity 500 m2/s in
panels (c)-(d) and (g)-(h), the SSH variability patterns remain the same but
with slightly higher activity toward the west-northern boundary in HYCOM
compared to h-NUMO. At the same, higher activity is observed in the middle-
western boundary of h-NUMO. These results of SSH variability confirm that
the flow is more developed in the middle-western boundary in h-NUMO than
in HYCOM.

Fig. 10 shows plots of the total kinetic energyKE of the flow as a function
of simulation time, where h-NUMO runs with 2nd, 4th, and 6th polynomial
order are compared with HYCOM results. More precisely, in each graph, the
quantity plotted is the pressure-weighted kinetic energy per unit horizontal
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Figure 10: Total kinetic energy time history in the system obtained with h-NUMO and
HYCOM models for 10 km and 20 km resolution, free-slip boundary condition, and 3
different polynomial order in h-NUMO. The energy in the top graphs is obtained with
viscosity AH = 50 m2/s, and the energy in the bottom graphs is obtained with viscosity
AH = 500 m2/s.

area (summed vertically over both layers), and it is computed as follows:

KE =

Nl∑
k=1

∫
Ω

1
2
(u2k + v2k)∆pkdΩ∫

Ω
∆pkdΩ

. (56)

In h-NUMO, as the polynomial order increases, the number of elements is
adjusted to obtain the same resolution. In Fig. 10 (a), both codes reach the
same energy equilibrium for 20 km resolution, but h-NUMO retained higher
energy for 10 km resolution. For polynomial order 4 and 6, Fig. 10 (b)-(c)
show that h-NUMO has higher energy compared to HYCOM, and its energy
increases as polynomial order increases. Fig. 10 (d)-(f) shows with viscosity
AH = 500 m2/s, the KE is noticeably higher with all the polynomial order
and resolutions than HYCOM.

6.3.2. Simulations with no-slip boundary condition
We repeated the test in Section 6.3.1 with no-slip boundary conditions

where all other aspects of the models remained the same, including the time
steps. The time evolution of the sea-surface height at different times for 20 km
and 10 km resolution are shown in Fig.11. The jet in the western boundary is
less active in h-NUMO than in HYCOM with 20 km resolution. For viscosity
AH = 50 m2/s, we observe the development of eddies as in the case of the
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(e) HYCOM: AH=50 m2/s
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(f) h-NUMO: AH=50 m2/s
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(g) HYCOM: AH=500 m2/s
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(h) h-NUMO: AH=500 m2/s
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Figure 11: Snapshots of the sea-surface height at 20 years with h-NUMO and HYCOM
using the no-slip boundary condition and viscosity AH = 50 m2/s and AH = 500 m2/s.
The results in top panels (a)-(d) are obtained with 20 km resolution, while the results
in bottom panels (e)-(h) are obtained with 10 km resolution. The contour interval is
2 centimeters, with lower elevations in the northern region and higher elevations in the
southern region.

free-slip condition, and for viscosity AH = 500 m2/s, the western layer is
thicker with less intense flows along the southern and northern boundary,
especially for HYCOM, where at 20 years, we still do not see any eddies in
the northern boundary. At 10 km resolution Fig.11 (e)-(f), the general flow
circulation is similar in both h-NUMO and HYCOM with similar western
boundary thickness.

Fig.12 shows a comparison of the sea surface height variability for the
last 5 (15-20) years of the model run at resolutions 20 km and 10 km, with
the no-slip boundary condition. At 20 km resolution, in panels (a)-(b) of
Fig. 12, where the viscosity is 50 m2/s, HYCOM presents a higher SSH
variability in the middle of the western boundary than h-NUMO. However,
the variability is higher along the western boundary in h-NUMO. At a higher
viscosity 500 m2/s in panels (c)-(d), the SSH variability patterns remain
similar but with slightly higher activity toward the west-northern boundary
in h-NUMO compared to HYCOM. Fig. 12 (e)-(f) shows that at 10 km
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Figure 12: Comparision of sea surface height variability over the last five years (15-20) for
the viscosity value AH = 50 m2/s, AH = 500 m2/s and the no-slip boundary condition.
The results in top panels (a)-(d) are obtained with 20 km resolution, while the results in
bottom panels (e)-(h) are obtained with 10 km resolution. The contour line is after every
5 millimeters.

