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Abstract

In this paper, the statistical properties of the mean flow reconstruction using Lagrangian data are studied, considering the
classical AbinningB approach based on space-time averaging of finite difference velocity estimates. The work is performed
numerically, using as the test flow a solution from a high resolution MICOM simulation of the North Atlantic. A set of
trajectories are computed, simulating the motion of surface drifters initially launched on a regular 18=18 array, transmitting
positions every D ts12 h, and analyzed over approximately 2 years of the simulation. The drifter distribution in time is
influenced by the Ekman flow, resulting in maximum data concentration in the subtropical convergence regions and
minimum concentration in the upwelling regions.

Pseudo-Eulerian averages U , computed from Langrangian data, are compared to AtrueB Eulerian averages U ,pE E
Žcomputed from grid point velocities inside 18=18 bins for approximately 2 years. For the full Lagrangian data set which is

.substantially larger than the WOCE requirement , U yU is on the order of 10–20 cmrs in regions of major oceanpE E

currents. These differences are usually not significant with respect to the sampling error, due to subgrid-scale variability and
finite sampling, except in a few regions. Patterns of the magnitude of the differences between U and U in these regionspE E

Ž .show that U tends to underestimate overestimate the velocity in the eastern equatorial upwelling regimerSouthpE
Ž .Equatorial current western boundary currents . This study suggests that these underroverestimates by pseudo-Eulerian

averaging of Lagrangian data are related to a bias due to mesoscale divergences, and result in nonzero correlations between
ˆ X X² : Ž .instantaneous drifter concentration and velocity, U s u c rC Davis, 1998; Gent and McWilliams, 1990 . In thisB

Ž . Ž .framework, the overestimates underestimates are interpreted as due to preferential reduced sampling of high velocity
Ž .regions by Lagrangian particles, due to convergent divergent phenomena. A similar phenomenon has been observed for

real drifters and biological organisms. The overestimates are found to increase with sub-sampling in space and decrease with
sub-sampling in time. For D ts3 days, we actually find underestimates, probably because instantaneous high velocities are
smoothed and energetic drifters are not appropriately accounted for in the bins. Direct implications of the results for the

Ž .analysis of real data, and directions for future work in particular investigation of the bias are discussed. q 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Lagrangian data play an important role in our
understanding of ocean circulation and dynamics.
Lagrangian floats can provide extensive sampling in
both the horizontal and the vertical, a unique feature
among the presently available observing platforms.
Satellite data provide excellent horizontal and tem-
poral coverage but they are confined to the ocean
surface, while hydrographic or current meter data
can provide high vertical resolution information, but
cannot easily achieve good horizontal coverage. La-
grangian data are an important component of WOCE,
providing direct information on velocity, transport,

Ž .and also when having profiling capability on verti-
cal stratification. Here, we focus on the velocity
information, and on how it can be used to estimate
the mean Eulerian velocity field U.

ŽIn a number of papers e.g., Rossby et al., 1983;
.Owens, 1991; Brugge, 1995; Davis, 1998 , La-¨

grangian data are used to estimate ocean mean flows.
The mean flow reconstruction, often indicated as
Apseudo-EulerianB averaging, is usually performed
by averaging over certain spatial bins and over cer-
tain time periods, using all the available velocities
computed from Lagrangian data by finite differenc-
ing of the buoy positions. While the AbinningB re-
construction is technically very simple, it can be
conceptually delicate and can lead to errors or biases
with respect to the true Eulerian mean velocity field,

Žas discussed by a number of authors e.g., Davis,
.1991; Mockett, 1999 . These biases can be related to

sampling and dynamical inhomogeneities in space
and time, as well as to sampling resolution. The
impact of such biases has been tested in previous
studies for simple idealized flows, and it has been
shown that sampling biases have the potential to
contaminate pseudo-Eulerian estimates of the mean
flow. This is an important issue, given the relevant
role of Lagrangian data in our knowledge of the
global ocean circulation.

