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 a b s t r a c t

The separation of fast (barotropic) and slow (baroclinic) motions into subsystems through 
barotropic-baroclinic splitting has been widely adopted in layered ocean circulation models. To 
date, the majority of models use finite difference or finite volume methods alongside this splitting 
technique. In this paper, we present an extension of the work in Higdon (2015) to two horizontal 
dimensions using an arbitrary high-order, nodal discontinuous Galerkin (DG) method for the re-
sulting split subsystems to develop an ocean model. We carry out numerical tests to demonstrate 
the performance of the proposed schemes, and the numerical results of the double-gyre test are 
compared with those of the HYbrid Coordinate Ocean Model (HYCOM). The parallel performance 
shows that the new model has a larger per-degree-of-freedom computational cost compared to 
HYCOM, but achieves the same result in terms of resolved kinetic energy in an order of magnitude 
faster time, with fewer computational resources, and maintains good parallel efficiency even with 
very few grid elements per computational core.

1.  Introduction

Multiple frameworks have been used to model large-scale ocean dynamics computationally. A relatively simple system consists of 
shallow water equations, which model a constant-density fluid for which the depth is much smaller than the horizontal length scales 
of the motions of interest. This scaling implies that the fluid is approximately hydrostatic. The shallow-water system captures some 
of the large-scale dynamics of the ocean, but a more complete picture requires an accounting for the effects of vertical variations of 
the density of the fluid.

This accounting requires the usage of a vertical coordinate within the fluid, and several different types of vertical coordinates are 
used in models of the general circulation of the ocean. These include level (𝑧), terrain-fitted (𝜎), and isopycnic coordinates [1,2]. 
The last of these is a density-related quantity that is nearly a material coordinate within the ocean’s interior; in this case, a vertical 
discretization divides the fluid into layers. The Hybrid Coordinate Ocean Model (HYCOM) [3,4] uses a hybrid coordinate that employs 
all of these, with different coordinates in different regions.
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\begin {align}\label {eq:layer1} \frac {\partial \Delta p_k}{\partial t} + \nabla \cdot \left (\bm {u}_k\Delta p_k\right ) &= 0,\\[1em] \begin {split} \frac {\partial \bm {u}_k\Delta p_k}{\partial t} + \bm {A}_k + f\bm {u}_k^{\perp }\Delta p_k &= -\nabla H_k + g\left (p_{k-1}\nabla z_{k-1} - p_k\nabla z_k + \Delta \bm {\tau }_k\right ) \\ &\qquad +\nabla \cdot (A_H\Delta p_k\nabla \bm {u}_k). \label {eq:layer2} \end {split}\end {align}
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\begin {equation}\label {eq:H_term} H_k(\bm {x},t) = g\int _{z_k}^{z_{k-1}} P(\bm {x},z,t) dz\end {equation}


\begin {equation}\label {eq:H_term1} H_k(\bm {x},t) = g\int _{z_k}^{z_{k-1}} P dz = \int _{p_{k-1}}^{p_k}\alpha _k p dp = \frac {1}{2}\alpha _k \left (p_k^2(\bm {x},t) - p_{k-1}^2(\bm {x},t)\right ),\end {equation}
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\begin {equation*}\bm {A}_k = \frac {\partial }{\partial x} \left [u_k(\bm {u}_k\Delta p_k)\right ] + \frac {\partial }{\partial y} \left [v_k(\bm {u}_k\Delta p_k)\right ].\end {equation*}
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$-g \int _{z_k}^{z_{k-1}} \nabla P(\mathbf {x}, z, t) \, dz$


\begin {equation}\label {eq:pb} p_b = \sum _{k=1}^{N_l}\Delta p_k\end {equation}
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\begin {equation}\label {eq:pbub} p_b\bar {\bm {u}} = \sum _{k=1}^{N_l} \bm {u}_k\Delta p_k\end {equation}
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\begin {align}\label {eq:baro1} \frac {\partial p_b}{\partial t} + \nabla \cdot \left (p_b\bar {\bm {u}}\right ) &= 0,\\ \frac {\partial p_b \bar {\bm {u}}}{\partial t} + \bar {\bm {A}} + fp_b\bar {\bm {u}}^{\perp } &= -\nabla H + g\left (p_{0}\nabla z_{0} - p_{N_l}\nabla z_{N_l} + \Delta \tau \right ) + \bm {L}_{A_H}, \label {eq:baro2}\end {align}
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\begin {equation*}{\bar {\bm A}} = \frac {\partial }{\partial x}\left [\begin {array}{@{}l@{}}Q_u^x \\ Q_v^x\end {array}\right ] + \frac {\partial }{\partial y}\left [\begin {array}{@{}l@{}}Q_u^y \\ Q_v^y\end {array}\right ],\end {equation*}
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\begin {equation}\label {bcl_vel_weight} \sum _{k=1}^{N_l} u'_k \Delta p_k = 0, \quad \sum _{k=1}^{N_l} v'_k \Delta p_k = 0.\end {equation}
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\begin {equation}\label {eq:pprime} p'_k(\bm {x},t) = \sum _{s=1}^{k}\Delta p'_s(\bm {x},t).\end {equation}
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\begin {equation}\label {eq:33} \bm {\tau }_k = \bm {\tau }_w + \bm {\tau }_b\end {equation}


\begin {equation}\label {eq:baro_mom_flux1} Q_u^x(\bm {x},t) = \bar {u}(p_b\bar {u}) + p_b\left (\sum _{k=1}^{N_l} u'_ku'_k\frac {\Delta p'_k}{p'_b}\right ), Q_u^y(\bm {x},t) = \bar {v}(p_b\bar {u}) + Sp_bu,\end {equation}


\begin {equation}\label {eq:baro_mom_flux2} Q_v^x(\bm {x},t) = \bar {u}(p_b\bar {v}) + Sp_bu, Q_v^y(\bm {x},t) = \bar {v}(p_b\bar {v}) + p_b\left (\sum _{k=1}^{N_l} v'_kv'_k\frac {\Delta p'_k}{p'_b}\right ),\end {equation}


$Sp_bu = p_b\left (\sum _{k=1}^{N_l} u'_kv'_k\frac {\Delta p'_k}{p'_b}\right )$


$\Delta p_k / p_b = \Delta p'_k / p'_b$


\begin {equation}\Delta \bm {\tau }_k = \tau _{k-1}(\bm {x},t) - \tau _k(\bm {x},t), \label {Xeqn17-21}\end {equation}


$\tau _{k-1}$


$\tau _k$


$k$


$\bm {\tau }_{w,b}$


$h_{stress}$


$p_{stress} = g\rho _1h_{stress}$


$\bm {\tau }^*_{w,k}$


$\bm {\tau }_w$


\begin {equation}\label {eq:stress} \bm {\tau }^*_{w,k} = D_{w,k}\bm {\tau }_w,\end {equation}


\begin {equation*}D_{w,k} = \frac {\min (p_{k}-p_0,p_{stress}) - \min (p_{k-1}-p_0,p_{stress})}{p_{stress}}.\end {equation*}


$p_{k-1}$


$p_{k}$


$k$


\begin {equation}\tau _b = c_d\bm {u}_{N_l}, \label {Xeqn20-24}\end {equation}
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\begin {equation}q_N^{(e)}(\bm {x},t) = \sum _{m=1}^{M_N}\psi _m(\bm {\xi }_m)q_m^{(e)}(t), \label {Xeqn22-26}\end {equation}
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\begin {equation}P(z) = \frac {1}{2}\left (p_L(z) + p_R(z)\right ), \label {Xeqn27-31}\end {equation}


$\Gamma _e$


\begin {equation}H_k^\dagger ~=~ g \int _{z_{k,R}}^{z_{k-1,R}} P(z)\, dz ~=~ \frac {1}{2} g \int _{z_{k,R}}^{z_{k-1,R}} p_L(z) \, dz ~+~ \frac {1}{2} g \int _{z_{k,R}}^{z_{k-1,R}} p_R(z) \, dz. \label {Xeqn28-32}\end {equation}


$\Omega _3$


$\Omega _3$


\begin {equation}H_2^\dagger ~=~ \frac {1}{2} g \int _{z_{2,R}}^{z_{1,R}} p_L(z) \, dz ~+~ \frac {1}{2} g \int _{z_{2,R}}^{z_{1,R}} p_R(z) \, dz. \label {Xeqn29-33}\end {equation}


$k$


\begin {equation}\label {eq:H_expl} \frac {1}{2} g \int _{z_{2,R}}^{z_{1,R}} p_L(z) \, dz ~=~ \frac {1}{2}g\int _{z_{3,L}}^{z_{2,L}}p_{L}(z)dz + \frac {1}{2}g\int _{z_{2,L}}^{z_{1,L}}p_{L}(z)dz + \frac {1}{2}g\int _{z_{1,L}}^{z_{1,L}^*}p_{L}(z)dz.\end {equation}


$p_L(z)$


$p'$


$z_{k,L}$


$z_k$


$z_{k,R}$


$\nabla \cdot (A_H\Delta p_k\nabla \bm {u}_k)$


$A_H$


\begin {equation}\nabla \cdot (A_H\Delta p_k\nabla \bm {u}_k) = A_H\nabla \cdot \left ((1+\eta )\Delta p'_k\nabla (\bm {u}'_k + \bar {\bm {u}})\right ). \label {Xeqn31-35}\end {equation}


$\eta (\bm {x},t)$


$(1+\eta )\Delta p'_k \approx \Delta p'_k$


\begin {equation}\label {eq:visc_split} \nabla \cdot (A_H\Delta p_k\nabla \bm {u}_k) = A_H\nabla \cdot \left (\Delta p'_k \bm {G}_{\bm {u},k} + \Delta p'_k \bm {G}_{\bar {\bm {u}},b}\right ),\end {equation}


$\bm {G}_{\bm {u},k} = \nabla \bm {u}'_k$


$\bm {G}_{\bar {\bm {u}},b} = \nabla \bar {\bm {u}}$


\begin {equation}\label {eq:btp_visc_split} \bm {L}_{A_H} = A_H\nabla \cdot \left (\sum _{k=1}^{N_l}\Delta p'_k \bm {G}_{\bm {u},k} + \bm {G}_{\bar {\bm {u}},b}\sum _{k=1}^{N_l}\Delta p'_k\right ).\end {equation}


$\Delta t = t_{n+1} - t_n$


$t_n$


$t_{n+1}$


$\Delta t_{btp} = \Delta t / N_{btp}$


$N_{btp}$


$3$


$5$


$\Delta p_k$


$\bm {u}_k \Delta p_k$


$p_b$


$p_b \bar {\bm {u}}$


$\Delta p_k$


$\bm {u}_k \Delta p_k$


$[t_n, t_{n+1}]$


$[t_n, t_{n+1}]$


$\bar {\bm {u}}$


$\bar {\bm {u}}$


$\bar {\bm {u}}$


$\bar {\bm {u}}$


$\Delta t_{btp}$


\begin {equation}\Delta t \leq \frac {C\times \min \{\Delta x, \Delta y\}}{d(2N+1)\times |\lambda _{max}|}, \label {Xeqn34-38}\end {equation}


$N$


$d$


$d=2$


$C$


$\lambda _{\max } = \max (|\bm {u}_b|-\sqrt {gD}, |\bm {u}_b|+\sqrt {gD})$


$\Delta x$


$\Delta y$


$x$


$y$


$\Delta t = N_{btp}\Delta t_{btp}$


$N_{btp} = 20$


$\rho _k = 1027.01037 + 0.2110\times (k-1)\ \si {kg/m}^3, \ k = 1,\ldots ,N_l$


$z_k = -40/N_l\ \si {m}$


$N_l$


$(x,y)\in [0,\ 2000]\times [0,\ 2000]\ \si {m}^2$


\begin {equation}Z_b(x,y) = 3\left ( 1 + \cos \left (\frac {\pi r}{250} \right )\right ), \label {Xeqn35-39}\end {equation}


$r = \sqrt {(x-1000)^2 + (y-1000)^2}$


$4$


$50\ \si {m}$


$t = 5$


$\Delta t_{btp} = 1.8\ s$


$\Delta t=100\ \si {s}$


$u$


$y= 1000$


$\mathrm {m}$


$t=3$


$L_\infty $


$t=5$


$c\approx \sqrt {gD}$


$D = 40\ \si {m}$


$L_\infty $


$10^{-13}$


$z_0 = 0\ \si {m}$


$z_1 = -20 + 0.5\left ( 1 + \cos \left (\frac {\pi r}{250} \right )\right )\ \si {m}$


$z_2 = -40\ \si {m}$


$t=3$


$D=40$


$\mathrm {m}$


$\Delta t = N_{btp}\Delta t_{btp}$


$\Delta t_{btp} = 1.8\ \si {s}$


$10^{-3}$


$10^{-3}$


$N_{btp}$


$\Delta z_1 = \Delta z_2 = 20\ \si {m}$


$\Delta t_{btp} = 1.8\ \si {s}$


$\Delta t = N_{btp}\Delta t_{btp}$


$N_{btp}$


$70$


$c_{bcl} = 0.1434\ \si {m/s}$


$N_{btp}$


$L = 2000\ \si {km}$


$D = 10\ \si {km}$


$\Delta z_1 = 1.5\ \si {km}$


$\Delta z_2 = 8.5\ \si {km}$


$\rho _1 = 1027.01037\ \ \si {kg/m^3}$


$\rho _2 = 1027.22136\ \ \si {kg/m^3}$


$45^\circ $


$f = f_0 + \beta (y-L/2)$


$f_0 = 9.3\times 10^{-4} \ \si {s^{-1}}$


$\beta = 2\time 10^{-11} \ \si {m/s}$


$A_H = 50 \ \si {m^2/s}$


$A_H = 500 \ \si {m^2/s}$


$c_d = 10^{-7} \ \si {s^{-1}}$


${\tau _w} = (\tau _x,\ 0)$


$\tau _x = -\tau _0\cos (2\pi y/L)$


$\tau _0 = 0.1 \ \si {N/m^2}$


$10\ \si {km}$


$20\ \si {km}$


$10\ \si {km}$


$A_H = 50\ \si {m^2/s}$


$A_H = 500\ \si {m^2/s}$


$20\ \si {km}$


$10\ \si {km}$


$20\ \si {km}$


$10\ \si {km}$


$20\ \si {km}$


$4$


$\Delta t = 600\ \si {s}$


$\Delta t_{btp} = 30\ \si {s}$


$\Delta t = 450\ \si {s}$


$\Delta t_{btp} = 22.5\ \si {s}$


$\Delta t_{btp}$


$A_H = 50\ \si {m^2/s}$


$A_H = 500\ \si {m^2/s}$


$10\ \si {km}$


$\Delta t_{btp} = 20\ \si {s}$


$\Delta t = 225 \si {s}$


$\Delta t_{btp} = 11.25 \si {s}$


$20\ \si {km}$


$A_H = 50\ \si {m^2/s}$


$A_H=500\ \si {m^2/s}$


$A_H=50\ \si {m^2/s}$


$A_H=50\ \si {m^2/s}$


$A_H=500\ \si {m^2/s}$


$20\ \si {km}$


$10\ \si {km}$


$20\ \si {km}$


$10\ \si {km}$


$50\ \si {m^2/s}$


$500\ \si {m^2/s}$


$10\ \si {km}$


$20\ \si {km}$


$A_H = 50\ \si {m^2/s}$


$A_H = 500\ \si {m^2/s}$


$KE$


$2$


$4$


$6$


\begin {equation}\text {KE} = \sum _{k=1}^{N_l}\frac {\int _\Omega \frac {1}{2}(u_k^2 + v_k^2) \Delta p_k d\Omega }{\int _\Omega \Delta p_k d\Omega }. \label {Xeqn36-40}\end {equation}