resolution and AH = 50 m2/s, h-NUMO has a higher SSH variability. At
AH = 500 m2/s, both models’ SSH variability is almost identical. From the
results at AH = 500 m2/s, we can conclude that both models are completely
resolving all motions admitted by the viscosity.

Fig. 13 shows plots of the total kinetic energy in the system as a function
of time. As compared to the free-slip boundary conditions in Fig. 10, the
plots confirm that both models almost converge to the same kinetic energy
for viscosity AH = 500 m2/s. With this viscosity, there is no increase in the
energy as the polynomial order increases in h-NUMO, indicating that all the
necessary features have been resolved. Thus, with AH = 500 m2/s, a 4th-
order polynomial order is enough to resolve all scales of motion since we do
not see a notable increase in the kinetic energy with the 6th-order polynomial.
Similarly, for viscosity AH = 50 m2/s, we observe a small difference in the
kinetic energy in h-NUMO between the 4th-order and 6th-order polynomials
results.

6.4. Eddy kinetic energy and time-averaged kinetic energy
Given the differences in quasi-steady total kinetic energy levels between

different h-NUMO polynomial orders and HYCOM, in Fig. 14, we explore
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Figure 13: Total kinetic energy time history in the system obtained with h-NUMO and
HYCOM models for 10 km and 20 km resolution, no-slip boundary condition, and 3
different polynomial order in h-NUMO. The energy in the top graphs is obtained with
viscosity AH = 50 m2/s, and the energy in the bottom graphs are obtained with viscosity
AH = 500 m2/s.

the relation between the mean kinetic energy (MKE) averaged over the years
15-20 and the resolution and the number of degrees of freedom (DOF). We
run the simulations for h-NUMO with different polynomial order N . For
AH = 50 m2/s and the free-slip boundary condition (panel a), MKE generally
increases with the decrease of the average grid spacing ∆x. We observe,
however, that for the highest resolutions (∆x = 10 km to 5 km), the difference
between the 4th and 6th-order polynomial MKE is very small, and the level
of MKE is steady, suggesting that the simulation is fully resolved. The 2nd-
order h-NUMO simulation and HYCOM result are approaching that level,
but at 5 km, both are still underresolved. For AH = 500 m2/s (panel a,
bottom set of lines), the values of MKE are almost constant for ∆x ≤ 15 km
for all polynomial orders in h-NUMO, with HYCOM approaching that level
at ∆x = 4 km. We plot the same result as a function of degrees of freedom in
panel (c), as in h-NUMO we only use pressure and two momentum variables
(but the DG grid introduces duplicate points along the element boundaries),
while in HYCOM, we use a C-grid with pressure, two velocity variables and
vorticity. This adjustment most significantly affects the N = 2 result, which
is shifted closer to the HYCOM reference in panel (c).

For the no-slip boundary condition (panel b,d), the 6th order h-NUMO
result for the lower viscosity setting appears to be converged for ∆x ≤ 15 km,
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(d) No-slip, KE as a function of DOF

10
4

10
5

10
6

DOF
2D

6

8

10

12

14

16

18

20

K
E

 [
cm

2
/s

2
];

 l
as

t 
5
 y

ea
rs

K
H

 = 50 m
2
/s

K
H

 = 500 m
2
/s

Figure 14: Time-averaged kinetic energy as a function of resolution (panels a,b) and
degrees of freedom in 2D grid (DOF2D, panel c,d) for free-slip (a,c) and no-slip (b,d)
boundary conditions and two different settings of viscosity KH . The DOF2D are calculated
for a single layer only, not accounting for the number of layers.