In this paper, an analysis of the estimation errors
for calculating mean Eulerian velocities from La-
grangian data, as a function of horizontal and tempo-
ral resolution of the Lagrangian data, is performed
using a ArealisticB numerical flow, i.e., a flow with
sufficient geographical and dynamical complexity to
be considered as a Acontrolled laboratoryB of a real

oceanic flow. The obvious advantage of using nu-
merical data is that the true Eulerian mean is known,
so that the pseudo-Eulerian averaging errors can be
directly evaluated. At the same time, the flow is
complex enough so that realistic issues and problems
can be identified and studied. Our experimental La-
grangian data densities are, at a minimum, in the
range proposed by WOCE, i.e., an instantaneous
horizontal coverage of approximately one drifter per
58=58 for several years. Pseudo-Eulerian averaging
errors, as a function of space and time sampling, are
estimated for simulated drifter trajectories in the
tropical and North Atlantic.

The numerical flow that we consider is a high
Ž .resolution 1r128 solution of the Miami Isopycnic

Ž .Coordinate Model MICOM configured for the
North Atlantic. Numerical drifters are launched in
the surface mixed layer, with an initial resolution of
1 drifter per 18=18, and their trajectories are calcu-
lated for a period of approximately 2 years. In a

Žcompanion paper Garraffo et al., 2001, hereafter
.G01 , statistics from the numerical drifters are com-

pared with those from real in situ drifters, showing
that the numerical results capture most of the charac-
teristics of the mean flow estimated from the data.
More significant differences are found regarding the
eddy field statistics, with the model underestimating
eddy kinetic energy and overestimating Lagrangian
velocity time scales. This is likely due mostly to the
lack of high frequency forcing in the model and to
the fact that there is no vertical shear in the bulk

Ž .Kraus–Turner mixed layer Chassignet et al., 2001 .
In this study, only numerical drifters are consid-

ered, and the focus is on a comparison between
pseudo-Eulerian and Eulerian estimates of the mean
flow U. First, pseudo-Eulerian estimates of U are
computed considering the complete Lagrangian data
set, i.e., all of the data obtained from the drifters
seeded at 18 resolution in longitude and latitude and
AtrackedB for approximately 2 years with a temporal
resolution of D ts12 h for recording position data.
The total number of these data approximately corre-
sponds to an average coverage of 58=58 for 50
years, definitely more than the WOCE requirement,
providing therefore an upper limit to realistic re-
source availability. The pseudo-Eulerian mean veloc-
ity field estimated from these data is compared with
the AtrueB Eulerian mean velocity field that is com-
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puted directly from all of the model surface velocity
data, and the nature of different sources of error is
considered.

The effect of sub-sampling in space and time is
then considered. In space, the number of drifters is
decreased by decreasing the horizontal resolution in
the initial drifter releases to 1 drifter per 58=58.
This last case can be considered as a lower limit for
the WOCE resolution, corresponding to approxi-
mately two drifter-years per 58=58 over the 2-year
analysis period. In time, the temporal resolution is
decreased from one particle position every 12 h to
one particle position every 3 days. One update in
position every 3 days is the sampling rate of many of
the WOCE drifters.

The paper is organized as follows. In Section 2,
the model and the Lagrangian data set are briefly
described. In Section 3, the basic methodology and
error analysis are discussed. A comparison between
pseudo-Eulerian and Eulerian estimates and the ef-
fects of sub-sampling are presented in Section 4. A
summary and a discussion are found in Section 5.

2. The numerical model and the Lagrangian data
set

A very high resolution North Atlantic ocean simu-
lation has been carried out for 20 years with the

ŽMiami Isopycnic Coordinate Ocean Model MICOM;
.Bleck et al., 1992; Bleck and Chassignet, 1994 . The

computational domain is the North and Equatorial
Atlantic Ocean basin from 288S to 658N, including
the Caribbean Sea and the Gulf of Mexico. The
bottom topography is derived from a digital terrain
data set with 5X latitude–longitude resolution
Ž .ETOPO5 . The surface boundary conditions are
based on the COADS monthly climatological data

Ž .sets Da Silva et al., 1994 . The simulation allows
estimation of the natural variability of the model.
This is a necessary first step to later assess the

Žimpact of daily forcing such a simulation is in
.progress . Open ocean boundaries are treated as

closed, but are outfitted with 38 buffer zones in
which temperature, T , and salinity, S, are linearly
relaxed toward their seasonally varying climatologi-

Ž .cal values Levitus, 1982 . The buffer zones restore
the T and S fields to climatology in order to approx-

imately recover the vertical shear of the currents
through geostrophic adjustment.