$20\ \si {km}$


$10\ \si {km}$


$A_H = 500\ \si {m^2/s}$


$20\ \si {km}$


$10\ \si {km}$


$A_H = 50\ \si {m^2/s}$


$A_H = 500\ \si {m^2/s}$


$20\ \si {km}$


$10\ \si {km}$


$20\ \si {km}$


$A_H=50\ \si {m^2/s}$


$A_H=500\ \si {m^2/s}$


$10\ \si {km}$


$A_H=50\ \si {m^2/s}$


$A_H=500\ \si {m^2/s}$


$20\ \si {km}$


$10\ \si {km}$


$20\ \si {km}$


$10\ \si {km}$


$20\ \si {km}$


$50\ \si {m^2/s}$


$500\ \si {m^2/s}$


$10\ \si {km}$


$A_H = 50\ \si {m^2/s}$


$A_H = 500\ \si {m^2/s}$


$A_H = 500\ \si {m^2/s}$


$10\ \si {km}$


$20\ \si {km}$


$A_H = 50\ \si {m^2/s}$


$A_H = 500\ \si {m^2/s}$


$A_H=500\ \si {m^2/s}$


$A_H=500\ \si {m^2/s}$


$A_H=50\ \si {m^2/s}$


$DOF_{2D}$


$A_H$


$DOF_{2D}$


$N$


$A_H = 50\ \si {m^2/s}$


$\Delta x$


$\Delta x =$


$\mathrm {km}$


$\mathrm {km}$


$\mathrm {km}$


$A_H = 500\ \si {m^2/s}$


$\Delta x \le 15\ \si {km}$


$\Delta x = 4\ \si {km}$


$N=2$


$\Delta x \le 15\ \si {km}$


$N=2$


$\Delta x > 15\ \si {km}$


$\Delta = 12\ \si {km}$


$N=2$


$\Delta x > 12\ \si {km}$


$\mathrm {km}$


$A_H=50\ \si {m^2/s}$


$40\ \si {cm^2/s^2}$


$\mathrm {km}$


$N=4$


$N=6$


$\mathrm {km}$


$A_H=50\ \si {m^2/s}$


$30\ \si {cm^2/s^2}$


$A_H = 50\ \si {m^2/s}$


$\mathrm {km}$


$\mathrm {km}$


${A_H} = 50 \ \si {m^2/s}$


$20\ \si {km}$


$N_e = 400$


$N_e=625$


$30.59\ \si {cm^2/s^2}$


$32.75\ \si {cm^2/s^2}$


$N=4$


$\mathrm {m}$


$A_H=50\ \si {m^2/s}$


$N=2$


$N=4$


$N=6$


$\Delta t_{bcl}$


$\Delta t_{btp}$


$N_{e}$


$N=2$


$N=4$


$N=6$


$(2N+1)^2$


$N=6$


$N=4$


$N=4,\ 6$


$N=2$
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In an isopycnic coordinate system, a vertical coordinate divides the fluid into layers that are physically distinct, and the fluid can 
then be approximated as a stack of layers, each having a constant density. This is the case that is addressed in the present paper; 
a future goal is to extend this work to a hybrid vertical coordinate. A stack of shallow-water models is also used in the multi-layer 
shallow-water equations (MLSWE) such as Audusse[5], Bouchut and Zeitlin[6], Izem and Seaid[7], Zhang et al. [8] among others.

1.1.  Ocean time-scales

Ocean dynamics involves several space and time scales, from small-scale turbulence through internal and external gravity waves 
and slow-moving Rossby waves to the large-scale thermohaline circulation, which covers the global ocean and can take decades to 
complete. The external gravity waves are the fastest motions, with speeds up to two orders of magnitude higher than the speed of 
internal waves or slower motion waves [9]. Many ocean models use explicit time-stepping schemes due to their ease of implemen-
tation. However, these methods require relatively small time step sizes imposed by the Courant-Friedrichs-Lewy (CFL) condition to 
ensure stable numerical simulations, resulting in computationally expensive simulations.

Given the vast separation of time scales between external and other waves, a popular approach has been to separate the lay-
ered system into two subsystems: fast (barotropic) and slow (baroclinic), known as barotropic-baroclinic splitting [10–12]. A two-
dimensional subsystem resembling shallow-water equations models the barotropic motions of the entire ocean column, whereas the 
three-dimensional subsystem represents the baroclinic motions. Each of these subsystems can be solved with different time step sizes 
[12–14]. A large time step is used to advance the baroclinic subsystem, while a smaller time step is used to advance the barotropic 
subsystem, each satisfying the appropriate CFL conditions. In this paper, we follow the splitting approach presented in Higdon[11] 
and introduce the strong stability-preserving Runge-Kutta (SSPRK) methods [15] for the barotropic subsystem. The SSPRK methods 
were previously used in the splitting scheme by Lan et al. [16].

1.2.  Spatial discretizations

Considering the various timescales of relevant ocean processes implies that ocean modeling is intrinsically multiscale, and accu-
rately representing these physical processes presents computational challenges. The numerical methods used in ocean models should 
include desirable features such as low artificial dissipation, efficient resolution of localized flow features, and the capability to han-
dle complex coastline geometries. High-order element-based discontinuous Galerkin (DG) methods promise to address those needs 
Escobar-Vargas et al. [17]. Similarly to the finite volume method, the domain is split into non-overlapping elements of (in principle) 
arbitrary shape and size, which allows the representation of complex geometries and control over the mesh resolution. DG uses a weak 
formulation of the governing equations and involves element-wise integration where the solution in each element is represented as an 
arbitrary-order polynomial, resulting in high-order spatial approximation and low dispersive errors [18,19]. In contrast to finite and 
spectral elements, where neighboring elements are continuously coupled, the DG method allows for discontinuous solutions. Another 
benefit is its excellent parallel efficiency [17,19–21].

Previous applications of DG methods in geophysical modeling include the shallow water flow models [22–27]. The shallow water 
equations (SWE) DG models have also been used in the tsunami modeling (e.g., Blaise et al. [28], Bonev et al. [29], Arpaia et al. [30]) 
and storm surge modeling (e.g., Dawson et al. [31], Beisiegel et al. [32]). Examples of the non-shallow water ocean models that use 
DG methods include the Imperial College Ocean Model (ICOM) [33], which solves the three-dimensional non-hydrostatic Boussinesq 
equations using an unstructured mesh and an implicit time-stepping scheme. The Second-generation Louvain-la-Neuve Ice-ocean 
Model (SLIM) model [34] uses DG to solve the hydrostatic Boussinesq equations with applications ranging from rivers to coastal 
oceans. Another example is Thetis [35], an unstructured grid model with second-order accuracy in space and time, developed to 
simulate the coastal ocean and river-estuary-plume systems.

Some distinctions between the preceding works and the present work include the following. The formulation given by Higdon[11,
36,37] begins with an arbitrary vertical coordinate that includes level, isopycnic, terrain-fitted, and hybrid coordinates as special 
cases. While much of the development in those papers concerns the isopycnic case and an approximation with a stack of layers of 
constant density for simplicity and definiteness, the results for that case can be extended to the general case. Additionally, in Higdon’s 
work, the governing equations for mass density and momentum density are written in conservation form, with no assumptions about 
compressibility. The barotropic (i.e., fast) equations for both mass and momentum are obtained by a vertical summation of the layer 
equations, resulting in the barotropic mass and momentum equations being also in conservation form. For some previous splittings, 
such as those of Higdon[9], Bleck and Smith[10], and Kärnä et al. [35], the momentum equations are not in such a conservation 
form.

This paper presents a DG implementation of the multilayer shallow water equations based on Higdon[11] and extended to two 
horizontal dimensions. We implement the model in the Galerkin Numerical Modeling Environment (GNuME) framework. The work 
in Giraldo et al. [38] and the present work are connected via this framework. The GNuME framework uses an arbitrary polynomial 
basis function expansion and offers a choice of continuous Galerkin and discontinuous Galerkin methods [39]. The framework was 
previously used to construct the Non-Hydrostatic Unified Model of the Ocean [40], and we call the current MLSWE implementation 
h-NUMO to signify the hydrostatic aspect of the model. This study aims to evaluate the suitability of the DG-based h-NUMO model for 
general ocean circulation by comparing it with the HYCOM model using a well-established double-gyre test case. The remainder of the 
paper is organized as follows. In Section 2, we provide a brief overview of the HYCOM model and introduce the governing equations 
and barotropic-baroclinic splitting in h-NUMO. Section 3 is devoted to the DG discretizations of the governing equations; the multistep 
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time method for the barotropic-baroclinic equations is presented in Section 4. In Section 5, we provide numerical verification using 
benchmarking test cases to illustrate the capabilities of h-NUMO and compare with HYCOM; and lastly, the conclusion in Section 6.

2.  Governing equations and barotropic-baroclinic splitting

2.1.  Brief overview of HYCOM

HYCOM is a finite volume model developed on a C-grid with its dynamical core predominantly based on the MICOM model [3]. 
The model uses the variable splitting as outlined in Section 2.4 and split-explicit scheme to solve barotropic and baroclinic equations 
(see Bleck and Smith[10]). However, in HYCOM the splitting of the governing equations is different from the splitting used in the 
present paper, and the momentum equations are not in conservation form.

The model employs all three vertical coordinates (𝑧, 𝜎, and isopycnic), with different coordinates in different regions with the 
optimal distribution chosen at every time step. HYCOM, with its hybrid vertical coordinate generator, transitions smoothly between 
coordinate types via the continuity equation [41]. However, one can run HYCOM by using only one of these vertical coordinates. We 
did that in this paper by configuring HYCOM in purely isopycnic coordinates (stacked shallow water equations) for comparison with 
h-NUMO.

2.2.  Layer equations

Assume that the fluid is in hydrostatic balance, and discretize the vertical dimension of the ocean into 𝑁𝑙 layers of constant 
density 𝜌𝑘, where 𝑘 = 1,… , 𝑁𝑙 is the layer index increasing downward (see Fig. 1). We consider equations for conservation of mass 
and momentum in layer 𝑘 in the form

𝜕Δ𝑝𝑘
𝜕𝑡

+ ∇ ⋅
(

𝒖𝑘Δ𝑝𝑘
)

= 0, (1)

𝜕𝒖𝑘Δ𝑝𝑘
𝜕𝑡

+𝑨𝑘 + 𝑓𝒖⟂𝑘Δ𝑝𝑘 = −∇𝐻𝑘 + 𝑔
(

𝑝𝑘−1∇𝑧𝑘−1 − 𝑝𝑘∇𝑧𝑘 + Δ𝝉𝑘
)

+ ∇ ⋅ (𝐴𝐻Δ𝑝𝑘∇𝒖𝑘).
(2)

This system is an analog for the case of two horizontal dimensions, of the mass and momentum equations that were developed 
by Higdon[36] for the case of one horizontal dimension. In this system, Δ𝑝𝑘 is the pressure at the bottom of layer 𝑘 minus the 
pressure at the top of layer 𝑘, so Δ𝑝𝑘 serves as a mass variable for layer 𝑘, 𝒖𝑘 = (𝑢𝑘, 𝑣𝑘) is the horizontal velocity in layer 𝑘, 𝑓 is the 
Coriolis parameter defined in a beta-plane with 𝒖⟂𝑘 = (−𝑣𝑘, 𝑢𝑘)𝑇  and Δ𝝉𝑘 = (Δ𝜏𝑥𝑘 , Δ𝜏

𝑦
𝑘) is the shear stress which is the combination 

of wind stress and bottom stress (discussed later). The viscosity is denoted by 𝐴𝐻 , where the subscript 𝐻 indicates that this is the 
viscosity in the horizontal dimensions, 𝑧𝑘−1(𝒙, 𝑡) and 𝑧𝑘(𝒙, 𝑡) with 𝒙 = (𝑥, 𝑦) are the interface elevations of the top and bottom of layer 
𝑘, respectively; we measure elevation with respect to the free surface at rest. The layer interface elevation 𝑧𝑘(𝑥, 𝑡) is related to the 
layer pressure through Δ𝑝𝑘(𝒙, 𝑡) = 𝑔𝜌𝑘Δ𝑧𝑘. Thus 𝑧𝑘(𝒙, 𝑡) is computed as

Δ𝑧𝑘(𝒙, 𝑡) = Δ𝑝𝑘(𝒙, 𝑡)∕(𝑔𝜌𝑘)

𝑧𝑘(𝒙, 𝑡) − 𝑧𝑘+1(𝒙, 𝑡) = Δ𝑝𝑘(𝒙, 𝑡)∕(𝑔𝜌𝑘)

𝑧𝑘(𝒙, 𝑡) = 𝑧𝑘+1(𝒙, 𝑡) + Δ𝑝𝑘(𝒙, 𝑡)∕(𝑔𝜌𝑘).

Fig. 1. Illustration of the isopycnal layered shallow water system. The quantity 𝒖𝑘(𝒙, 𝑡) denotes the horizontal velocity, 𝜌𝑘 is the density, and Δ𝑧𝑘(𝒙, 𝑡)
is the height of 𝑘th layer and is related to the vertical pressure increment Δ𝑝𝑘 over layer 𝑘.
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The bottom interface of the bottom layer 𝑘 = 𝑁𝑙 is 𝑧𝑁𝑙+1 = 𝑧𝑏, where 𝑧𝑏(𝒙) is the bottom topography. Then the remaining elevation 
𝑧𝑘(𝒙, 𝑡), 𝑘 = 𝑁𝑙 − 1,… , 1 are computed from the bottom to the top.

We define 𝑝𝑘(𝒙, 𝑡) = 𝑃 (𝒙, 𝑧𝑘, 𝑡) and 𝑝𝑘−1(𝒙, 𝑡) = 𝑃 (𝒙, 𝑧𝑘−1, 𝑡) as the pressures at the bottom and top of the layer 𝑘. The term

𝐻𝑘(𝒙, 𝑡) = 𝑔 ∫

𝑧𝑘−1

𝑧𝑘
𝑃 (𝒙, 𝑧, 𝑡)𝑑𝑧 (3)

is the vertical integral of the horizontal pressure force, which we evaluate using the hydrostatic assumption as

𝐻𝑘(𝒙, 𝑡) = 𝑔 ∫

𝑧𝑘−1

𝑧𝑘
𝑃𝑑𝑧 = ∫

𝑝𝑘

𝑝𝑘−1
𝛼𝑘𝑝𝑑𝑝 =

1
2
𝛼𝑘
(

𝑝2𝑘(𝒙, 𝑡) − 𝑝
2
𝑘−1(𝒙, 𝑡)

)

, (4)

where 𝛼𝑘 = 1
𝜌𝑘

 is the specific volume. Finally, we denote the advection term as

𝑨𝑘 =
𝜕
𝜕𝑥

[

𝑢𝑘(𝒖𝑘Δ𝑝𝑘)
]

+ 𝜕
𝜕𝑦

[

𝑣𝑘(𝒖𝑘Δ𝑝𝑘)
]

.

The governing Eqs. (1) and (2) can be viewed as defining a stack of shallow-water models similar to Audusse[5]. The terms in 
the momentum Eq. (2) are standard, except for the expression −∇𝐻𝑘 + 𝑔(𝑝𝑘−1∇𝑧𝑘−1 − 𝑝𝑘∇𝑧𝑘). The terms that involve ∇𝑧𝑘−1 and ∇𝑧𝑘
represent the lateral pressure forcing acting on layer 𝑘 due to tilting interfaces at the top and bottom of that layer, and the term −∇𝐻𝑘
represents the lateral pressure forcing within layer 𝑘. This representation of pressure forcing follows from a derivation of governing 
equations given by Higdon[36]. That derivation begins with the governing equations expressed in a general vertical coordinate 𝑠. In 
this system, the pressure forcing presents a particular problem, as the pressure gradient must be in a direction that is truly horizontal, 
which might not be in a direction of constant 𝑠. This situation causes difficulties that are described in Section 2.4 of that paper.