while all the other models reach the same value of MKE only for the highest
resolution. Even though the simulations are stable, for N = 2 we observe
oscillations at element boundaries due to not enough stabilization leading
to grid imprinting for resolutions ∆x > 15 km. This will trigger unphysical
increased kinetic energy at cell interfaces, as observed for ∆ = 12 km. Thus,
we remove the time-averaged kinetic energy for N = 2 and ∆x > 12 km from
the comparison. The results for higher viscosity setting (bottom set of lines)
are fairly constant for the entire range of resolutions, with HYCOM showing
a consistently higher level than all h-NUMO results. This is in opposition
to the corresponding result in the free-slip simulation, where the HYCOM
MKE was lower than h-NUMO. This discrepancy may be due to differences
in the implementation of the no-slip condition in both models.

To understand the spatial distribution of energy, in Fig. 15 we plot the
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Figure 15: Comparision of h-NUMO and HYCOM top layer mean eddy kinetic energy
per unit mass fields calculated over five years from the model simulations at 10 km grid
resolution. The viscosity value AH = 50 m2/s and the free-slip boundary conditions are
used. The contour interval is 40 cm2/s2.
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Figure 16: Comparision of h-NUMO and HYCOM top layer mean eddy kinetic energy
per unit mass fields calculated over five years from the model simulations at 10 km grid
resolution. The viscosity value AH = 50 m2/s and the free-slip boundary conditions are
used. The contour interval is 30 cm2/s2.

time-average (over the years 15-20) of eddy kinetic energy (EKE) for the
three polynomial orders and HYCOM at 10 km resolution with the free-slip
boundary condition. The EKE pattern is similar in all the simulations with
significantly higher magnitudes for polynomial orders N = 4 and N = 6.
Similarly, in Fig. 16 EKE for the no-slip boundary condition simulation has
a similar pattern across all simulations, with h-NUMO having a higher mag-
nitude than HYCOM. These results are consistent with the results in Fig.
14 and support the hypothesis that the DG method with high-order poly-
nomials does not dissipate as much energy as lower-order DG and HYCOM.

6.5. Unstructured mesh
Unstructured grids have become an important feature of modern ocean

models, as they allow for better alignment of computational resources with
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(a) Unstructured grid (b) Unstructured SSH
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(c) Structured SSH 20 km
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Figure 17: Unstructured grid (a) and the sea surface height contour plots for unstructured
(b) and uniform 20 km (c) grids simulated at 20 years with viscosity AH = 50 m2/s, 4th
order polynomials with h-NUMO. The resolution of the unstructured grid varies from 20
km at the western boundary to 62.5 km at the eastern boundary.

important regions in the modeled domain. Unstructured grids can more
accurately capture complex geometrical features such as steep bathymetry
and coastlines. The numerical methods in GNuME are capable of supporting
arbitrary quadrilateral unstructured meshes [55] both as conforming and non-
conforming, possibly dynamically adaptive grids [56].

To demonstrate h-NUMO’s ability to use unstructured meshes, we have
designed a grid using GMSH [52] software. The gird has quadrilateral ele-
ments of side length 83 km at the western boundary and 250 km at the eastern
boundary (Fig.17 (a)). We used 4th-order polynomials with h-NUMO for a
resolution varying from 20 km to 60 km. We specified the resolutions based
on the knowledge that there are more dynamic features close to the western
boundary (see Fig. 8, 9) and used the 20km scale to match the previous
results. This grid could be further optimized with specific information re-
garding the flow, i.e., the sea surface height in Fig. 9 or other measures like
eddy kinetic energy, etc. The results presented below are meant to show the
technical capability of h-NUMO and are not an exhaustive demonstration of
the unstructured grid performance.