Ž .The horizontal grid 6 km on average is defined
on a Mercator projection with resolution given by

Ž .1r128=1r128 cos f , where f is the latitude. The
vertical density structure is represented by 15 isopyc-
nic layers, topped by a dynamically active Kraus–
Turner surface mixed layer that exchanges mass and

Žproperties with the interior layers see Bleck et al.,
.1989, for details . The vertical discretization was

chosen to provide maximum resolution in the upper
part of the ocean. The computational requirements
for basin-scale ocean modeling at this resolution are
extreme and demand the latest in high performance

Ž .computing Bleck et al., 1995 . The model was spun
up from the rest for a total of 20 years.

The high horizontal grid resolution drastically
improved the model’s behavior in comparison to that
of previous coarse-resolution simulations. The major

Ž .improvements are a a correct Gulf Stream separa-
Ž .tion and b higher eddy activity. These results sup-

port the view that an inertial boundary layer, which
results from the fine resolution, is an important

¨Žfactor in the separation process Ozgokmen et al.,¨
.1997 , and that resolution of the first Rossby radius

of deformation is necessary for a correct representa-
tion of baroclinic instabilities. The simulated Gulf
Stream is highly inertial, meanders strongly, and
sheds several cyclonic and anti-cyclonic rings. Paiva

Ž . Ž .et al. 1999 , G01 and Chassignet et al. 2001
discuss the strengths and weaknesses of this simula-
tion.

At the beginning of model year 14, a total of
25,000 numerical particles are launched at the sur-

Ž .face in the mixed layer and at depths of 400, 1000,
Ž1500 and 3000 m, in a regular 18=18 grid ;5000

.particles at each level . The trajectories and diagnos-
tics are then computed for the 2-year period. The
focus here is on the surface particles whose trajecto-
ries are calculated using the modeled surface veloc-
ity fields that are representative of the depth-aver-
aged mixed layer, which varies both seasonally and
with latitude. The mixed layer depth is generally
between 20 and 100 m, but can occasionally reach
2000 m in water in the high latitudes during deep

Ž .water formation events Smith et al., 2000 . The
numerical particle advection scheme is second-order
Runge–Kutta, with 16-point space interpolation in



( )Z.D. Garraffo et al.rJournal of Marine Systems 29 2001 177–200180

the ocean interior and 4-point near the coasts. Parti-
cles are advected with a 2-h time step. Off-line tests
with a frozen velocity field suggest that, for eddies
and currents, errors due to the interpolation scheme
are negligible at least for scales on the order of 100
days. The advection inside the first grid box from the
coast is accomplished by interpolation, imposing zero
velocity at the first point inside land. Consequently,
in the first half-grid box from the coast, the La-
grangian particles have a slightly larger along coast
velocity than that which would be obtained by linear
interpolation from the model with no-slip boundary
conditions. This choice was made because of its
simplicity and because it minimized the loss of
particles near the coast on the computational C-grid.
Very few cases of AbeachingB were observed with

Ž .this boundary condition less than 3% . Most of the
particles that AbeachedB followed successive corners
along the coast, suggesting errors in particle advec-

tion due to space interpolation and time extrapola-
tion.

The total number of surface position data in our
model ocean for the 2-year analysis period is about

Ž .3,600,000 drifter-days Fig. 1a , or approximately 20
times larger than the near-surface drifter set for the
same region as the model, and during the time period
1989–1998, archived at the WOCErCLIVAR Drifter
Data Assembly Center at NOAA-AOML, as dis-
cussed in G01. It is quite evident in Fig. 1a that there
is preferential sampling over the 2-year time period
even though the initial AreleaseB of numerical drifters
was uniform in space. The highest sampling densities
Ž .about 2000 drifter-days per 18=18 are found in the
subtropical convergence zones and the lowest densi-
ties in the equatorial divergence zones, due to wind-
driven Ekman transport. A similar tendency can be
seen also in the distribution of the observed in situ

Ž .drifters G01 , even though the phenomenon is less

2 Ž . Ž . Ž .Fig. 1. Number of drifter-daysrdeg , for a all the numerical drifters initial seeding on a 18=18 grid ; b initially seeded on a 58=58
grid.
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Ž .Fig. 1 continued .

evident because the initial distribution was not ho-
mogeneous and the lifetime of the in situ drifters is

Žconsiderably shorter 238 days on average, with
.many drifters living less than 200 days .