These difficulties are related to the task of expressing the momentum equations as point-wise partial differential equations in terms 
of 𝑠 and the horizontal coordinates. The analysis in Higdon[36] side-steps these difficulties by proceeding directly to an integral weak 
form, which is all that is really needed for a DG method. Consider the fluid that resides in a given layer on a given horizontal grid cell, 
multiply by a smooth test function on that spatial region, and integrate by parts when appropriate. The result is the weak formulation 
described in Appendix A of the present paper. However, for the sake of clarity, the present Section gives the result of integrating only 
in the vertical direction, and the horizontal discretization is considered later. For the vertically-integrated momentum equation, the 
pressure forcing is −𝑔 ∫ 𝑧𝑘−1𝑧𝑘

∇𝑃 (𝐱, 𝑧, 𝑡) 𝑑𝑧, and a calculation shows that this is equal to the pressure terms stated in Eq. (2). For the case 
of the shallow water equations for a single-layer fluid of constant density, Higdon[42] shows that the above method for obtaining a 
weak integral form produces a formulation of pressure forcing that is automatically well-balanced.

2.3.  Barotropic equations

We obtain the barotropic equations by vertical summation of the layer Eqs. (1)-(2) and introducing barotropic variables repre-
senting the fast motion of the entire water column.

𝑝𝑏 =
𝑁𝑙
∑

𝑘=1
Δ𝑝𝑘 (5)

is 𝑔 times the mass per unit horizontal area for the entire water column, and it will serve as the barotropic mass variable, and

𝑝𝑏𝒖̄ =
𝑁𝑙
∑

𝑘=1
𝒖𝑘Δ𝑝𝑘 (6)

is the barotropic momentum, where 𝒖̄ is the mass-weighted vertical average of 𝒖𝑘 over all layers. The barotropic equations are given 
by

𝜕𝑝𝑏
𝜕𝑡

+ ∇ ⋅
(

𝑝𝑏𝒖̄
)

= 0, (7)

𝜕𝑝𝑏𝒖̄
𝜕𝑡

+ 𝑨̄ + 𝑓𝑝𝑏𝒖̄⟂ = −∇𝐻 + 𝑔
(

𝑝0∇𝑧0 − 𝑝𝑁𝑙∇𝑧𝑁𝑙 + Δ𝜏
)

+𝑳𝐴𝐻 , (8)

where 𝑳𝐴𝐻  is the vertical summation of the viscosity term in the layer momentum Eq. (2), the barotropic advection term is

𝑨̄ = 𝜕
𝜕𝑥

[

𝑄𝑥𝑢
𝑄𝑥𝑣

]

+ 𝜕
𝜕𝑦

[

𝑄𝑦𝑢
𝑄𝑦𝑣

]

,

with

𝑄𝑥𝑢 (𝒙, 𝑡) =
𝑁𝑙
∑

𝑘=1
𝑢𝑘(𝑢𝑘Δ𝑝𝑘), 𝑄𝑦𝑢(𝒙, 𝑡) =

𝑁𝑙
∑

𝑘=1
𝑣𝑘(𝑢𝑘Δ𝑝𝑘), (9)

𝑄𝑥𝑣(𝒙, 𝑡) =
𝑁𝑙
∑

𝑘=1
𝑢𝑘(𝑣𝑘Δ𝑝𝑘), 𝑄𝑦𝑣(𝒙, 𝑡) =

𝑁𝑙
∑

𝑘=1
𝑣𝑘(𝑣𝑘Δ𝑝𝑘), (10)

Journal of Computational Physics 545 (2026) 114496 

4 



Y. Gahounzo, M. Kopera, R.L. Higdon et al.

and the total vertical integration of the horizontal pressure force gives

𝐻(𝒙, 𝑡) =
𝑁𝑙
∑

𝑘=1
𝐻𝑘(𝒙, 𝑡). (11)

2.4.  Splitting of the prognostic variables

Following the splitting approach in Bleck and Smith (1990) also used in the HYCOM model, let 𝑝′𝑏 denote the value of 𝑝𝑏 when 
the fluid is in the total rest state, and let 𝜂(𝒙, 𝑡) be the relative perturbation in 𝑝𝑏(𝒙, 𝑡), compared to 𝑝′𝑏(𝒙). Then typically |𝜂|≪ 1, and

𝑝𝑏(𝒙, 𝑡) = (1 + 𝜂(𝒙, 𝑡)) 𝑝′𝑏(𝒙). (12)

Introducing this to the barotropic mass Eq. (7) yields
𝜕𝑝′𝑏𝜂
𝜕𝑡

+ ∇ ⋅
(

𝑝𝑏𝒖̄
)

= 0. (13)

Layer velocity is then split into barotropic and baroclinic modes as

𝒖𝑘(𝒙, 𝑡) = 𝒖′𝑘(𝒙, 𝑡) + 𝒖̄(𝒙, 𝑡), (14)

where 𝒖′𝑘 is the baroclinic velocity. The baroclinic velocity 𝒖′𝑘 varies mainly on the slow time scales, and the fast signals in the system 
are confined mainly to the barotropic velocity 𝒖̄. The combination of Eqs. (14) with (5) and (6) shows that the baroclinic velocities 
have mass-weighted vertical average equal to zero

𝑁𝑙
∑

𝑘=1
𝑢′𝑘Δ𝑝𝑘 = 0,

𝑁𝑙
∑

𝑘=1
𝑣′𝑘Δ𝑝𝑘 = 0. (15)

For a splitting of the pressure field, define a baroclinic mass variable Δ𝑝′𝑘 for layer 𝑘 by

Δ𝑝𝑘(𝒙, 𝑡) = (1 + 𝜂(𝒙, 𝑡))Δ𝑝′𝑘(𝒙, 𝑡). (16)

This splitting is based on the idea that external motions cause all fluid layers to thicken or thin by approximately the same proportion 
[10,11]. The factor 1 + 𝜂 approximately captures the fast external signal, and the Δ𝑝′𝑘 varies mainly on the slow time scales.

Now let 𝑝′0(𝒙, 𝑡) = 0, and define the baroclinic pressure at the bottom of layer 𝑘 by

𝑝′𝑘(𝒙, 𝑡) =
𝑘
∑

𝑠=1
Δ𝑝′𝑠(𝒙, 𝑡). (17)

for 1 ≤ 𝑘 ≤ 𝑁𝑙. It then follows that Δ𝑝′𝑘(𝒙, 𝑡) = 𝑝′𝑘(𝒙, 𝑡) − 𝑝
′
𝑘−1(𝒙, 𝑡) and that the total pressure at the bottom of layer 𝑘 is

𝑝𝑘(𝒙, 𝑡) = 𝑝0(𝒙, 𝑡) +
𝑘
∑

𝑠=1
Δ𝑝𝑠(𝒙, 𝑡) = 𝑝0(𝒙, 𝑡) + (1 + 𝜂(𝒙, 𝑡))𝑝′𝑘(𝒙, 𝑡), (18)

where 𝑝0(𝒙, 𝑡) is the atmospheric pressure.
If the atmospheric pressure 𝑝0 is constant, then 𝑝0 can be deleted from formulas that involve the pressure forcing, in a sense that 

is described in the discussions after Eq. (22) in Higdon[36] and after equation (66) in Higdon[11]. This enables some simplifications 
for this special case, but we will not pursue this matter here.

The preceding splittings of the velocity and mass fields imply that the barotropic momentum fluxes in Eqs. (9)-(10) can be written 
in the form

𝑄𝑥𝑢 (𝒙, 𝑡) = 𝑢̄(𝑝𝑏𝑢̄) + 𝑝𝑏

( 𝑁𝑙
∑

𝑘=1
𝑢′𝑘𝑢

′
𝑘

Δ𝑝′𝑘
𝑝′𝑏

)

, 𝑄𝑦𝑢(𝒙, 𝑡) = 𝑣̄(𝑝𝑏𝑢̄) + 𝑆𝑝𝑏𝑢, (19)

𝑄𝑥𝑣(𝒙, 𝑡) = 𝑢̄(𝑝𝑏𝑣̄) + 𝑆𝑝𝑏𝑢,𝑄𝑦𝑣(𝒙, 𝑡) = 𝑣̄(𝑝𝑏𝑣̄) + 𝑝𝑏

( 𝑁𝑙
∑

𝑘=1
𝑣′𝑘𝑣

′
𝑘

Δ𝑝′𝑘
𝑝′𝑏

)

, (20)

where 𝑆𝑝𝑏𝑢 = 𝑝𝑏

(

∑𝑁𝑙
𝑘=1 𝑢

′
𝑘𝑣

′
𝑘
Δ𝑝′𝑘
𝑝′𝑏

)

. This follows from the property (15) of baroclinic velocities and the relation Δ𝑝𝑘∕𝑝𝑏 = Δ𝑝′𝑘∕𝑝
′
𝑏, 

which follows from the properties (12) and (16) of the mass splitting. The vertical sums in the barotropic momentum fluxes (19)-(20) 
then vary primarily on the slow time scales. The governing equations for the present model consist of the layer Eqs. (1)-(2) and the 
barotropic Eqs. (13) and (8), combined with enforcement of consistency (discussed in Section 4.2) between those two subsystems.
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2.5.  Shear stress terms

To complete the discussion of Eq. (2) we define the shear stress term

Δ𝝉𝑘 = 𝜏𝑘−1(𝒙, 𝑡) − 𝜏𝑘(𝒙, 𝑡), (21)

where 𝜏𝑘−1 and 𝜏𝑘 are the shear stresses acting on the top and bottom interfaces of layer 𝑘, respectively. In this study, we neglect the 
friction between layers and only consider the wind stress acting on the top of the fluid and the bottom stress acting on the bottom of 
the fluid. Thus, the shear stress is given by

𝝉𝑘 = 𝝉𝑤 + 𝝉𝑏 (22)

where 𝝉𝑤,𝑏 are the wind and bottom stresses. We refer to Section 5 for details on how wind stress is prescribed for each test case.
Wind stress acts on the free surface of the fluid; however, we apply it as linear decay to zero over a predetermined vertical distance 

as in HYCOM [10], which prevents large forcing from being applied to arbitrarily thin layers. For a prescribed depth ℎ𝑠𝑡𝑟𝑒𝑠𝑠 at which 
the wind stress decays to zero, the pressure at that depth is 𝑝𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑔𝜌1ℎ𝑠𝑡𝑟𝑒𝑠𝑠. The linear decay 𝝉∗𝑤,𝑘 of the wind stress 𝝉𝑤 is

𝝉∗𝑤,𝑘 = 𝐷𝑤,𝑘𝝉𝑤, (23)

where

𝐷𝑤,𝑘 =
min(𝑝𝑘 − 𝑝0, 𝑝𝑠𝑡𝑟𝑒𝑠𝑠) − min(𝑝𝑘−1 − 𝑝0, 𝑝𝑠𝑡𝑟𝑒𝑠𝑠)

𝑝𝑠𝑡𝑟𝑒𝑠𝑠
.

Here 𝑝𝑘−1 and 𝑝𝑘 are pressure at the top and bottom of the 𝑘th layer.
The bottom stress can be parameterized in linear or quadratic form. In this work, we use the linear bottom stress given by

𝜏𝑏 = 𝑐𝑑𝒖𝑁𝑙 , (24)

where 𝒖𝑁𝑙  is the bottom velocity, and 𝑐𝑑 (𝑠−1) is the friction coefficient. Like wind stress, the bottom stress is applied as linear decay 
to zero over a prescribed distance.

3.  Discontinuous Galerkin method

We follow the DG method in [43] to discretize the split layered system (1), (2), (8) and (13), and here we outline the method for 
completeness. The element-based DG method in 2D decomposes the physical domain Ω ∈ ℝ2 into 𝑁𝑒 non-overlapping elements Ω𝑒

Ω =
⋃

𝑒
Ω𝑒, (25)

where each element can be of arbitrary size. Implementing the DG method requires computing integrals over elements and their 
edges. In this work, we use quadrilateral elements, but in principle, other shapes are possible (e.g., triangles). Since the element 
may vary in size and shape, it would be very expensive to compute the integrals individually over each element in the mesh. A more 
effective approach is to use a change of variables to obtain an integral on a reference element [44,45]. We introduce a two-dimensional 
reference element 𝐼 = [−1, 1]2 so that the coordinates 𝒙 ∈ Ω𝑒 in the physical domain are mapped to coordinates 𝝃(𝜉, 𝜁 ) = Θ(𝒙) within 
the reference element using a bijective mapping Θ ∶ Ω𝑒 → 𝐼 .

For a solution variable 𝑞, let 𝑞𝑁  be its approximation on the element Ω𝑒 in the basis expansion 𝜓

𝑞(𝑒)𝑁 (𝒙, 𝑡) =
𝑀𝑁
∑

𝑚=1
𝜓𝑚(𝝃𝑚)𝑞(𝑒)𝑚 (𝑡), (26)

where the superscript (𝑒) denotes the element-based entity, 𝝃𝑚 = Θ(𝒙𝑖𝑗 ), 𝑞(𝑒)𝑁 = 𝑞𝑁 (𝒙𝑚, 𝑡) is the grid point values and 𝑀𝑁 = (𝑁 + 1)2

with 𝑁 the polynomial order of one-dimensional Lagrange polynomial. The basis functions 𝜓𝑚 = 𝑙𝑖(𝜉)⊗ 𝑙𝑗 (𝜁 ) are a tensor product of 
one-dimensional Lagrange polynomials 𝑙𝑖 and 𝑙𝑗 of order 𝑁 associated with 𝑀 = 𝑁 + 1 Legendre-Gauss-Lobatto points 𝝃. The local 
index 𝑚 in the 2D is mapped from the 1D local indices (𝑖, 𝑗) as 𝑚 = 𝑖 + 1 + 𝑗𝑀 corresponding to a distinct nodal point in each element. 
To compute the integrals, we use the LGL nodal points as quadrature points. We refer to Giraldo[43] for more details on the basis 
functions and quadrature points.

In what follows, we define the quantities 𝑎𝐿 and 𝑎𝑅 as the values of 𝑎 on either side of an element edge, where the labels 𝐿 and 
𝑅 are chosen arbitrarily, and define the "average" value {{∙}} and "jumps" [[∙]] on an element edge as

{{𝑎}} = (𝑎𝐿 + 𝑎𝑅)∕2, [[𝑎]] = 𝑎𝐿𝒏𝐿 + 𝑎𝑅𝒏𝑅, [[𝒂]] = 𝒂𝐿 ⋅ 𝒏𝐿 + 𝒂𝑅 ⋅ 𝒏𝑅,

where 𝒏𝐿 and 𝒏𝑅 are unit normal vectors pointing in directions 𝐿 and 𝑅, respectively. The spatial discretization of DG methods 
is widely presented in the literature; however, for the spatial discretization of the governing equations presented in this work, see 
Appendix A.
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3.1.  Numerical flux terms

Since the DG method allows for discontinuities between element solutions, we need to calculate numerical fluxes between the 
element edges. Here, we outline the choices we have made for the numerical fluxes computation in different equations:

1. In solving the barotropic subsystem, we solve a Riemann problem for linearized barotropic equations. Riemann solvers [46] are 
a natural choice for computing the interface fluxes in finite volume and DG methods. Section 6 of Higdon[42], which concerns 
the shallow water equations, gives a detailed development and solution of the Riemann problem for this case, with the final 
conclusions stated in equations (47)-(48) of that paper. To derive the linear barotropic equations, we assumed that the velocity is 
small and neglected the Coriolis term. Denoting the wave speed by 𝑐 =

√

𝑔𝐷, where 𝐷 denotes the constant depth of the fluid at 
the rest state, the Riemann solution to the linearized equations is 

(𝑝′𝑏𝜂)
† =

{{

𝑝′𝑏𝜂
}}

+ 1
2𝑐

[[

𝑝′𝑏𝒖̄
]]

(27)

(𝑝′𝑏𝒖̄)
† =

{{

𝑝′𝑏𝒖̄
}}

+ 𝑐
2
[[

𝑝′𝑏𝜂
]]

. (28)

These interpolated values of 𝑝′𝑏𝒖̄ are used as values of mass fluxes 𝑝𝑏𝒖̄ at cell edges in the weak form of the barotropic mass 
equation, and the interpolated values of 𝑝′𝑏𝜂 are used to compute the vertically-integrated horizontal pressure forcing at cell edges 
in the weak forms of the barotropic momentum equations. Further details on these matters are given in Section 6.3 of Higdon[42]. 
The numerical fluxes in Eqs. (27) and (28) are applied in the computation of the right-hand side 𝒓(𝑒)𝑏,𝑈  and 𝒓(𝑒)𝑏,𝑉  in the Eqs. (A.16) 
and (A.16).