Fig. 17 panels (b) and (c) compare the instantaneous sea surface height
at 20 years between the unstructured and the uniform 20 km grids. We note
similar features between the two results, with the structured grid exhibiting
more dynamic structures in the eastern part of the boundary. We attribute
this discrepancy to significantly less resolution in this area.

Instantaneous results suggest smaller kinetic energy in the unstructured
simulation. Fig. 18 (a) shows the energy comparison between the uniform
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Figure 18: Time history of kinetic energy in h-NUMO with structured 20 km grid and
an unstructured grid (a) and the comparison of time-averaged kinetic energy in unstruc-
tured mesh simulation (red filled circle in panel b) with convergence study performed on
structured meshes. The unstructured simulation used 4th order polynomials and viscosity
KH = 50 m2/s.

mesh of 20 km resolution and the unstructured mesh results. The KE for
the unstructured mesh (Ne = 400 elements) behaves very similarly to the 20
km uniform mesh (Ne = 625 elements), with only slightly lower quasi-steady
state KE, which is consistent with the result in Fig. 17. The time-averaged
kinetic energy over the last 5 years for the unstructured mesh simulation is
30.59 cm2/s2, which is less compared to the time-averaged energy of structure
mesh (32.75 cm2/s2). This is also visible in panel (b), where the averaged
kinetic energy for the 20 km uniform simulation is slightly higher than the
unstructured result, marked by a filled red circle. We compare the unstruc-
tured result in terms of the number of degrees of freedom, as the resolution
is changing throughout the mesh. The unstructured mesh significantly im-
proves the resolved KE over the same DOF simulation with the structured
grid. The unstructured N = 4 result is close to the energy obtained with
6th-order polynomials with comparable uniform resolution. This result high-
lights significant potential for unstructured meshes combined with high-order
DG methods in ocean modeling. We plan to explore unstructured meshes in
future work, particularly their applications to coastline simulations.

6.6. Parallel performance
We compared the performance of h-NUMO and HYCOM on a double-gyre

test with 40 layers to mimic the computational effort required of a realistic
model. The first two layers followed the specifications outlined in Section 6.3,
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and we set up the subsequent layers to have the same density as the second
layer and a thickness of 0.001 m. In both models, the cost of each layer is the
same regardless of thickness, so we are mimicking 40 non-vanishing layers.
We used viscosity AH = 50 m2/s. Each model used 20 barotropic sub-steps
in the splitting scheme and an appropriate size of the barotropic time step,
guaranteeing model stability. We have designed two experiments: I) the
equal resolution experiment, where HYCOM and h-NUMO with different
polynomial order settings all had comparable resolution of 4km, and II) the
equal energy experiment, where h-NUMO resolutions for different polynomial
orders were chosen to match the kinetic energy resolved by 4 km HYCOM
simulation. To decide on the h-NUMO resolutions, we used Fig. 14 (a), and
chose 8 km resolution for h-NUMO N = 2, 20 km resolution for N = 4 and
25 km for N = 6. Table 1 summarizes the time-step choices and the number
of 2D grid points in each experiment. Note that we report the points in a
2D grid, which is the number of grid points used by the barotropic solver,
and the baroclinic solver uses that many points in each layer. This number
in the baroclinic solver must be multiplied by 40 to get the total number of
DOFs.

∆tbcl[s] ∆tbtp[s] Ne 2D grid points

HYCOM 4km 112.5 5.625 1 002 001
h-NUMO 4km N = 2 100 5 62 500 1 687 500
h-NUMO 4km N = 4 100 5 15 625 1 171 905
h-NUMO 4km N = 6 100 5 6889 1 012 683
h-NUMO 8km N = 2 200 10 15 625 421 875
h-NUMO 20km N = 4 600 30 625 46 875
h-NUMO 25km N = 6 400 25 169 24 843

Table 1: Baroclinic and barotropic time steps (∆tbcl and ∆tbtp, respectively), number of
h-NUMO elements (Ne) and the number of grid points on a 2D mesh used in performance
tests.