Fig. 1b shows the data density for the spatially
Žsubsampled one drifter initially seeded every 58=

.58 data set used in our analysis. The total number of
position data is 144,000 drifter-days. In most of our
analysis domain, the density does not exceed 100
drifter-days per 18=18, with almost no observations
in the eastern boundary upwelling regions and at
subpolar latitudes.

3. Methodology and error estimates

The Eulerian, U , and pseudo-Eulerian, U , meanE pE

velocity fields for the full data set are estimated as
area-time averages computed over 18=18 bins and

over the 2-year period. The U estimates are com-E

puted using all the velocity data u from all of the
grid points in each bin during the 2-year period. The
Eulerian AtruthB data are instantaneous velocities
measured once per day and are at 1r128 horizontal
resolution u. The average number of grid points per
bin is 181, so that the average total number of
observation day per bin is approximately 130,300.
The number of independent measurements is of
course smaller, and depends on the time and space
scales of the velocity field.

The pseudo-Eulerian average estimates U arepE

computed using the velocity estimates U calculatedpE

from the Lagrangian trajectory positions by finite
differencing. Velocities are computed at the midpoint
between two successive particle locations. The tem-
poral resolution of the position data is D ts12 h for
the full data set, and 1 and 3 days for the temporal
sub-sampled data sets. All of the position data for
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drifter trajectories falling into each bin during the
2-year period are considered. Even though the initial
sampling is uniform, the total data density in drifter-

Ž .daysrbin Fig. 1 varies in space, as a consequence
of the large scale Ekman divergence pattern, as
discussed in G01. For the full data set, with an initial
release at 18 horizontal resolution, the maximum
number of drifter-daysrbin is 2000, occurring in a
restricted area in the center of the convergence re-

Ž .gion Fig. 1a , while for the spatially sub-sampled
data set at 58 horizontal resolution, the maximum

Ždata densities are around 120 drifter-daysrbin Fig.
.1b .
In the following, the nature of the statistical errors

expected to occur in the mean velocity estimates is
discussed.

3.1. Estimation errors

The Eulerian estimator is an unbiased one so that
no biases are expected in the estimates U . On theE

other hand, U is expected to be affected by sam-E

pling errors due to finite sampling and subscale
variability. In the comparison with U performed inpE

Section 4, however, this error is neglected and U isE

considered as the AtrueB value of the average Eule-
rian velocity, since the number of data points in the
Eulerian estimates is consistently much larger than
the number of pseudo-Eulerian estimates.

For the pseudo-Eulerian estimates, the finite sam-
pling error, expected to be larger because of the
lower sampling density, is explicitly considered in
the comparison. The root-mean-square error for each

Žvelocity component is given by Riser and Rossby,
.1983; Davis, 1991

)Er U ssr N , 1Ž .Ž . (Ž .pE pE

where s is the square root of the velocity variance
and N ) is the number of independent measure-pE

) Žments. N can be approximated as Riser andpE
.Rossby, 1983; Owens, 1991

N )fN D tr2T , 2Ž .pE pE

where N is the total number of measurements, D tpE

is the sampling interval, and T is the Lagrangian
Ž .integral time scale. In Eq. 2 , for simplicity, only

the time correlation along trajectories is considered,
while the space correlations of concomitant drifters
are neglected.

In addition to sampling errors, bin-averaged La-
grangian estimates U are also potentially affectedpE

by bias errors, so that, even in the limit of high data
density, they do not necessarily converge to true

Ž .Eulerian estimates. As discussed by Davis 1991 ,
the bias error, or difference between the pseudo-

Ž .Eulerian tracer and Eulerian velocity, can be ex-
pressed as

ˆ X X² :U sU yU s u c rC , 3Ž .B pE E

² :where for each bin, indicates the ensemble-space
average, cXscyC, c is the instantaneous drifter
concentration, and C is the average concentration.