2. In the layered equation for the mass variable (A.1) and the momentum Eqs. (A.2) and (A.3), we use centered fluxes. To compute the 
flux contribution of a variable 𝑞 at a given edge, we take the average of its values from that edge’s left-hand and right-hand sides. 
We also tried upwind fluxes, but the computational results were very similar to the centered flux results. We refer to Section 5.7 
for more details on these comparisons.

3.2.  Pressure forcing at cell edges

We compute the pressure within each grid element using Eq. (4) and determine the pressure at each cell edge following the idea 
developed in Higdon[11]. Here, we outline the main ideas of this method and refer to the earlier paper for details. Consider the 
baroclinic state of the fluid as highlighted in Fig. (2) where the interfaces of the layers are not necessarily continuous across cell 
edges due to the density difference between the layers. The total pressure at the left and right sides of an edge is given by

𝑝𝐿(𝑧) =
(

1 + 𝜂†
)

𝑝′𝐿(𝑧), (29)

Fig. 2. Multilayer system with spatial variation in pressure forcings on each cell edge. The green dots represent the points of intersections of the 
edge (red markers) between the left and right elements Ω1 and Ω3. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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𝑝𝑅(𝑧) =
(

1 + 𝜂†
)

𝑝′𝑅(𝑧), (30)

where 𝜂† is from Eq. (27), 𝑝′𝐿 and 𝑝′𝑅 denote the left and right side values of 𝑝′. The pressure at a cell edge can be approximated as

𝑃 (𝑧) = 1
2
(

𝑝𝐿(𝑧) + 𝑝𝑅(𝑧)
)

, (31)

and the contribution from the pressure along the cell edge in the weak forms (A.2) and (A.3) at the edge Γ𝑒 can be represented as

𝐻†
𝑘 = 𝑔 ∫

𝑧𝑘−1,𝑅

𝑧𝑘,𝑅
𝑃 (𝑧) 𝑑𝑧 = 1

2
𝑔 ∫

𝑧𝑘−1,𝑅

𝑧𝑘,𝑅
𝑝𝐿(𝑧) 𝑑𝑧 + 1

2
𝑔 ∫

𝑧𝑘−1,𝑅

𝑧𝑘,𝑅
𝑝𝑅(𝑧) 𝑑𝑧. (32)

For the configuration illustrated in Fig. 2, consider the vertically integrated pressure force exerted on the fluid in region Ω3 by the 
fluid that is immediately to the left of Ω3. The later expression at the dashed edge (red markers) is then

𝐻†
2 = 1

2
𝑔 ∫

𝑧1,𝑅

𝑧2,𝑅
𝑝𝐿(𝑧) 𝑑𝑧 + 1

2
𝑔 ∫

𝑧1,𝑅

𝑧2,𝑅
𝑝𝑅(𝑧) 𝑑𝑧. (33)

The second integral is straightforward since the interval of integration is the entire vertical extent of layer 𝑘. The first integral 
requires that the interval of integration be represented as a union of subintervals, and that leads to

1
2
𝑔 ∫

𝑧1,𝑅

𝑧2,𝑅
𝑝𝐿(𝑧) 𝑑𝑧 = 1

2
𝑔 ∫

𝑧2,𝐿

𝑧3,𝐿
𝑝𝐿(𝑧)𝑑𝑧 +

1
2
𝑔 ∫

𝑧1,𝐿

𝑧2,𝐿
𝑝𝐿(𝑧)𝑑𝑧 +

1
2
𝑔 ∫

𝑧∗1,𝐿

𝑧1,𝐿
𝑝𝐿(𝑧)𝑑𝑧. (34)

The integrand 𝑝𝐿(𝑧) uses left limits of 𝑝′, which is why we use the left-side values (𝑧𝑘,𝐿) of 𝑧𝑘 instead of right-side values (𝑧𝑘,𝑅) in 
the integrals that appear on the right side of Eq. (34).

3.3.  Viscosity terms

We rewrite the viscous term ∇ ⋅ (𝐴𝐻Δ𝑝𝑘∇𝒖𝑘) in the baroclinic Eqs. (2) by introducing split variables and assuming constant 
viscosity 𝐴𝐻

∇ ⋅ (𝐴𝐻Δ𝑝𝑘∇𝒖𝑘) = 𝐴𝐻∇ ⋅
(

(1 + 𝜂)Δ𝑝′𝑘∇(𝒖
′
𝑘 + 𝒖̄)

)

. (35)

Further assuming that 𝜂(𝒙, 𝑡) is negligible for this term, we have (1 + 𝜂)Δ𝑝′𝑘 ≈ Δ𝑝′𝑘 and arrive at
∇ ⋅ (𝐴𝐻Δ𝑝𝑘∇𝒖𝑘) = 𝐴𝐻∇ ⋅

(

Δ𝑝′𝑘𝑮𝒖,𝑘 + Δ𝑝′𝑘𝑮𝒖̄,𝑏
)

, (36)

where 𝑮𝒖,𝑘 = ∇𝒖′𝑘 and 𝑮𝒖̄,𝑏 = ∇𝒖̄.
The barotropic viscosity term is the sum of the layer viscosity terms

𝑳𝐴𝐻 = 𝐴𝐻∇ ⋅

( 𝑁𝑙
∑

𝑘=1
Δ𝑝′𝑘𝑮𝒖,𝑘 +𝑮𝒖̄,𝑏

𝑁𝑙
∑

𝑘=1
Δ𝑝′𝑘

)

. (37)

We implement the viscosity terms using the local discontinuous Galerkin method and centered numerical flux [36,43,47–49].

4.  Time integration

4.1.  Methods for the layer equations and barotropic equations

For the layer equations, (1)-(2), we use a two-level predictor-corrector time method that is described in detail in Higdon[11]. This 
method uses a relatively long time step that is appropriate for the slow motions in the system; denote this time step by Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, 
where 𝑡𝑛 and 𝑡𝑛+1 are consecutive time levels.

For the vertically-integrated barotropic equations, we use a shorter time step Δ𝑡𝑏𝑡𝑝 = Δ𝑡∕𝑁𝑏𝑡𝑝, where 𝑁𝑏𝑡𝑝 is a positive integer. In 
contrast to the two-level method used in Higdon[11] for the barotropic equations, here we use a strong-stability-preserving Runge-
Kutta method [50], as it enables greater efficiency by allowing a longer time step. The particular method used here has order 3 and 
has 5 stages, and we denote the method by SSPRK35. It should be noted that in Ruuth[50], the method is denoted as SSPRK(5,3).

We anticipate that, in the near future, we will undertake a more systematic and thorough investigation of Runge-Kutta methods 
and related methods for usage in the present context.

4.2.  Consistency between the layer equations and the barotropic equations

At the end of each of the long time steps, the vertical sums of the layer variables Δ𝑝𝑘 and 𝒖𝑘Δ𝑝𝑘 should equal the barotropic 
variables 𝑝𝑏 and 𝑝𝑏𝒖̄, respectively. However, this is not necessarily the case, as different numerical approaches are used to solve 
the two sets of equations. To correct such inconsistencies, we make adjustments to Δ𝑝𝑘 and 𝒖𝑘Δ𝑝𝑘 at each long time step. These 
adjustments are at the level of numerical truncation error, since in the analytical case the vertical sums of the layer variables are 
exactly equal to the corresponding barotropic variables.
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For the mass equations, we achieve consistency with a flux-adjustment method that is described in detail by Higdon[11]. Here, 
the lateral mass fluxes in the layers, for a given long time interval [𝑡𝑛, 𝑡𝑛+1], are adjusted so that their vertical sums are equal to the 
time averages of the barotropic fluxes over all of the short substeps of [𝑡𝑛, 𝑡𝑛+1]. It is noted in Section 4.2.3 of Higdon[11] that this 
adjustment provides a kind of time filtering for the layer mass equations. Also, the adjustment of lateral mass fluxes does not entail 
any transport of mass between different fluid layers, which is consistent with the fact that the governing Eqs. (1)-(2) do not allow for 
any exchange of mass between layers.

For the momentum equations, consistency is obtained at each horizontal location, at each long time step, by adding a small 
depth-independent velocity to the horizontal velocity in each layer. This depth-independent velocity amounts to an adjustment to 
the model’s representation of the barotropic velocity 𝒖̄. The exact values of 𝒖̄ vary on the fast time scale, which ultimately is the 
motivation for using a barotropic-baroclinic splitting. Before the adjustment of 𝒖̄, for a given time step and horizontal location, the 
barotropic velocity that is available is the value that can be obtained from the solution of the layer equations, which are computed 
with the long time step. A calculation shows that the adjustment of velocity has the effect of replacing the long-time-step value of 𝒖̄
with the value that is obtained stably with short barotropic substeps. In analogy with the mass equations, this adjustment provides a 
kind of time filtering for the momentum equations.

The time filtering in the layer mass and layer momentum equations enables a long time step to be used for these equations, even 
though the layer equations themselves admit motions on the fast time scales. The layer equations with this filtering can be regarded 
as “baroclinic” equations for modeling the slow motions in the system. In Section 2.4, we focus on variable splitting, and in this 
Section, we complete barotropic-baroclinic splitting with time methods. We summarize the splitting model in the Algorithm 1.

Algorithm 1 Summary of the time splitting method.
Require: Prognostic variables at time 𝑡𝑛

Prediction step ⊳ for a long baroclinic time step
1: Solve the barotropic equations
2: for 𝑚 = 1, 𝑁𝑏𝑡𝑝 do
3:  call the SSPRK35 method
4: end for
5: Solve the baroclinic equations
6: Enforce consistency between the two systems
Correction step ⊳ for a long baroclinic time step

7: Solve the barotropic equations using the average between the solutions from the predicted step and from the time 𝑡𝑛
8: for 𝑚 = 1, 𝑁𝑏𝑡𝑝 do
9:  call the SSPRK35 method
10: end for
11: Solve the baroclinic equations
12: Enforce consistency between the two systems

5.  Results

To demonstrate the capabilities of the model, we first evaluated the mass conservation of the split system in h-NUMO by running a 
lake-at-rest test case. Then, we used a double-gyre test case [51] to compare h-NUMO and HYCOM across a range of resolutions, order 
of polynomials, and viscosity. In h-NUMO, we define the resolution as an average distance between nodal points. The grid consists 
of elements, each of which, in turn, has a grid of nodal points used to construct approximation polynomials. Since the degrees of 
freedom are located at nodal points, this was a natural choice for defining resolution.

In our simulations, we used the p4est library [52] for managing mesh and related data structures and partitioning the data between 
parallel processes. We generate structured grids using p4est and for unstructured grids in Section 5.5, we used Gmsh [53] software 
to create a primary grid for p4est.

The DG method has a Courant-Friedrichs-Lewy (CFL) number that decreases with the order of the polynomial approximation. The 
time steps used for the barotropic and baroclinic solvers are selected as follows. The barotropic time step Δ𝑡𝑏𝑡𝑝 is chosen according 
to the DG method time restriction [54] as follows

Δ𝑡 ≤ 𝐶 × min{Δ𝑥,Δ𝑦}
𝑑(2𝑁 + 1) × |𝜆𝑚𝑎𝑥|

, (38)

where 𝑁 is the polynomial order, 𝑑 is the dimension space (here 𝑑 = 2), 𝐶 is defined in [50], 𝜆max = max(|𝒖𝑏| −
√

𝑔𝐷, |𝒖𝑏| +
√

𝑔𝐷) is 
approximation of the maximum wave speed, and Δ𝑥 and Δ𝑦 are the element size along 𝑥 and 𝑦 directions respectively. The baroclinic 
time step is Δ𝑡 = 𝑁𝑏𝑡𝑝Δ𝑡𝑏𝑡𝑝, and by following HYCOM we set 𝑁𝑏𝑡𝑝 = 20 in the double-gyre simulations.

5.1.  Well-balanced test

In the standard formulation of SWE or MLSWE, the pressure term in the momentum equation involves the gradient of elevation 
of the bottom boundary of the fluid layer, which can act as a static forcing term that causes a stationary fluid to move. To avoid this 
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Fig. 3. Initial conditions of lake-at-reset free surface and interface of the second layer with no-flat bottom topography.

issue Higdon[42] proves and verifies for SWE that representing the pressure term in momentum equations as an integral weak form 
(Eqs. (A.2) and (A.3)) ensures the system is well-balanced. This proof applies to a single-layer hydrostatic fluid of constant density. 
For the multi-layer case, the same method of proof can be applied on any grid cell for which no layer interface intersects the bottom 
topography in the interior of that cell.

We verify the well-balanced property of the DG schemes for the multilayer equations, where we evaluate the h-NUMO with the 
lake at rest test. We have initialized fluid with densities 𝜌𝑘 = 1027.01037 + 0.2110 × (𝑘 − 1) kg∕m3, 𝑘 = 1,… , 𝑁𝑙 and the layer interface 
positions 𝑧𝑘 = −40∕𝑁𝑙 m, where 𝑁𝑙 is the number of layers. The horizontal extend of the domain was (𝑥, 𝑦) ∈ [0, 2000] × [0, 2000] m2

with wall boundary conditions on both ends and the bottom topography is given by

𝑍𝑏(𝑥, 𝑦) = 3
(

1 + cos
( 𝜋𝑟
250

))

, (39)

where 𝑟 =
√

(𝑥 − 1000)2 + (𝑦 − 1000)2 as shown in Fig. 3.
For this test, we use a 4th order polynomial interpolation, resulting in a 50 m grid resolution, and the test ran until 𝑡 = 5 days 

simulation time. The barotropic time step Δ𝑡𝑏𝑡𝑝 = 1.8 𝑠 is chosen according to the DG method time restriction [55]. The baroclinic 
time step is Δ𝑡 = 100 s, resulting in 56 barotropic substeps per baroclinic time step.

In this test case, in the absence of external forcing (e.g., wind), the free surface should remain stationary, and water velocity 
should be zero throughout the simulation. Fig. 4 panel (a) illustrates the elevation of the free surface above the initial state at the 
cross-section (𝑦 = 1000 m) at 𝑡 = 3 hours and panel (b) shows the maximum deviation (𝐿∞ norm) of the free surface as a function of 
time until 𝑡 = 5 days. This time corresponds to the barotropic wave traveling approximately 12,000 times through the domain at the 
speed approximated by 𝑐 ≈

√

𝑔𝐷 with 𝐷 = 40 m, which is sufficient to show the long-term behavior of the test case. We see that the 
𝐿∞ norm remains at 10−13 level throughout the simulation, which indicates that the spurious errors do not significantly grow with 
time. In panels (c) and (d), we present the cross-section of the water velocity at 3 hours and 5 days, respectively. The change in the 
velocity does not significantly grow with time. The increase in the number of layers from 2 to 20 layers has not deteriorated both the 
free-surface and velocity results, suggesting that the model does well in preserving the lake at rest conditions.

5.2.  Perturbation of baroclinic wave propagation

To test whether h-NUMO captures the wave propagation speeds correctly, we add a small perturbation to the interface of the 
second layer of the well-balanced test case with a flat bottom topography. The initial interface position of the layers are 𝑧0 = 0 m, 
𝑧1 = −20 + 0.5

(

1 + cos
(

𝜋𝑟
250

))

m and 𝑧2 = −40 m. The viscosity, wind stress, and bottom friction are neglected for this test. The test 
case set-up is shown in Fig. 5, with the initial condition (with exaggerated vertical scale) in panel (a) and the solution at 𝑡 = 3 hours 
in panel (b).