For each experiment, we have conducted a strong-scaling test for up to 384
MPI ranks on Boise State University’s high-performance computing cluster
Borah. Figure 19 shows the speed-up (panel a), parallel efficiency (panel b),
time-to-solution of one model-day simulation (panel c), and the CPU-hours
used for a four model-day simulation (panel d) as a function of the number
of MPI ranks used (nproc) for the equal resolution experiment. We used 16
cores as a reference for this study, as 4km problem is large and was taking a
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(a) Speed-up of 4km simulations
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Figure 19: Strong-scaling experiment of the 4km resolution double-gyre test using HYCOM
reference and different polynomial orders in h-NUMO. The results are compared in terms
of (a) speed-up, (b) parallel efficiency, (c) time-to-solution for 1 model-day simulation, and
(d) CPU-hours cost of 4 model-day simulations. For speed-up and performance plots, we
used timing at 16 cores as reference.

very long time on low processor counts. We see that h-NUMO simulations
scale significantly better, reaching 80-90% parallel efficiency at the largest
number of processors used. HYCOM’s performance drops to about 40 % at
256 cores. Despite better parallel efficiency, h-NUMO is 8x to 17x slower
than HYCOM for the same resolution, even at maximum processor counts.
However, with parallel efficiency maintained at about 80% (see Fig. 20),
h-NUMO will likely close this gap at higher processor counts. It is also
worth noticing that the resolution definition we use (average distance between
nodal points) results in a much higher number of grid points for h-NUMO
simulations, a significant factor in the overall cost.

We have repeated the strong-scaling test for the equivalent energy ex-
periment. Note that in the lower-resolution simulations, the parallel domain
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decomposition is limited by how many elements are in the grid. Table 2 sum-
marizes the number of elements and 2D grid points per core at the highest
processor count used. The higher-order h-NUMO simulations use only one
(N = 6) or two (N = 4) elements and about 150 DOF per core (considering
only 2D DOF, baroclinic solver uses 40 layers, so 40x that number of DOF
for both h-NUMO and HYCOM) at the largest machine size. Figure 20 (b)
shows that even in this extreme situation, the model maintains 75-80% ef-
ficiency (panel b). This implies that this is the lower bound of the parallel
efficiency for h-NUMO in its current form, as the communication volume to
computation ratio is highest for one element per core case.

4 km resolution energy-equivalent resolutions
elements per core 2D DOF per core elements per core 2D DOF per core

HYCOM - 3914 - 3914
h-NUMO N = 2 163 4401 41 1107
h-NUMO N = 4 41 3075 2 150
h-NUMO N = 6 19 2793 1 147

Table 2: Number of elements and 2D DOF per core at number of parallel processes used.
All 4km simulations and the 8km h-NUMO used a maximum of 384 cores, while 20 km
h-NUMO used a maximum of 313, 25 km h-NUMO used 169, and 4 km HYCOM used
265 cores.

Even for lower resolutions but with the same resolved kinetic energy level,
h-NUMO scales better than HYCOM (Fig. 20 (a,b)), and the higher-order
simulations (N = 4, 6) achieve 7x to 16x faster time-to-solution (panel c) and
consistently lower CPU-hour cost (panel d) throughout the tested processor
count range. Due to better parallel efficiency at higher processor counts, the
computational cost gap between h-NUMO and HYCOM widens to about an
order of magnitude. At 256 cores, N = 2 simulation achieves the same time-
to-solution and computational cost as HYCOM and, with more resources,
beats the reference code.