Ž .Eq. 3 states that since U is computed as the fluxpE

of marked particles, nonzero correlations between
particle concentration and velocity result in a bias.

There are several mechanisms that can lead to
Ž .non-zero correlation in Eq. 3 . Some of them are

related to eddy dispersion, in the presence of nonuni-
form eddy diffusivity K or nonuniform concentration
Ž . Ž .C x . Davis 1991 has investigated these mecha-

Žnisms using a flux vs. gradient-history law Davis,
. ² X X:1987 to parameterize the form of u c rC. Two

ˆsimple limiting forms to describe U have beenB

derived, corresponding respectively to the known
Adiffusion biasB and Aarray biasB.

ˆŽ .Diffusion bias e.g., Freeland et al., 1975 , U , isK
Ž .the limiting form of Eq. 3 that emphasizes the

effects of spatial inhomogeneities in the diffusivity
tensor K, and is obtained neglecting spatial varia-
tions of U , and of =PKE

ˆ ˆU fU s=PK . 4Ž .B K

Ž .Eq. 4 expresses the fact that, in deployments from
a point, particles tend to move farther toward regions
at high K, inducing a mean particle motion.

ˆ Ž .Array bias, U ,is the limiting form of Eq. 3C

describing the effects of gradients of C, and is
Ž .obtained considering C x steady in time.

=C
ˆ ˆU fU syKP= ln C syKP . 5Ž . Ž .B C C

Ž .Eq. 5 represents a bias toward low data concentra-
tion regions, and it expresses the fact that particles
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moving randomly tend to move away from their
positions at any given time. As a consequence, if
more particles are, on the average, concentrated in
one region, it would appear that more particles move
away from that region under the action of turbulent
dispersion, inducing a down gradient bias in the
mean estimate.

Ž . Ž .Notice that two limiting forms 4 and 5 do not
strictly apply to our case, since the underlying as-
sumptions are not exactly met. In particular, the
large-scale concentration C is slowly varying in time
in our results, because of the divergent nature of the

Ž .large scale flow, in which case Eq. 5 would not be
Ž . Ž .valid. Also, Eqs. 4 and 5 describe specifically the

effects of eddy dispersion, while in our application
dispersion processes are expected to be affected also
by shear, i.e., by spatial variation of the mean flow

Ž . Ž .U x e.g., Zambianchi and Griffa, 1994 . Never-E
Ž . Ž .theless, expressions 4 and 5 are of potential inter-

est because they indicate bias mechanisms related to
the eddy field structure, and they will be explicitly
estimated and further investigated in the following.

Another mechanism potentially leading to nonzero
Ž .correlations in Eq. 3 is related to mesoscale diver-

gence processes in the flow. The instantaneous con-
centration c inside the averaging bin is expected to
vary as a function of the local divergence. If uX is
correlated to the divergence, this implies a preferen-
tial sampling and therefore a bias velocity. In order
to express this effect in terms of observable vari-

Ž .ables, Davis 1998 considers the ideal case of a
layer of fluid bounded by material surfaces and
characterized by instantaneous thickness h, with av-
erage H, and instantaneous deviation from the aver-

X Žage h . If the layer is uniformly and densely per
.area sampled by drifters, it is expected that crCs

Ž .hrH. In this ideal case, Eq. 3 can be expressed as a
AdivergenceB bias

ˆ X X ˆ X X² : ² :U s u c rCfU s u h rH . 6Ž .B D

In our case, the situation is not necessarily so
simple, because the mixed layer cannot be consid-
ered as a bounded layer, since other nonconservative
phenomena, such as turbulent mixing and surface
mass flux, can occur. Also, the sampling is not as

Ž .dense as assumed in Eq. 6 . Despite this, as for the
Ž . Ž . Ž .other limiting forms 4 and 5 , Eq. 6 will be

considered in the following as illustrative of a spe-
cific mechanism to be investigated.