We ran the simulation for different thicknesses of the top layer (while keeping the total water depth at 𝐷 = 40 m) and measured the 
speed with which the baroclinic perturbation of the layer interface is moving. Fig. 6 shows the comparison of those measurements 
with the analytical prediction by Mandli [56]. The yellow dashed line represents the absolute error between the theoretical and 
measured wave speeds, which remains below 10−3 regardless of the chosen layer thickness. The theoretical wave speeds formulation 
in Mandli [56] is an approximation, and there is also measurement error, so having absolute errors close to 10−3 confirms that our 
scheme accurately captures baroclinic waves.

We also analyze how different numbers of barotropic substeps per baroclinic time step, 𝑁𝑏𝑡𝑝, affect the wave speed. We consider 
Δ𝑧1 = Δ𝑧2 = 20 m, a fixed Δ𝑡𝑏𝑡𝑝 = 1.8 s and calculate Δ𝑡 = 𝑁𝑏𝑡𝑝Δ𝑡𝑏𝑡𝑝. Fig. 6 (b) shows the measured wave speed for different 𝑁𝑏𝑡𝑝, 
where the highest we can take to have a stable simulation for this problem is 70. We observe that the measured wave speeds oscillate 
around the theoretical speed (𝑐𝑏𝑐𝑙 = 0.1434 m∕s). The results in panel (b) show that the wave speed does not depend on the number 
of 𝑁𝑏𝑡𝑝.

Journal of Computational Physics 545 (2026) 114496 

10 



Y. Gahounzo, M. Kopera, R.L. Higdon et al.

Fig. 4. Free surface. Panel (a) shows a cross-section of the free surface at time t = 3 hours with 2, 4, and 20 layers, and panel (b) shows the infinity 
norm of the free surface solution over 5 days. Panel (c) and (d) show the cross-section of the 𝑢-velocity in the top layer at 3 hours and 5 days 
respectively.

Fig. 5. Free surface and interface of the second layer. Panel (a) shows the initial conditions with the perturbation in the second layer, and panel 
(b) shows solutions after 1.5 hours of simulation. The perturbation vertical scale is exaggerated in both panels.

5.3.  Double-gyre circulation

We consider an idealized double-gyre test [51] to validate h-NUMO’s ability to simulate the mesoscale and submesoscale processes 
and compare the results with HYCOM. The domain is a closed rectangular ocean basin with a flat bottom. The forcing is spatially 
varying wind stress with intense western boundary currents, which, together with Coriolis force, results in a counter-clockwise 
circulation in the northern part and a clockwise circulation in the southern part of the domain.

The horizontal extent is 𝐿 = 2000 km in both the zonal and the meridional direction. The depth of the basin is 𝐷 = 10 km consisting 
of two layers, with the upper and lower layers initially having Δ𝑧1 = 1.5 km and Δ𝑧2 = 8.5 km depths, respectively. The densities in 
the layers are 𝜌1 = 1027.01037 kg∕m3 , 𝜌2 = 1027.22136 kg∕m3. The Coriolis force is prescribed using a beta-plane approximation 
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Fig. 6. Wave speed as a function of depth of the first layer and absolute error between the theoretical and measured speed (a). Comparison of the 
wave speeds obtain using different numbers of barotropic substeps per baroclinic time step (b). The baroclinic time step is Δ𝑡 = 𝑁𝑏𝑡𝑝Δ𝑡𝑏𝑡𝑝, where the 
barotropic time step is fixed at Δ𝑡𝑏𝑡𝑝 = 1.8 s.

Fig. 7. Schematic of the grid in HYCOM (left) and h-NUMO (right). In both cases, the gridded area is a square with a side of 40km. HYCOM 
covers it with a uniform grid of 4x4 volumes. h-NUMO uses a single element with a grid of 5x5 non-uniformly (4th order polynomial) distributed 
Legendre-Gauss-Lobatto points. For the sake of comparison, we consider both cases as having the same "resolution".

centered at 45◦ N, with a parameter 𝑓 = 𝑓0 + 𝛽(𝑦 − 𝐿∕2), where 𝑓0 = 9.3 × 10−4 s−1 and 𝛽 = 2−11 m∕s. We consider two different values 
of the horizontal viscosity 𝐴𝐻 = 50 m2∕s and 𝐴𝐻 = 500 m2∕s, the dimensionless bottom drag coefficient in the linear bottom stress 
(Section 2.5) is 𝑐𝑑 = 10−7 s−1, and we assume no shear stress between layers. The system is forced by a purely zonal wind stress 
𝜏𝑤 = (𝜏𝑥, 0), where 𝜏𝑥 = −𝜏0 cos(2𝜋𝑦∕𝐿), and 𝜏0 = 0.1 N∕m2. We considered two different velocity boundary conditions: free-slip and 
no-slip. Each model year consists of 360 days, divided into 12 months, with 30 days per month.

We use HYCOM simulations with resolutions of 10 km and 20 km as references and design the h-NUMO runs to match those 
settings. We configured HYCOM in the same way as h-NUMO using purely isopycnic coordinates with the same number of layers, 
densities, wind stress, and linear bottom drag. For HYCOM, we define the resolution as the width of a finite volume grid cell, while 
in h-NUMO, we use the average distance between nodal points. An important aspect of the DG method is that the resolution can be 
controlled by both the element size and the interpolating polynomial order, so it is possible to have comparable resolutions using 
small elements with low polynomial order and large elements with high polynomial order. However, one has to keep in mind that 
the information carried by a degree of freedom in the nodal polynomial expansion used in the DG methods is not the same as in the 
case of the discretization used in HYCOM, as it represents not only a point value of the solution but is a weight used in the high-order 
polynomial expansion, which contributes to the continuous approximation of the solution inside the entire element. Fig. 7 shows a 
schematic of both HYCOM and h-NUMO grids for 10 km resolution. We used 2nd, 4th, and 6th-order polynomials in this study.

5.3.1.  Simulations with free-slip boundary condition
Fig. 8 shows the sea-surface height (SSH), which is the difference between the average depth of the fluid at rest and the total depth 

of the fluid at a given time, for 20 km and 10 km resolutions using free-slip boundary condition. For the 20 km resolution, h-NUMO 
was configured with 4th polynomial order and time step Δ𝑡 = 600 s for the baroclinic equations and Δ𝑡𝑏𝑡𝑝 = 30 s for the barotropic 
equations, while in HYCOM Δ𝑡 = 450 s, Δ𝑡𝑏𝑡𝑝 = 22.5 s. The value of Δ𝑡𝑏𝑡𝑝 is limited by the CFL condition, which is different for both 
methods. For both codes, we kept the ratio of 20 barotropic substeps per one baroclinic time step. Due to the Coriolis effect and the 
wind stress, the flow develops two gyres with counterclockwise circulation in the northern half and clockwise in the southern half 
of the domain. As the simulation progresses, the flow becomes more complex and develops eddies by year 10 (not shown here) for 
viscosity 𝐴𝐻 = 50 m2∕s. Fig. 8 (a)-(b) shows that the eddies are more pronounced by year 20. For the higher viscosity 𝐴𝐻 = 500 m2∕s, 
some eddies start appearing in the northern boundary of the domain by year 20 (top panels (c)-(d)). Overall, the jet in the middle of 
the western boundary is similar in both models, and the general flow patterns are the same. The solutions from the two models are 
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Fig. 8. Snapshots of the sea-surface height at 20 years with h-NUMO and HYCOM using the free-slip boundary condition and viscosity 𝐴𝐻 = 50 m2∕s
and 𝐴𝐻 = 500 m2∕s. The results in top panels (a)-(d) are obtained with 20 km resolution, while the results in bottom panels (e)-(h) are obtained with 
10 km resolution. The contour interval is 2 cm, with lower elevations in the northern region and higher elevations in the southern region.

not point-wise identical due to the different numerical schemes used and the sensitivity of the non-linear equations to perturbations. 
The differences between snapshots are partially due to the phase shift in the oscillations of the currents.

To obtain the results in Fig. 8 (e)-(h) with 10 km resolution (where we increase the number of elements), we decreased the 
barotropic time step to Δ𝑡𝑏𝑡𝑝 = 20 s while keeping the 20 barotropic substeps to a baroclinic time step ratio in h-NUMO. In HYCOM, 
the baroclinic time step was Δ𝑡 = 225s, and the barotropic time step was Δ𝑡𝑏𝑡𝑝 = 11.25s. Fig. 8 (e)-(f) shows that at a higher resolution, 
the flow is more complex, and the middle western boundary jet is stronger in h-NUMO compared to HYCOM. Similar to the 20 km
resolution, the general circulation of the flow is similar in both codes, with more developed meanders and eddies for viscosity 
𝐴𝐻 = 50 m2∕s. In both codes, Fig. 8 (c)-(d) and (g)-(h) show that the eddies are less noticeable for viscosity 𝐴𝐻 = 500 m2∕s than the 
viscosity 𝐴𝐻 = 50 m2∕s, which makes sense as we expect higher viscosity to diffuse more energy.

To analyze the redistribution of water in the ocean and the ocean dynamics across the resolved scales in both models, Fig. 9 shows 
a comparison of the sea surface height variability for the last 5 (15–20) years of the model runs at 20 km and 10 km resolutions. In 
panels (a)-(b) and (e)-(f) of Fig. 9, where the viscosity is 50 m2∕s, both codes have similar SSH variability patterns. However, the 
variability is higher in the middle of the western boundary in h-NUMO than in HYCOM. Similarly, at a higher viscosity 500 m2∕s in 
panels (c)-(d) and (g)-(h), the SSH variability patterns remain the same but with slightly higher activity toward the west-northern 
boundary in HYCOM compared to h-NUMO. At the same, higher activity is observed in the middle-western boundary of h-NUMO. 
These results of SSH variability confirm that the flow is more developed in the middle-western boundary in h-NUMO than in HYCOM.

Fig. 10 shows plots of the total kinetic energy 𝐾𝐸 of the flow as a function of simulation time, where h-NUMO runs with 2nd, 
4th, and 6th polynomial order are compared with HYCOM results. More precisely, in each graph, the quantity plotted is the pressure-
weighted kinetic energy per unit horizontal area (summed vertically over both layers), and it is computed as follows:

KE =
𝑁𝑙
∑

𝑘=1

∫Ω
1
2 (𝑢

2
𝑘 + 𝑣

2
𝑘)Δ𝑝𝑘𝑑Ω

∫Ω Δ𝑝𝑘𝑑Ω
. (40)

In h-NUMO, as the polynomial order increases, the number of elements is adjusted to obtain the same resolution. In Fig. 10 (a), 
both codes reach the same energy equilibrium for 20 km resolution, but h-NUMO retained higher energy for 10 km resolution. For 
polynomial order 4 and 6, Fig. 10 (b)-(c) show that h-NUMO has higher energy compared to HYCOM, and its energy increases as 
polynomial order increases. Fig. 10 (d)-(f) shows with viscosity 𝐴𝐻 = 500 m2∕s, the KE is noticeably higher with all the polynomial 
order and resolutions than HYCOM.

5.3.2.  Simulations with no-slip boundary condition
We repeated the test in Section 5.3.1 with no-slip boundary conditions where all other aspects of the models remained the same, 

including the time steps. The time evolution of the sea-surface height at different times for 20 km and 10 km resolution are shown in 
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Fig. 9. Comparision of sea surface height variability over the last five years (15–20) for the viscosity value 𝐴𝐻 = 50 m2∕s, 𝐴𝐻 = 500 m2∕s and the 
free-slip boundary condition. The results in top panels (a)-(d) are obtained with 20 km resolution, while the results in bottom panels (e)-(h) are 
obtained with 10 km resolution. The contour line is after every 5mm .

Fig. 10. Total kinetic energy time history in the system obtained with h-NUMO and HYCOM models for 10 km and 20 km resolution, free-slip 
boundary condition, and 3 different polynomial order in h-NUMO. The energy in the top graphs is obtained with viscosity 𝐴𝐻 = 50 m2∕s, and the 
energy in the bottom graphs is obtained with viscosity 𝐴𝐻 = 500 m2∕s.

Fig. 11. The jet in the western boundary is less active in h-NUMO than in HYCOM with 20 km resolution. For viscosity 𝐴𝐻 = 50 m2∕s, 
we observe the development of eddies as in the case of the free-slip condition, and for viscosity 𝐴𝐻 = 500 m2∕s, the western layer is 
thicker with less intense flows along the southern and northern boundary, especially for HYCOM, where at 20 years, we still do not 
see any eddies in the northern boundary. At 10 km resolution Fig. 11 (e)-(f), the general flow circulation is similar in both h-NUMO 
and HYCOM with similar western boundary thickness.

Fig. 12 shows a comparison of the sea surface height variability for the last 5 (15–20) years of the model run at resolutions 20 km
and 10 km, with the no-slip boundary condition. At 20 km resolution, in panels (a)-(b) of Fig. 12, where the viscosity is 50 m2∕s, 
HYCOM presents a higher SSH variability in the middle of the western boundary than h-NUMO. However, the variability is higher 
along the western boundary in h-NUMO. At a higher viscosity 500 m2∕s in panels (c)-(d), the SSH variability patterns remain similar 
but with slightly higher activity toward the west-northern boundary in h-NUMO compared to HYCOM. Fig. 12 (e)-(f) shows that at 
10 km resolution and 𝐴𝐻 = 50 m2∕s, h-NUMO has a higher SSH variability. At 𝐴𝐻 = 500 m2∕s, both models’ SSH variability is almost 
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Fig. 11. Snapshots of the sea-surface height at 20 years with h-NUMO and HYCOM using the no-slip boundary condition and viscosity 𝐴𝐻 = 50 m2∕s
and 𝐴𝐻 = 500 m2∕s. The results in top panels (a)-(d) are obtained with 20 km resolution, while the results in bottom panels (e)-(h) are obtained with 
10 km resolution. The contour interval is 2 cm, with lower elevations in the northern region and higher elevations in the southern region.

Fig. 12. Comparision of sea surface height variability over the last five years (15–20) for the viscosity value 𝐴𝐻 = 50 m2∕s, 𝐴𝐻 = 500 m2∕s and 
the no-slip boundary condition. The results in top panels (a)-(d) are obtained with 20 km resolution, while the results in bottom panels (e)-(h) are 
obtained with 10 km resolution. The contour line is after every 5mm .

identical. From the results at 𝐴𝐻 = 500 m2∕s, we can conclude that both models are completely resolving all motions admitted by the 
viscosity.

Fig. 13 shows plots of the total kinetic energy in the system as a function of time. As compared to the free-slip boundary conditions 
in Fig. 10, the plots confirm that both models almost converge to the same kinetic energy for viscosity 𝐴𝐻 = 500 m2∕s. With this 
viscosity, there is no increase in the energy as the polynomial order increases in h-NUMO, indicating that all the necessary features 
have been resolved. Thus, with 𝐴𝐻 = 500 m2∕s, a 4th-order polynomial order is enough to resolve all scales of motion since we do 
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Fig. 13. Total kinetic energy time history in the system obtained with h-NUMO and HYCOM models for 10 km and 20 km resolution, no-slip 
boundary condition, and 3 different polynomial order in h-NUMO. The energy in the top graphs is obtained with viscosity 𝐴𝐻 = 50 m2∕s, and the 
energy in the bottom graphs are obtained with viscosity 𝐴𝐻 = 500 m2∕s.

not see a notable increase in the kinetic energy with the 6th-order polynomial. Similarly, for viscosity 𝐴𝐻 = 50 m2∕s, we observe a 
small difference in the kinetic energy in h-NUMO between the 4th-order and 6th-order polynomials results.