This performance comparison features the h-NUMO with exact integra-
tion of the integrals in the weak form equations (28)-(30), using (2N + 1)2

quadrature points per element. Our preliminary tests with inexact integra-
tion (using only (N + 1)2 quadrature points per element) show that a serial
performance improvement of up to 5x is possible if we use this approach in
barotropic and baroclinic solvers. At the same time, we expect that this
change will have little effect in a parallel setting, as by lowering the com-
putational intensity due to the inexact integration, we will also reduce the
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Figure 20: Strong-scaling experiment of the double-gyre test using HYCOM 4 km resolu-
tion reference and equal-energy simulations with different polynomial orders in h-NUMO
(8 km with N = 2, 20 km with N = 4 and 25 km with N = 6). The results are compared
in terms of (a) speed-up, (b) parallel efficiency, (c) time-to-solution for 1 model day simu-
lation, and (d) CPU-hours cost of 4 model-day simulation. For speed-up and performance
plots we used timing at 16 cores as reference.

communication volume. This will likely, in fact, further improve the parallel
efficiency, as we were able to scale other applications built with GNuME and
inexact integration to 99% parallel efficiency at up to 3 million cores Müller
et al. [21].

7. Conclusion

The main focus of this work is to develop the multilayer shallow water
ocean model, h-NUMO, in the GNuMe framework using a high-order DG
method and extend the one-dimensional splitting scheme developed in [11]
to two horizontal dimensions for more realistic applications. The results in
Section 6 verify the accuracy of the numerical methods used in the h-NUMO
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model and validate it on a range of test cases, with an extensive numerical
test on the double-gyre test. We demonstrate that the model preserves the
constant free surface height for the lake-at-rest test for different numbers of
layer and barotropic substeps Nbtp. The well-balanced test indicates that
the absolute errors do not significantly grow with time regardless of the
number of layers, and the analysis of the velocity results reveals that there
is no significant spurious numerical mixing; however, further verification is
needed, such as analyzing the error for long-time simulation results. We
also verify the accuracy of the model by showing that it accurately predicts
the wave propagation speeds in various settings. The comparisons with the
HYCOM model show that the high-order DG method resolves more dynamic
features using a similar number of degrees of freedom. The analysis of the
mean kinetic energy reveals that all models converge to the same quasi-steady
state, with high-order DG resolving all the features contributing to the flow
energy with lower resolutions. When using the no-slip boundary condition,
we observe that the energy produced by HYCOM using higher viscosity is
higher than h-NUMO, which might be because we are not resolving the
boundary layer at a lower resolution or the difference in the implementation
of the no-slip boundary condition in both models. Overall, we conclude that
h-NUMO reproduces ocean dynamics features and resolves the flow better
as we increase the polynomial order.

From the preceding discussions, we observed that the DG method is well
suited for resolving the ocean dynamical flow as one could achieve the same
results in h-NUMO using a high-order polynomial with a much smaller num-
ber of elements observed with the unstructured mesh simulation. The Gauss-
Lobatto-Legendre distribution of nodal points within elements provides opti-
mal interpolation with Lagrangian polynomial, and the localized features can
be more resolved. The high-order approximation of the solution within ele-
ments is very effective as the flow features were more resolved as we increased
the polynomial order. The parallel scalability shows that the h-NUMO code
scales well, and with one element per computer core for polynomial order
N = 6, the code maintains 90% parallel efficiency. For the equal energy
experiment, h-NUMO achieves an order of magnitude faster time-to-solution
and cheaper CPU-hours cost than HYCOM, thus achieving a similarly re-
solved flow much faster and with significantly fewer resources.

Future work involves optimizing the code as we expect significant im-
provements due to improved communication algorithms, which will communi-
cate the nodal point data instead of the quadrature point data, which is done
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now due to simpler implementation. We will conduct more in-depth parallel
performance studies on larger problem sizes and compare them with HY-
COM. There are still some important questions and tasks worthy of further
study, including how the change in the number of substeps of the barotropic
system affects the simulation results and the implementation of different nu-
merical flux schemes such as Russanov flux. Some other issues to address
are the vertical mixing between layers and wetting and drying schemes for
negative layer depth.

Software and reproducibility statement

The source code for h-NUMO used to produce all the results in this work is
available at https://github.com/ygahounzo/h-NUMO, and HYCOM source
code is available at https://github.com/HYCOM.
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