Notice that the component of the bias related to
ˆdivergence process, U , cannot be completely elimi-D

nated by appropriate sampling, as could be argued
Ž .for the array bias Eq. 5 . This bias expresses the

conceptual difference between tracer advection ve-
locity and average Eulerian velocity, and as noted by

Ž . Ž .Davis et al. 1996 and Davis 1998 , is also related
to the eddy transport as parameterized by Gent and

Ž .McWilliams 1990 .
Ž .In addition to Eq. 3 , other possible sources of

bias errors exist, for example sources of error related
Ž .to sample resolution. Mockett 1999 has shown, in a

numerical study of a meandering jet, that the time
sampling interval D t plays an important role, and
that estimates using data with large D t tend to
underestimate the mean velocity. As D t increases,
estimation variance decreases at the expense of tem-
poral resolution and biased estimates of the mean.

ŽThis is the well known in the field of statistical
.optimization and estimation variance-bias trade-off.

This error is evaluated below, for D ts3 days.
Also, additional errors might arise from the nu-

merical algorithm used for calculating the simulated
particle trajectories. Simulated Lagrangian trajecto-
ries are, in fact, computed by interpolating Eulerian
velocities u, and it is possible that the interpolation
introduces biases in trajectory positions and in u .pE

We have checked for this source of error by consid-
ering an ensemble of random points in space and
time, and by comparing u and u , where u ispE pE

computed with D ts12 h. The values agree to within
1%, indicating that the numerical error is negligible.

3.2. A-priori estimates of error sizes

It is useful to have estimates of the expected
errors to provide guidance in the interpretation of the

Ž .results. In the following, the sampling errors, Er UpE
Ž .from Eq. 1 , are evaluated for the full data set

Ž .initial seeding on the 18=18 grid . Estimates for the
Ž Ž ..bias errors Eq. 3 cannot be computed directly

Aa-prioriB, i.e., as functions of the average macro-
scopic variables describing the flow and the drifter

Ž .distribution, s , C, K. Only the approximations 4
Ž .and 5 , related to eddy dispersion effects, can be
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computed in terms of macroscopic quantities, and
they will be computed in the following. An estimate

Ž .of the approximation 6 , related to mesoscale diver-
gence effects, will be computed Aa-posterioriB in
Section 4.1.

The magnitude of the vector sampling error is
illustrated in Fig. 2a and is computed by assuming
no significant cross-correlation between velocity

Ž .components, applying Eq. 1 to each velocity com-
ponent. The sampling error depends on the relative
size of s , characterizing the subgrid-scale variabil-
ity, and N ) the number of independent measure-pE

ments. The distribution of N ) depends on the datapE
Ž .density Fig. 1a and on the Lagrangian integral time

scales, T and T . Lagrangian time scales have beenu v

estimated in G01 for the full data set, and the results
are presented in Fig. 3, while details of the estima-
tion method are given in Appendix A. Fig. 3a,b

Ž .show that T has smaller values, O 3 days , close to

the western boundary and larger values, up to 15
days, close to the eastern boundary where the flow is

Ž .unrealistically smooth see G01 for more details .
The distribution of the velocity variance is illustrated
by r.m.s. eddy velocityreddy kinetic energy in Fig.
4.

As shown in Fig. 2a, the sampling error is the
highest in the equatorial currents, especially the South
Equatorial Current, and in the North Brazil Current
retroflection region, with values on the order of 10
cmrs. This is not surprising given that these regions
are highly energetic and have low data density. Also
the Gulf of Mexico, Caribbean, and Gulf Stream
regions have high errors in the order of 5–6 cmrs.
Energetic regions and upwelling regimes have the
largest sampling errors in our numerical simulations.
Sampling errors are significantly lower in the ocean
interior, approximately 1 cmrs or less, due to low
eddy variability and high data density.

ˆ ˆŽ . Ž . Ž . Ž Ž .. Ž . Ž Ž ..Fig. 2. a Magnitude of the vector sampling error cmrs . b Diffusivity bias U Eq. 4 . c Array bias U Eq. 5 .K C
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Ž .Fig. 2 continued .