5.4.  Eddy kinetic energy and time-averaged kinetic energy

Given the differences in quasi-steady total kinetic energy levels between different h-NUMO polynomial orders and HYCOM, in 
Fig. 14, we explore the relation between the mean kinetic energy (MKE) averaged over the years 15–20 and the resolution and the 
number of degrees of freedom (DOF). We run the simulations for h-NUMO with different polynomial order 𝑁 . For 𝐴𝐻 = 50 m2∕s and 
the free-slip boundary condition (panel a), MKE generally increases with the decrease of the average grid spacing Δ𝑥. We observe, 
however, that for the highest resolutions (Δ𝑥 = 10 km to 5 km), the difference between the 4th and 6th-order polynomial MKE is 
very small, and the level of MKE is steady, suggesting that the simulation is fully resolved. The 2nd-order h-NUMO simulation and 
HYCOM result are approaching that level, but at 5 km, both are still underresolved. For 𝐴𝐻 = 500 m2∕s (panel a, bottom set of lines), 
the values of MKE are almost constant for Δ𝑥 ≤ 15 km for all polynomial orders in h-NUMO, with HYCOM approaching that level at 
Δ𝑥 = 4 km. We plot the same result as a function of degrees of freedom in panel (c), as in h-NUMO we only use pressure and two 
momentum variables (but the DG grid introduces duplicate points along the element boundaries), while in HYCOM, we use a C-grid 
with pressure, two velocity variables and vorticity. This adjustment most significantly affects the 𝑁 = 2 result, which is shifted closer 
to the HYCOM reference in panel (c).

For the no-slip boundary condition (panel b,d), the 6th order h-NUMO result for the lower viscosity setting appears to be converged 
for Δ𝑥 ≤ 15 km, while all the other models reach the same value of MKE only for the highest resolution. Even though the simulations 
are stable, for 𝑁 = 2 we observe oscillations at element boundaries due to not enough stabilization leading to grid imprinting for 
resolutions Δ𝑥 > 15 km. This will trigger unphysical increased kinetic energy at cell interfaces, as observed for Δ = 12 km. Thus, we 
remove the time-averaged kinetic energy for 𝑁 = 2 and Δ𝑥 > 12 km from the comparison. The results for higher viscosity setting 
(bottom set of lines) are fairly constant for the entire range of resolutions, with HYCOM showing a consistently higher level than all 
h-NUMO results. This is in opposition to the corresponding result in the free-slip simulation, where the HYCOM MKE was lower than 
h-NUMO. This discrepancy may be due to differences in the implementation of the no-slip condition in both models.

To understand the spatial distribution of energy, in Fig. 15 we plot the time-average (over the years 15–20) of eddy kinetic energy 
(EKE) for the three polynomial orders and HYCOM at 10 km resolution with the free-slip boundary condition. The EKE pattern is 
similar in all the simulations with significantly higher magnitudes for polynomial orders 𝑁 = 4 and 𝑁 = 6. Similarly, in Fig. 16 EKE 
for the no-slip boundary condition simulation has a similar pattern across all simulations, with h-NUMO having a higher magnitude 
than HYCOM. These results are consistent with the results in Fig. 14 and support the hypothesis that the DG method with high-order 
polynomials does not dissipate as much energy as lower-order DG and HYCOM.

5.5.  Unstructured mesh

Unstructured grids have become an important feature of modern ocean models, as they allow for better alignment of computational 
resources with important regions in the modeled domain. Unstructured grids can more accurately capture complex geometrical 
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Fig. 14. Time-averaged kinetic energy as a function of resolution (panels a,b) and degrees of freedom in 2D grid (𝐷𝑂𝐹2𝐷, panel c,d) for free-slip (a,c) 
and no-slip (b,d) boundary conditions and two different settings of viscosity 𝐴𝐻 . The 𝐷𝑂𝐹2𝐷 are calculated for a single layer only, not accounting 
for the number of layers.

Fig. 15. Comparision of h-NUMO and HYCOM top layer mean eddy kinetic energy per unit mass fields calculated over five years from the model 
simulations at 10 km grid resolution. The viscosity value 𝐴𝐻 = 50 m2∕s and the free-slip boundary conditions are used. The contour interval is 
40 cm2∕s2.

Fig. 16. Comparision of h-NUMO and HYCOM top layer mean eddy kinetic energy per unit mass fields calculated over five years from the model 
simulations at 10 km grid resolution. The viscosity value 𝐴𝐻 = 50 m2∕s and the no-slip boundary conditions are used. The contour interval is 
30 cm2∕s2.
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Fig. 17. Unstructured grid (a) and the sea surface height contour plots for unstructured (b) and uniform 20 km (c) grids simulated at 20 years with 
viscosity 𝐴𝐻 = 50 m2∕s, 4th order polynomials with h-NUMO. The resolution of the unstructured grid varies from 20 km at the western boundary 
to 62.5 km at the eastern boundary.

Fig. 18. Time history of kinetic energy in h-NUMO with structured 20 km grid and an unstructured grid (a) and the comparison of time-averaged 
kinetic energy in unstructured mesh simulation (red filled circle in panel b) with convergence study performed on structured meshes. The unstruc-
tured simulation used 4th order polynomials and viscosity 𝐴𝐻 = 50 m2∕s. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

features such as steep bathymetry and coastlines. The numerical methods in GNuME are capable of supporting arbitrary quadrilateral 
unstructured meshes [57] both as conforming and non-conforming, possibly dynamically adaptive grids [58].

To demonstrate h-NUMO’s ability to use unstructured meshes, we have designed a grid using GMSH [53] software. The gird has 
quadrilateral elements of side length 83 km at the western boundary and 250 km at the eastern boundary (Fig. 17 (a)). We used 4th-
order polynomials with h-NUMO for a resolution varying from 20 km to 60 km. We specified the resolutions based on the knowledge 
that there are more dynamic features close to the western boundary (see Fig. 8, 9) and used the 20km scale to match the previous 
results. This grid could be further optimized with specific information regarding the flow, i.e., the sea surface height in Fig. 9 or other 
measures like eddy kinetic energy, etc. The results presented below are meant to show the technical capability of h-NUMO and are 
not an exhaustive demonstration of the unstructured grid performance.

Fig. 17 panels (b) and (c) compare the instantaneous sea surface height at 20 years between the unstructured and the uniform 
20 km grids. We note similar features between the two results, with the structured grid exhibiting more dynamic structures in the 
eastern part of the boundary. We attribute this discrepancy to significantly less resolution in this area.

Instantaneous results suggest smaller kinetic energy in the unstructured simulation. Fig. 18 (a) shows the energy comparison 
between the uniform mesh of 20 km resolution and the unstructured mesh results. The KE for the unstructured mesh (𝑁𝑒 = 400
elements) behaves very similarly to the 20 km uniform mesh (𝑁𝑒 = 625 elements), with only slightly lower quasi-steady state KE, 
which is consistent with the result in Fig. 17. The time-averaged kinetic energy over the last 5 years for the unstructured mesh 
simulation is 30.59 cm2∕s2, which is less compared to the time-averaged energy of structure mesh (32.75 cm2∕s2). This is also visible in 
panel (b), where the averaged kinetic energy for the 20 km uniform simulation is slightly higher than the unstructured result, marked 
by a filled red circle. We compare the unstructured result in terms of the number of degrees of freedom, as the resolution is changing 
throughout the mesh. The unstructured mesh significantly improves the resolved KE over the same DOF simulation with the structured 
grid. The unstructured 𝑁 = 4 result is close to the energy obtained with 6th-order polynomials with comparable uniform resolution. 
This result highlights significant potential for unstructured meshes combined with high-order DG methods in ocean modeling. We 
plan to explore unstructured meshes in future work, particularly their applications to coastline simulations.
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Table 1 
Baroclinic and barotropic time steps (Δ𝑡𝑏𝑐𝑙 and Δ𝑡𝑏𝑡𝑝, respectively), num-
ber of h-NUMO elements (𝑁𝑒) and the number of grid points on a 2D 
mesh used in performance tests.

Δ𝑡𝑏𝑐𝑙 [s] Δ𝑡𝑏𝑡𝑝 [s] 𝑁𝑒 2𝐷 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

 HYCOM 4km  112.5  5.625  1002001
 h-NUMO 4km 𝑁 = 2  100  5  62,500  1687500
 h-NUMO 4km 𝑁 = 4  100  5  15,625  1171905
 h-NUMO 4km 𝑁 = 6  100  5  6889  1012683
 h-NUMO 8km 𝑁 = 2  200  10  15,625  421875
 h-NUMO 20km 𝑁 = 4  600  30  625  46875
 h-NUMO 25km 𝑁 = 6  400  25  169  24843

Table 2 
Number of elements and 2D DOF per core at number of parallel processes used. All 4km sim-
ulations and the 8km h-NUMO used a maximum of 384 cores, while 20 km h-NUMO used a 
maximum of 313, 25 km h-NUMO used 169, and 4 km HYCOM used 265 cores.

 4 km resolution  energy-equivalent resolutions
 elements per core  2D DOF per core  elements per core  2D DOF per core

 HYCOM  –  3914  –  3914
 h-NUMO 𝑁 = 2  163  4401  41  1107
 h-NUMO 𝑁 = 4  41  3075  2  150
 h-NUMO 𝑁 = 6  19  2793  1  147

5.6.  Parallel performance

We compared the performance of h-NUMO and HYCOM on a double-gyre test with 40 layers to mimic the computational effort 
required of a realistic model. The first two layers followed the specifications outlined in Section 5.3, and we set up the subsequent 
layers to have the same density as the second layer and a thickness of 0.001 m. In both models, the cost of each layer is the same 
regardless of thickness, so we are mimicking 40 non-vanishing layers. We used viscosity 𝐴𝐻 = 50 m2∕s. Each model used 20 barotropic 
sub-steps in the splitting scheme and an appropriate size of the barotropic time step, guaranteeing model stability. We have designed 
two experiments: I) the equal resolution experiment, where HYCOM and h-NUMO with different polynomial order settings all had 
comparable resolution of 4km, and II) the equal energy experiment, where h-NUMO resolutions for different polynomial orders were 
chosen to match the kinetic energy resolved by 4 km HYCOM simulation. To decide on the h-NUMO resolutions, we used Fig. 14 (a), 
and chose 8 km resolution for h-NUMO 𝑁 = 2, 20 km resolution for 𝑁 = 4 and 25 km for 𝑁 = 6. Table 1 summarizes the time-step 
choices and the number of 2D grid points in each experiment. Note that we report the points in a 2D grid, which is the number of 
grid points used by the barotropic solver, and the baroclinic solver uses that many points in each layer. This number in the baroclinic 
solver must be multiplied by 40 to get the total number of DOFs.

For each experiment, we have conducted a strong-scaling test for up to 384 MPI ranks on Boise State University’s high-performance 
computing cluster Borah. Fig. 19 shows the speed-up (panel a), parallel efficiency (panel b), time-to-solution of one model-day 
simulation (panel c), and the CPU-hours used for a four model-day simulation (panel d) as a function of the number of MPI ranks 
used (nproc) for the equal resolution experiment. We used 16 cores as a reference for this study, as 4km problem is large and was 
taking a very long time on low processor counts. We see that h-NUMO simulations scale significantly better, reaching 80–90% parallel 
efficiency at the largest number of processors used. HYCOM’s performance drops to about 40% at 256 cores. Despite better parallel 
efficiency, h-NUMO is 8x to 17x slower than HYCOM for the same resolution, even at maximum processor counts. However, with 
parallel efficiency maintained at about 80% (see Fig. 20), h-NUMO will likely close this gap at higher processor counts. It is also worth 
noticing that the resolution definition we use (average distance between nodal points) results in a much higher number of grid points 
for h-NUMO simulations, a significant factor in the overall cost. Fig. 19 (c) shows the performance of the model with polynomials of 
order 2, 4, and 6 at the same resolution (4 km), meaning we adjusted the number of elements corresponding to each polynomial to 
have approximately the same DoFs. We observed that high-order polynomials exhibit a slower time to solution compared to low-order 
ones. This is due to the (2𝑁 + 1)2 quadrature points used in the integrations per element, resulting in 25, 81, and 169 quadrature 
points per element for polynomial orders 2, 4, and 6, respectively.

We have repeated the strong-scaling test for the equivalent energy experiment. Note that in the lower-resolution simulations, the 
parallel domain decomposition is limited by how many elements are in the grid. Table 2 summarizes the number of elements and 2D 
grid points per core at the highest processor count used. The higher-order h-NUMO simulations use only one (𝑁 = 6) or two (𝑁 = 4) 
elements and about 150 DOF per core (considering only 2D DOF, baroclinic solver uses 40 layers, so 40x that number of DOF for 
both h-NUMO and HYCOM) at the largest machine size. Fig. 20 (b) shows that even in this extreme situation, the model maintains 
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Fig. 19. Strong-scaling experiment of the 4km resolution double-gyre test using HYCOM reference and different polynomial orders in h-NUMO. 
The results are compared in terms of (a) speed-up, (b) parallel efficiency, (c) time-to-solution for 1 model-day simulation, and (d) CPU-hours cost 
of 4 model-day simulations. For speed-up and performance plots, we used timing at 16 cores as reference.

75–80% efficiency (panel b). This implies that this is the lower bound of the parallel efficiency for h-NUMO in its current form, as 
the communication volume to computation ratio is highest for one element per core case.

Even for lower resolutions but with the same resolved kinetic energy level, h-NUMO scales better than HYCOM (Fig. 20 (a,b)), 
and the higher-order simulations (𝑁 = 4, 6) achieve 7x to 16x faster time-to-solution (panel c) and consistently lower CPU-hour cost 
(panel d) throughout the tested processor count range. Due to better parallel efficiency at higher processor counts, the computational 
cost gap between h-NUMO and HYCOM widens to about an order of magnitude. At 256 cores, 𝑁 = 2 simulation achieves the same 
time-to-solution and computational cost as HYCOM and, with more resources, beats the reference code.

This performance comparison features the h-NUMO with exact integration of the integrals in the weak form Eqs. (A.2)-(A.4), using 
(2𝑁 + 1)2 quadrature points per element. Our preliminary tests with inexact integration (using only (𝑁 + 1)2 quadrature points per 
element) show that a serial performance improvement of up to 5x is possible if we use this approach in barotropic and baroclinic 
solvers. At the same time, we expect that this change will have little effect in a parallel setting, as by lowering the computational 
intensity due to the inexact integration, we will also reduce the communication volume. This will likely, in fact, further improve the 
parallel efficiency, as we were able to scale other applications built with GNuME and inexact integration to 99% parallel efficiency 
at up to 3 million cores Müller et al. [21].

5.7.  Comparison between centered and upwind fluxes

We used central flux in the numerical schemes in this work, which worked well for all our tests and the numerical results reported 
in this paper. However, we have also implemented an upwind flux in the numerical schemes for verification purposes. In the long run, 
we intend to switch to the upwind flux in the model, as it can become an issue in certain applications, particularly in the following 
case.

In a more realistic case, one might have vanishing layers (zero thickness); suppose that in element 1, the layer thickness is 
zero (Δ𝑧𝑘 = 0) which implies Δ𝑝𝑘(𝒙, 𝑡) = 𝑔𝜌𝑘Δ𝑧𝑘 = 0, and in an adjacent element 2, the thickness is positive (Δ𝑧𝑘 > 0) which implies 
Δ𝑝𝑘(𝒙, 𝑡) = 𝑔𝜌𝑘Δ𝑧𝑘 > 0. At the edge between those elements, the average thickness is positive. However, if the fluid velocity calculated 
at the element edge points out of element 1, and if the average of Δ𝑝𝑘(𝒙, 𝑡) is used in the expression 𝒖𝑘Δ𝑝𝑘, then positive mass is 
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Fig. 20. Strong-scaling experiment of the double-gyre test using HYCOM 4 km resolution reference and equal-energy simulations with different 
polynomial orders in h-NUMO (8 km with 𝑁 = 2, 20 km with 𝑁 = 4 and 25 km with 𝑁 = 6). The results are compared in terms of (a) speed-up, (b) 
parallel efficiency, (c) time-to-solution for 1 model day simulation, and (d) CPU-hours cost of 4 model-day simulation. For speed-up and performance 
plots we used timing at 16 cores as reference.

Fig. 21. Total kinetic energy time history in the system obtained with h-NUMO using central and upwind fluxes and three different polynomial 
orders. We use 20 km resolution, free-slip boundary condition, and viscosity 𝐴𝐻 = 50 m2∕s.

transported out of an element with zero mass, and the layer thickness goes negative. Therefore, the use of central flux would be 
problematic in that situation. However, in all the text cases used in this paper, the layer thickness never goes to zero.

It is challenging to find a test case with an analytic solution for multilayer shallow water equations to do a convergence study with 
the model using central flux. However, we have added the results with the upwind flux for comparison. Fig. 21 shows that the total 
kinetic energy obtained based on the central and upwind fluxes are similar for the three polynomials used, confirming the accuracy 
of the central flux results. Fig. 22 shows the sea-surface height (SSH). The solutions from the two numerical fluxes are not point-wise 
identical due to the different numerical schemes used and the sensitivity of the non-linear equations to perturbations.
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Fig. 22. Snapshots of the sea-surface height at 20 years obtained with h-NUMO using central and upwind fluxes. The results are obtained with 
20 km resolution, and viscosity 𝐴𝐻 = 50 m2∕s. The contour interval is 2 cm, with lower elevations in the northern region and higher elevations in 
the southern region.

6.  Conclusion

The main focus of this work is to develop the multilayer shallow water ocean model, h-NUMO, in the GNuMe framework using 
a high-order DG method and extend the one-dimensional splitting scheme developed in [11] to two horizontal dimensions for more 
realistic applications. The results in Section 5 verify the accuracy of the numerical methods used in the h-NUMO model and validate 
it on a range of test cases, with an extensive numerical test on the double-gyre test. We demonstrate that the model preserves the 
constant free surface height for the lake-at-rest test for different numbers of layer and barotropic substeps 𝑁𝑏𝑡𝑝. The well-balanced 
test indicates that the absolute errors do not significantly grow with time regardless of the number of layers, and the analysis of 
the velocity results reveals that there is no significant spurious numerical mixing; however, further verification is needed, such as 
analyzing the error for long-time simulation results. We also verify the accuracy of the model by showing that it accurately predicts 
the wave propagation speeds in various settings. The comparisons with the HYCOM model show that the high-order DG method 
resolves more dynamic features using a similar number of degrees of freedom. The analysis of the mean kinetic energy reveals that 
all models converge to the same quasi-steady state, with high-order DG resolving all the features contributing to the flow energy with 
lower resolutions. When using the no-slip boundary condition, we observe that the energy produced by HYCOM using higher viscosity 
is higher than h-NUMO, which might be because we are not resolving the boundary layer at a lower resolution or the difference in the 
implementation of the no-slip boundary condition in both models. Overall, we conclude that h-NUMO reproduces ocean dynamics 
features and resolves the flow better as we increase the polynomial order.

From the preceding discussions, we observed that the DG method is well suited for resolving the ocean dynamical flow as one could 
achieve the same results in h-NUMO using a high-order polynomial with a much smaller number of elements observed with the un-
structured mesh simulation. The Gauss-Lobatto-Legendre distribution of nodal points within elements provides optimal interpolation 
with Lagrangian polynomial, and the localized features can be more resolved. The high-order approximation of the solution within 
elements is very effective as the flow features were more resolved as we increased the polynomial order. The parallel scalability shows 
that the h-NUMO code scales well, and with one element per computer core for polynomial order 𝑁 = 6, the code maintains 90%
parallel efficiency. For the equal energy experiment, h-NUMO achieves an order of magnitude faster time-to-solution and cheaper 
CPU-hours cost than HYCOM, thus achieving a similarly resolved flow much faster and with significantly fewer resources.

Future work involves optimizing the code as we expect significant improvements due to improved communication algorithms, 
which will communicate the nodal point data instead of the quadrature point data, which is done now due to simpler implementation. 
We will conduct more in-depth parallel performance studies on larger problem sizes and compare them with HYCOM. There are still 
some important questions and tasks worthy of further study, including how the change in the number of substeps of the barotropic 
system affects the simulation results and the implementation of different numerical flux schemes such as Russanov flux. Some other 
issues to address are the vertical mixing between layers and wetting and drying schemes for negative layer depth.

Software and reproducibility statement

The source code for h-NUMO used to produce all the results in this work is available at https://github.com/ygahounzo/h-NUMO, 
and HYCOM source code is available at https://github.com/HYCOM.
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Appendix A.  Spatial discretization

The weak form of the layer mass Eq. (1) is obtained over element Ω𝑒

∫Ω𝑒
𝜓𝑖
𝜕
𝜕𝑡
(

Δ𝑝𝑘
)

𝑑Ω𝑒 + ∫Γ𝑒
𝜓𝑖𝒏 ⋅

(

𝒖𝑘Δ𝑝𝑘
)†𝑑Γ𝑒 − ∫Ω𝑒

(

𝒖𝑘Δ𝑝𝑘
)

⋅ ∇𝜓𝑖𝑑Ω𝑒 = 0, (A.1)

where Γ𝑒 represents the boundary of the grid element Ω𝑒, 𝒏 = (𝑛𝑥, 𝑛𝑦) is an outward-facing normal vector to the element boundary, 
𝜓𝑖 is a test function, and the superscript † denotes numerical flux. We discuss the computation of the numerical flux terms in the 
Section 3.1.

Taking 𝑈𝑘(𝒙, 𝑡) = 𝑢𝑘Δ𝑝𝑘 and 𝑉𝑘(𝒙, 𝑡) = 𝑣𝑘Δ𝑝𝑘, the weak form of the 𝑢-component on the layer momentum Eq. (2) without the 
viscosity term is

∫Ω𝑒
𝜓𝑖

[

𝜕𝑈𝑘
𝜕𝑡

− 𝑓𝑉𝑘

]

𝑑Ω𝑒 = −∫Γ𝑒
𝜓𝑖𝒏 ⋅

(

𝒖𝑘𝑈𝑘
)†𝑑Γ𝑒 + ∫Ω𝑒

𝒖𝑘𝑈𝑘 ⋅ ∇𝜓𝑖𝑑Ω𝑒

−∫Γ𝑒
𝜓𝑖𝑛𝑥𝐻

†
𝑘𝑑Γ𝑒 + ∫Ω𝑒

𝐻𝑘
𝜕𝜓𝑖
𝜕𝑥

𝑑Ω𝑒

+ 𝑔 ∫Ω𝑒
𝜓𝑖

(

𝑝𝑘−1
𝜕𝑧𝑘−1
𝜕𝑥

− 𝑝𝑘
𝜕𝑧𝑘
𝜕𝑥

+ Δ𝜏𝑥𝑘

)

𝑑Ω𝑒, (A.2)

where 𝐻†
𝑘 is the value of 𝐻𝑘 at the element edge. Similarly, we compute the 𝑣-component of the momentum is

∫Ω𝑒
𝜓𝑖

[

𝜕𝑉𝑘
𝜕𝑡

+ 𝑓𝑈𝑘

]

𝑑Ω𝑒 = −∫Γ𝑒
𝜓𝑖𝒏 ⋅

(

𝒖𝑘𝑉𝑘
)†𝑑Γ𝑒 + ∫Ω𝑒

𝒖𝑘𝑉𝑘 ⋅ ∇𝜓𝑖𝑑Ω𝑒

− ∫Γ𝑒
𝜓𝑖𝑛𝑦𝐻

†
𝑘𝑑Γ𝑒 + ∫Ω𝑒

𝐻𝑘
𝜕𝜓𝑖
𝜕𝑦

𝑑Ω𝑒

+ 𝑔 ∫Ω𝑒
𝜓𝑖

(

𝑝𝑘−1
𝜕𝑧𝑘−1
𝜕𝑦

− 𝑝𝑘
𝜕𝑧𝑘
𝜕𝑦

+ Δ𝜏𝑦𝑘

)

𝑑Ω𝑒. (A.3)

Δ𝜏𝑥𝑘  and Δ𝜏
𝑦
𝑘 are scalar in Eqs. (A.2) and (A.3) because those equations are not in vector form.

We also obtain the weak form of the barotropic mass Eq. (13) as

∫Ω𝑒
𝜓𝑖
𝜕
𝜕𝑡
(

𝑝′𝑏𝜂
)

𝑑Ω𝑒 + ∫Γ𝑒
𝜓𝑖𝒏 ⋅

(

𝑝𝑏𝒖
)†𝑑Γ𝑒 − ∫Ω𝑒

(

𝑝𝑏𝒖𝑏
)

⋅ ∇𝜓𝑖𝑑Ω𝑒 = 0. (A.4)

The weak forms of the barotropic momentum Eqs. (8) are derived similarly as in Eq. (A.2)-(A.3).
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To obtain a DG discretization, within each element Ω𝑒, we expand the solution vector 𝒒(𝒙, 𝑡) inside the element Ω𝑒:

𝒒𝑘(𝒙, 𝑡) ≈ 𝒒(𝑒)𝑘,𝑁 (𝒙, 𝑡) =
𝑀𝑁
∑

𝑗=1
𝜓𝑗 (𝒙)𝒒

(𝑒)
𝑘,𝑗 (𝑡), (A.5)

where 𝒒(𝑒)𝑘,𝑗 =
[

Δ𝑝𝑒𝑘,𝑗 , 𝑈
𝑒
𝑘,𝑗 , 𝑉

𝑒
𝑘,𝑗

]𝑇
 is the expansion coefficient corresponding to node 𝑗 with 𝒒𝑘(𝒙, 𝑡) =

[

Δ𝑝𝑘, 𝑈𝑘, 𝑉𝑘
]𝑇 . We derive the DG 

discretization in the weak form of the layer mass Eq. (A.1) which can be easily adapted to the remaining equations. Introducing the 
expansion of Δ𝑝𝑘 from Eq. (𝐴.5) into (A.1), we obtain

∫Ω𝑒
𝜓𝑖
𝑑
𝑑𝑡

(𝑀𝑁
∑

𝑗=1
𝜓𝑗Δ𝑝

(𝑒)
𝑘,𝑗

)

𝑑Ω𝑒 = −∫Γ𝑒
𝒏 ⋅ 𝜓𝑖

(

𝒖𝑘Δ𝑝𝑘
)(𝑒,†)𝑑Γ𝑒

− ∫Ω𝑒
∇𝜓𝑖 ⋅

(

𝒖𝑘Δ𝑝𝑘
)(𝑒)𝑑Ω𝑒. (A.6)

Rearranging the summation, derivative, and integral gives
𝑀𝑁
∑

𝑗=1
∫Ω𝑒

𝜓𝑖𝜓𝑗𝑑Ω𝑒
𝑑Δ𝑝(𝑒)𝑘,𝑗
𝑑𝑡

= −∫Γ𝑒
𝒏 ⋅ 𝜓𝑖

(

𝒖𝑘Δ𝑝𝑘
)(𝑒,†)𝑑Γ𝑒

− ∫Ω𝑒
∇𝜓𝑖 ⋅

(

𝒖𝑘Δ𝑝𝑘
)(𝑒)𝑑Ω𝑒, (A.7)

which can be represented in matrix form as

𝑴 (𝑒)
𝑑𝚫𝒑(𝑒)𝑘
𝑑𝑡

= −𝒇 (𝑒)
𝑘 + 𝒂(𝑒)𝑘 , (A.8)

where 𝚫𝒑(𝑒)𝑘  is the solution vector of size 𝑀𝑁  that contains Δ𝑝(𝑒)𝑘,𝑗 within the element 𝑒, 𝑴 (𝑒) is the mass matrix with its 𝑖𝑗th entry 
given by

𝑀 (𝑒)
𝑖𝑗 = ∫Ω𝑒

𝜓𝑖𝜓𝑗𝑑Ω𝑒 =
𝑀𝑄
∑

𝑙=1
𝑤𝑘𝐽

(𝑒)(𝝃𝑙)𝜓𝑖(𝝃𝑙)𝜓𝑗 (𝝃𝑙), (A.9)

where 𝑖, 𝑗 = 1,… ,𝑀, 𝑒 = 1,… , 𝑁𝑒, 𝑤𝑙 and 𝐽 (𝑒) are the quadrature weights and determinant of the Jacobian evaluated at the quadrature 
point 𝝃𝑙, and 𝑀𝑄 = 𝑚2

𝑞 is the number of quadrature points within an element, where 𝑚𝑞 = 2𝑁 + 1. The only difference between 𝑀𝑁
and 𝑀𝑄 is that 𝑀𝑁  is used in the polynomial approximation or basis expansion of the prognostic variables, while 𝑀𝑄 is the number 
of quadrature points used for integration. The quantity 𝒇 (𝑒)

𝑘  in Eq. (A.8) is a vector resulting from the integration of the first term on 
the right-hand side of Eq. (A.7), with its entries defined as

𝑓 (𝑒)
𝑘,𝑗 = ∫Γ𝑒

𝒏 ⋅ 𝜓𝑗
(

𝒖𝑘Δ𝑝𝑘
)(𝑒,†)𝑑Γ𝑒 =

𝑚𝑄
∑

𝑙=1
𝑤(𝑓 )
𝑙 𝐽 (𝑒)(𝝃𝑙)𝜓𝑗𝑙𝒏 ⋅

(

𝒖𝑘(𝝃𝑙)Δ𝑝𝑘(𝝃𝑙)
)(𝑒,†) (A.10)

where the superscript (𝑓 ) denotes the edge lying on Γ𝑒. The term 𝒂(𝑒)𝑘  in Eq. (A.8) is a vector resulting from the evaluation of the 
second integral in the right-hand side of Eq. (A.7), with its entries given by

𝑎(𝑒)𝑘,𝑗 = ∫Ω𝑒
∇𝜓𝑗 ⋅

(

𝒖𝑘Δ𝑝𝑘
)(𝑒)𝑑Ω𝑒 =

𝑀𝑄
∑

𝑙=1
𝑤𝑙𝐽

(𝑒)(𝝃𝑙)∇𝜓𝑗 (𝝃𝑙) ⋅
(

𝒖𝑘(𝝃𝑙)Δ𝑝𝑘(𝝃𝑙)
)(𝑒). (A.11)

The DG discretization Eq. (A.8) of the mass equation can be rewritten in a simple form as
𝑑𝚫𝒑(𝑒)𝑘
𝑑𝑡

=
(

𝑴 (𝑒))−1𝒓(𝑒)𝑘 , (A.12)

where 𝒓(𝑒)𝑘 , 𝑘 = 1,… , 𝑁𝑙 is obtained from the combination of the terms in the right-hand side of the Eq. (A.8).
The DG discretization of the weak form momentum Eqs. (A.2)-(A.3) are obtained in a similar way as in the case of mass equation. 

The final form of the DG discretization of the momentum equations are given by
𝑑𝑼 (𝑒)

𝑘
𝑑𝑡

− 𝑓𝑽 (𝑒)
𝑘 =

(

𝑴 (𝑒))−1𝒓(𝑒)𝑈,𝑘, (A.13)

𝑑𝑽 (𝑒)
𝑘
𝑑𝑡

+ 𝑓𝑼 𝑒
𝑘 =

(

𝑴 (𝑒))−1𝒓(𝑒)𝑉 ,𝑘𝑒, (A.14)

where 𝒓(𝑒)𝑈,𝑘, 𝑘 = 1,… , 𝑁𝑙 is a vector of size 𝑀𝑁  obtained from the spatial discretization of the right-hand side of the equation (𝐴.2)
and 𝒓(𝑒)𝑉 ,𝑘, 𝑘 = 1,… , 𝑁𝑙 is a vector of size 𝑀𝑁  obtained from the spatial discretization of the right-hand side of 𝑣-momentum equation 
(𝐴.3) within the element 𝑒. The quantity 𝑼 (𝑒)

𝑘  and 𝑽 (𝑒)
𝑘  are the solution vectors of size 𝑀𝑁  within the element 𝑒.
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The DG discretizations of the barotropic equations are obtained in a similar way as described for the baroclinic equations in the 
proceedings 

𝑑(𝜼𝒑′𝑏)
(𝑒)

𝑑𝑡
=
(

𝑴 (𝑒))−1𝒓(𝑒)𝑏 , (A.15)

𝑑𝑼 (𝑒)
𝑏
𝑑𝑡

− 𝑓𝑽 (𝑒)
𝑏 =

(

𝑴 (𝑒))−1𝒓(𝑒)𝑏,𝑈 , (A.16)

𝑑𝑽 (𝑒)
𝑏
𝑑𝑡

+ 𝑓𝑼 (𝑒)
𝑏 =

(

𝑴 (𝑒))−1𝒓(𝑒)𝑏,𝑉 , (A.17)

where (𝜼𝒑′𝑏)(𝑒),𝑼
(𝑒)
𝑏  and 𝑽 (𝑒)

𝑏  are the solution vectors within the element 𝑒 for the barotropic mass, 𝑢-momentum and 𝑣-momentum 
respectively. The quantities 𝒓(𝑒)𝑏 , 𝒓

(𝑒)
𝑏,𝑈  and 𝒓(𝑒)𝑏,𝑉  are vectors obtained from the spatial discretization of the right-hand side of the Eqs. (13) 

and (8). The Eq. (A.15) is the DG discretization of the Eq. (13) while the Eqs. (A.16) and (A.16) are the component-wise discretizations 
of the vector form of the momentum equation in (8). 