Ž . Ž .Estimates of the bias expressions 4 and 5 are
shown in Fig. 2b,c. The diffusivity term K is com-

Ž .puted using the Taylor Taylor, 1921 parameteriza-
tion Kss 2T , while the C and K derivatives are
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Ž . Ž .Fig. 3. Lagrangian velocity integral time scale in days for the a zonal and b meridional directions, for all model drifters in the region.

estimated using a least-squares bi-cubic smoothing
Ž .spline fit to the fields see G01 . Notice that the

estimates of K based on Taylor’s parameterization
probably underestimate the effective diffusivity val-
ues, especially in regions where the shear is not
completely resolved by the mean flow estimates, and
residual shear is present inside specific bins.

ˆ Ž Ž .. Ž .The diffusivity bias vector U Eq. 4 Fig. 2bK

shows a clear pattern of convergence along the major
currents such as the Gulf Stream near 408N, the
North Atlantic Current east of Newfoundland and
south of Greenland, and the South Equatorial Cur-
rent. Maximum values are on the order of 5=10y2

cmrs, definitely smaller than the sampling error,
especially in the major currents where the difference
between Eulerian and pseudo-Eulerian mean speeds
is greater than the bias by two orders of magnitude.

ˆ Ž Ž .. Ž .The array bias vector U Eq. 5 Fig. 2c showsC

a down gradient pattern with respect to C, indicating
a subtropical divergence and equatorial convergence
Ž .opposite to the Ekman flow , as well as a conver-
gence toward the boundary currents. An order of
magnitude estimate for the region north of the sub-
tropical gyre, which as a large concentration gradi-

y2 Ž 6 2 .ent, is 10 cmrs with Ks10 cm rs . Thus, the
bias errors for our simulations are expected to be
much smaller than the error due to finite sampling,
and this is seen to be the case in Fig. 2c, indicating
values of the same order as in Fig. 2b.

ˆEstimates of U are unreliable near land, sinceC

data density is usually lower in one degree bins
containing land. This results in an increase in the

Ž .numerator of Eq. 3 because of the larger gradient,
and a decrease in the denominator due to the lower

ˆvalues of C. This leads to over-estimates of U nearC

land.
Ž . Ž .Summarizing, the bias estimates 4 and 5 pro-

vide values consistently smaller than the sampling
errors, especially in the strong current regions. This
might be partially due to the underestimate of disper-
sion effects related to shear dispersion. There are
only minor qualitative similarities between Fig. 2b
and c. It may require significantly more simulated
drifters whose trajectories are integrated over many
more years before a quantitative comparison between
the two bias errors is possible.

The sampling errors are expected to be larger for
the subsampled data sets given the decreased number
of data, while the bias errors are expected to have a

Žsimilar pattern, given the similar patterns of C Fig.
.1a,b and K. This expectation is confirmed below.

4. Comparison between eulerian and pseudo-
Eulerian estimates

A comparison between Eulerian, U , andE

pseudo-Eulerian, U , estimates of the mean velocitypE
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field U is now presented. We also show the root
mean square of the fluctuation velocity field. The
fluctuation velocity in each bin is given by uXE
Ž . Ž . Ž . X Ž .x, y,t s u x, y,t y U x, y and u x, y,t sE pE

Ž . Ž .u x, y,t yU x, y for Eulerian and pseudo-pE pE

Eulerian estimates, respectively. The r.m.s. of the
fluctuation velocity is related to the eddy kinetic

X X2 X2² : ² :(energy EKE by u s u q Õ s 2EKE(rmsE E E E

X X2 X2² : ² :and u s u q Õ s 2EKE . The( (rmspE pE pE pE

< <magnitude of the Eulerian mean flow, U , and ofE

the eddy r.m.s. velocity, uX , are shown in Fig. 4armsE

and b. We show a double scale in all the figures,
which allows us to identify the mean flow kinetic

Ž Ž 2 2 . Ž 2energy MKE s0.5 U qV , MKE s0.5 UE E E pE pE
2 ..qV and the eddy kinetic energy. These fields arepE

used as the reference AtruthB fields for the analysis
presented in this section. A quantitative comparison,
using a statistical test, is performed between U andE

U , to evaluate the significance of the differencespE

with respect to the sampling error. The bias effect-
sare investigated considering the patterns of the dif-
ference between estimated U and U .E pE

ŽResults from the full data set initial release of 1
.drifters per 18=18, D ts12 h are presented first.