References

[1] S.M. Griffies, C. Böning, F.O. Bryan, E.P. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A.-M. Treguier, D. Webb, Developments in ocean climate modelling, Ocean 
Modell. 2 (3–4) (2000) 123–192.

[2] E.P. Chassignet, H.E. Hurlburt, O.M. Smedstad, G.R. Halliwell, A.J. Wallcraft, E.J. Metzger, B.O. Blanton, C. Lozano, D.B. Rao, P.J. Hogan, et al., Generalized 
vertical coordinates for eddy-resolving global and coastal ocean forecasts, Oceanography 19 (1) (2006) 118.

[3] R. Bleck, An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean Modell. 4 (1) (2002) 55–88.
[4] E.P. Chassignet, L.T. Smith, G.R. Halliwell, R. Bleck, North atlantic simulations with the hybrid coordinate ocean model (HYCOM): impact of the vertical 

coordinate choice, reference pressure, and thermobaricity, J. Phys. Oceanogr. 33 (12) (2003) 2504–2526.
[5] E. Audusse, A multilayer saint-venant model: derivation and numerical validation, Discr. Contin. Dyn. Syst. B 5 (2) (2005) 189–214.
[6] F. Bouchut, V. Zeitlin, A robust well-balanced scheme for multi-layer shallow water equations, Discr. Contin. Dyn. Syst. Ser. B 13 (4) (2010) 739–758.
[7] N. Izem, M. Seaid, A well-balanced Runge-Kutta discontinuous Galerkin method for multilayer shallow water equations with non-flat bottom topography, Adv. 

Appl. Math. Mech. 14 (3) (2022).
[8] Z. Zhang, H. Tang, J. Duan, High-order accurate well-balanced energy stable finite difference schemes for multi-layer shallow water equations on fixed and 

adaptive moving meshes, J. Comput. Phys. 517 (2024) 113301.
[9] R.L. Higdon, A two-level time-stepping method for layered ocean circulation models: further development and testing, J. Comput. Phys. 206 (2) (2005) 463–504.
[10] R. Bleck, L.T. Smith, A wind-driven isopycnic coordinate model of the north and equatorial Atlantic ocean: 1. model development and supporting experiments, 

J. Geophys. Res. Oceans 95 (C3) (1990) 3273–3285.
[11] R.L. Higdon, Multiple time scales and pressure forcing in discontinuous Galerkin approximations to layered ocean models, J. Comput. Phys. 295 (2015) 230–260.
[12] H. Berntsen, Z. Kowalik, S. Sælid, K. Sørli, Efficient numerical simulation of ocean hydrodynamics by a splitting procedure, Model. Identific. Control 2 (4) (1981) 

181–199.
[13] R.L. Higdon, A two-level time-stepping method for layered ocean circulation models, J. Comput. Phys. 177 (1) (2002) 59–94.
[14] P.D. Killworth, D.J. Webb, D. Stainforth, S.M. Paterson, The development of a free-surface bryan–cox–semtner ocean model, J. Phys. Oceanogr. 21 (9) (1991) 

1333–1348.
[15] R.J. Spiteri, S.J. Ruuth, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal. 40 (2) (2002) 469–491.
[16] R. Lan, L. Ju, Z. Wang, M. Gunzburger, P. Jones, High-order multirate explicit time-stepping schemes for the baroclinic-barotropic split dynamics in primitive 

equations, J. Comput. Phys. 457 (2022) 111050.
[17] J.A. Escobar-Vargas, P.J. Diamessis, F.X. Giraldo, High-order discontinuous element-based schemes for the inviscid shallow water equations: spectral multidomain 

penalty and discontinuous Galerkin methods, Appl. Math. Comput. 218 (9) (2012) 4825–4848.
[18] M. Ainsworth, Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, J. Comput. Phys. 198 (1) (2004) 106–130.
[19] R. Gandham, High performance high-order numerical methods: applications in ocean modeling, Ph.D. thesis, Rice University, 2015. https://doi.org/10.13140/

RG.2.1.1856.6641
[20] P. Fischer, D. Gottlieb, On the optimal number of subdomains for hyperbolic problems on parallel computers, Intern. J. Supercomput. Appl. High Perform. 

Comput. 11 (1) (1997) 65–76.
[21] A. Müller, M.A. Kopera, S. Marras, L.C. Wilcox, T. Isaac, F.X. Giraldo, Strong scaling for numerical weather prediction at petascale with the atmospheric model 

NUMA, Int. J. High Perform. Comput. Appl. 33 (2) (2019) 411–426.
[22] F.X. Giraldo, J.S. Hesthaven, T. Warburton, Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations, J. Comput. Phys. 181 

(2) (2002) 499–525. https://doi.org/https://doi.org/10.1006/jcph.2002.7139
[23] C. Dawson, V. Aizinger, A discontinuous Galerkin method for three-dimensional shallow water equations, J. Sci. Comput. 22 (2005) 245–267.
[24] V. Aizinger, C. Dawson, The local discontinuous Galerkin method for three-dimensional shallow water flow, Comput. Methods Appl. Mech. Eng. 196 (4–6) (2007) 

734–746.
[25] E.J. Kubatko, J.J. Westerink, C. Dawson, Hp discontinuous Galerkin methods for advection dominated problems in shallow water flow, Comput. Methods Appl. 

Mech. Eng. 196 (1–3) (2006) 437–451.
[26] D. Wirasaet, E.J. Kubatko, C.E. Michoski, S. Tanaka, J.J. Westerink, C. Dawson, Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, 

quadrilateral, and polygonal elements for nonlinear shallow water flow, Comput. Methods Appl. Mech. Eng. 270 (2014) 113–149.
[27] S. Faghih-Naini, S. Kuckuk, V. Aizinger, D. Zint, R. Grosso, H. Köstler, Quadrature-free discontinuous Galerkin method with code generation features for shallow 

water equations on automatically generated block-structured meshes, Adv. Water Resour. 138 (2020) 103552.
[28] S. Blaise, A. St-Cyr, D. Mavriplis, B. Lockwood, Discontinuous Galerkin unsteady discrete adjoint method for real-time efficient tsunami simulations, J. Comput. 

Phys. 232 (1) (2013) 416–430.
[29] B. Bonev, J.S. Hesthaven, F.X. Giraldo, M.A. Kopera, Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami 

modeling and prediction, J. Comput. Phys. 362 (2018) 425–448.
[30] L. Arpaia, M. Ricchiuto, A.G. Filippini, R. Pedreros, An efficient covariant frame for the spherical shallow water equations: well balanced DG approximation and 

application to tsunami and storm surge, Ocean Modell. 169 (2022) 101915.
[31] C. Dawson, C.J. Trahan, E.J. Kubatko, J.J. Westerink, A parallel local timestepping Runge–Kutta discontinuous Galerkin method with applications to coastal 

ocean modeling, Comput. Methods Appl. Mech. Eng. 259 (2013) 154–165.
[32] N. Beisiegel, S. Vater, J. Behrens, F. Dias, An adaptive discontinuous Galerkin method for the simulation of hurricane storm surge, Ocean Dyn. 70 (5) (2020) 

641–666.

Journal of Computational Physics 545 (2026) 114496 

25 

http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0001
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0001
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0002
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0002
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0003
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0004
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0004
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0005
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0006
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0007
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0007
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0008
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0008
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0009
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0010
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0010
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0011
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0012
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0012
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0013
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0014
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0014
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0015
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0016
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0016
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0017
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0017
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0018
https://doi.org/10.13140/RG.2.1.1856.6641
https://doi.org/10.13140/RG.2.1.1856.6641
https://doi.org/10.13140/RG.2.1.1856.6641
https://doi.org/10.13140/RG.2.1.1856.6641
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0020
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0020
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0021
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0021
https://doi.org/https://doi.org/10.1006/jcph.2002.7139
https://doi.org/https://doi.org/10.1006/jcph.2002.7139
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0023
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0024
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0024
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0025
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0025
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0026
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0026
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0027
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0027
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0028
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0028
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0029
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0029
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0030
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0030
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0031
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0031
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0032
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0032


Y. Gahounzo, M. Kopera, R.L. Higdon et al.

[33] R. Ford, C.C. Pain, M.D. Piggott, A. Goddard, C. De Oliveira, A.P. Umpleby, A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. 
Part I: model formulation, Mon. Weather Rev. 132 (12) (2004) 2816–2831.

[34] S. Blaise, R. Comblen, V. Legat, J.-F. Remacle, E. Deleersnijder, J. Lambrechts, A discontinuous finite element baroclinic marine model on unstructured prismatic 
meshes: Part I: space discretization, Ocean Dyn. 60 (2010) 1371–1393.

[35] T. Kärnä, S.C. Kramer, L. Mitchell, D.A. Ham, M.D. Piggott, A.M. Baptista, Thetis coastal ocean model: discontinuous Galerkin discretization for the three-
dimensional hydrostatic equations, Geosci. Model Dev. 11 (11) (2018) 4359–4382.

[36] R.L. Higdon, Pressure forcing and dispersion analysis for discontinuous Galerkin approximations to oceanic fluid flows, J. Comput. Phys. 249 (2013) 36–66.
[37] R.L. Higdon, Discontinuous Galerkin methods for multi-layer ocean modeling: viscosity and thin layers, J. Comput. Phys. 401 (2020) 109018.
[38] F.X. Giraldo, J.F. Kelly, E.M. Constantinescu, Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA), 

SIAM J. Sci. Comput. 35 (5) (2013) B1162–B1194. https://doi.org/10.1137/120876034
[39] D.S. Abdi, F.X. Giraldo, Efficient construction of unified continuous and discontinuous Galerkin formulations for the 3D Euler equations, J. Comput. Phys. 320 

(2016) 46–68.
[40] M.A. Kopera, Y. Gahounzo, E.M. Enderlin, F.X. Giraldo, W. Maslowski, Non-hydrostatic unified model of the ocean with application to ice/ocean interaction 

modeling, GEM-Intern. J. Geomath. 14 (1) (2023) 2.
[41] E.P. Chassignet, H.E. Hurlburt, O.M. Smedstad, G.R. Halliwell, P.J. Hogan, A.J. Wallcraft, R. Bleck, Ocean prediction with the hybrid coordinate ocean model 

(HYCOM), Ocean Weather forecast. An Integr. View Oceanogr. (2006) 413–426.
[42] R.L. Higdon, An automatically well-balanced formulation of pressure forcing for discontinuous Galerkin methods for the shallow water equations, J. Comput. 

Phys. 458 (2022) 111102.
[43] F.X. Giraldo, An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases: Analysis, Algorithms, and Applications,  24, Springer Nature, Cham, 

Switzerland, Cham, Switzerland, 2020.
[44] P.G. Ciarlet, The finite element method for elliptic problems, North-Holland (1977).
[45] B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation, SIAM, 2008.
[46] E.F. Toro, The HLL and HLLC Riemann Solvers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 315–344. https://doi.org/10.1007/b79761_10
[47] B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (6) (1998) 

2440–2463.
[48] P. Castillo, B. Cockburn, I. Perugia, D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. 

Anal. 38 (5) (2000) 1676–1706.
[49] F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations, J. Comput. 

Phys. 131 (2) (1997) 267–279.
[50] S. Ruuth, Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math. Comput. 75 (253) (2006) 183–207.
[51] R. Bleck, D. Boudra, Wind-driven spin-up in eddy-resolving ocean models formulated in isopycnic and isobaric coordinates, J. Geophys. Res. Oceans 91 (C6) 

(1986) 7611–7621.
[52] C. Burstedde, L.C. Wilcox, O. Ghattas, P4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33 (3) (2011) 

1103–1133. https://doi.org/10.1137/100791634
[53] C. Geuzaine, J.-F. Remacle, Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng. 79 (11) 

(2009) 1309–1331.
[54] E.G. Fernández, M.J.C. Díaz, M. Dumbser, T.M. De Luna, An arbitrary high order well-balanced ADER-DG numerical scheme for the multilayer shallow-water 

model with variable density, J. Sci. Comput. 90 (1) (2022) 52.
[55] F.X. Giraldo, J.S. Hesthaven, T. Warburton, Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations, J. Comput. Phys. 181 

(2) (2002) 499–525.
[56] K.T. Mandli, Finite volume methods for the multilayer shallow water equations with applications to storm surges, University of Washington, 2011.
[57] S. Marras, M.A. Kopera, F.X. Giraldo, Simulation of shallow-water jets with a unified element-based continuous/discontinuous Galerkin model with grid flexibility 

on the sphere, Q. J. R. Meteorolog. Soc. 141 (690) (2015) 1727–1739.
[58] M.A. Kopera, F.X. Giraldo, Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application 

to atmospheric simulations, J. Comput. Phys. 275 (2014) 92–117.

Journal of Computational Physics 545 (2026) 114496 

26 

http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0033
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0033
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0034
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0034
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0035
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0035
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0036
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0037
https://doi.org/10.1137/120876034
https://doi.org/10.1137/120876034
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0039
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0039
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0040
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0040
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0041
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0041
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0042
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0042
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0043
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0043
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0044
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0045
https://doi.org/10.1007/b79761_10
https://doi.org/10.1007/b79761_10
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0047
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0047
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0048
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0048
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0049
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0049
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0050
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0051
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0051
https://doi.org/10.1137/100791634
https://doi.org/10.1137/100791634
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0053
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0053
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0054
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0054
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0055
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0055
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0056
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0057
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0057
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0058
http://refhub.elsevier.com/S0021-9991(25)00778-8/sbref0058

	High-order discontinuous Galerkin schemes for the barotropic-baroclinic splitting in two-dimensional layered shallow water equations 
	1 Introduction
	1.1 Ocean time-scales
	1.2 Spatial discretizations

	2 Governing equations and barotropic-baroclinic splitting
	2.1 Brief overview of HYCOM
	2.2 Layer equations
	2.3 Barotropic equations
	2.4 Splitting of the prognostic variables
	2.5 Shear stress terms

	3 Discontinuous Galerkin method
	3.1 Numerical flux terms
	3.2 Pressure forcing at cell edges
	3.3 Viscosity terms

	4 Time integration
	4.1 Methods for the layer equations and barotropic equations
	4.2 Consistency between the layer equations and the barotropic equations

	5 Results
	5.1 Well-balanced test
	5.2 Perturbation of baroclinic wave propagation
	5.3 Double-gyre circulation
	5.3.1 Simulations with free-slip boundary condition
	5.3.2 Simulations with no-slip boundary condition

	5.4 Eddy kinetic energy and time-averaged kinetic energy
	5.5 Unstructured mesh
	5.6 Parallel performance
	5.7 Comparison between centered and upwind fluxes

	6 Conclusion
	A Spatial discretization