This is our AbenchmarkB, in which the main results
and the nature of the various errors are highlighted
and discussed in detail. We consider the effects of
subsampling, first in space and then in time.

4.1. Results for the full data set

The pseudo-Eulerian estimates for the full data set
< < Ž . Xare shown in Fig. 4c,d for U MKE and upE pE rmspE

Ž .EKE , respectively. By inspection, the fields ap-pE

pear very similar to the Eulerian fields in Fig. 4a,b.
The only easily detectable difference is that the
energy is slightly higher in the Eulerian estimates in
the equatorial region, both in the mean and in eddy
kinetic energy. Also, it appears that the maximum
velocity in the strong western boundary currents is
slightly higher in the pseudo-Eulerian estimates of
the mean, especially in the Gulf of Mexico.

In order to explore more closely the differences in
< <mean flow estimates, the difference U yU haspE E

been computed and is shown in Fig. 5a. As can be
seen, differences in the order of 10 cmrs are present

in the strong current regions, reaching occasional
maxima of about 20 cmrs. In the more quiescent
regions, the differences are on the order of 1 cmrs
or less.

The first question that we address is whether or
not these differences can be considered significant
given the sampling error, i.e., given the uncertainty
due to finite sampling and subgrid-scale variability.
As a first qualitative step, the difference between
Eulerian and pseudo-Eulerian mean velocity esti-

Ž .mates Fig. 5a is compared to the magnitude of the
Ž .sampling error Fig. 2a . The patterns appear similar,

with maximum sampling errors on the order of 10
cmrs. Assuming a Gaussian distribution, this would
imply a 95% confidence level of 20 cmrs, which is
on the same order as the maximum differences in
Fig. 5a. This suggests that the estimates cannot be
considered significantly different in most of the cases.
The evaluation above is a rough one, which consid-
ers only the average size of differences and does not
properly take into account the vectorial nature of the
variables and the spatial distribution of the differ-
ences and the sampling error.

A vectorial statistical test is therefore performed
to evaluate the significance of the differences be-
tween the pseudo-Eulerian and Eulerian mean flow
estimates, considering the Eulerian estimate U asE

AtruthB. The test is based on the statistic

†2 y1L sN U yU S U yU ,Ž . Ž .pE E pE E

where † indicates a matrix transpose, S is the covari-
ance matrix for the pseudo-Eulerian velocity, and N
is the number of independent data points in a given

) Ž .bin, NsN of Eq. 2 . The quantitypE

Ny2
2L ,

2 Ny1Ž .

has an F-distribution with degress of freedom 2 and
Ž .Ny2 Morrison, 1976 . If the magnitude of the test

statistic L2 is greater than the value of

2 Ny1Ž .
0.05F ,2, Ny2Ny2

with F 0.05 being the critical value at 95% confi-2, Ny2
Ž .dence for 2, Ny2 degrees of freedom, then the

mean flow estimates are different at the 95% confi-
dence level. The values of F 0.05 are interpolated2, Ny2
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for a given N from the tables of Abramowitz and
Ž .Stegun 1964 .

The results, shown in Fig. 5b, indicate that the
differences are indeed not significant at the 95%
level over most of the basin. There are some isolated
regions, though, especially near the Equator and the
Gulf Stream region, where the differences appear
significant, indicating that error sources other than
the sampling uncertainty come into play.

Next, we investigate the presence of possible
biases. Because of the sampling error contamination,
they cannot be computed directly as differences be-

tween pseudo-Eulerian and Eulerian means in the 18
bins. As a consequence, an indirect indicator is
considered, given by the pattern of the absolute value

< < < <differences, U y U . In the absence of biases, thepE E
< < < <spatial distribution of the values of U y U is notpE E

expected to have a definite sign. The presence of a
predominant sign in a given region, then, is consid-
ered as a bias indicator.

< < < <The pattern of U y U is shown in Fig. 6a. ItpE E

indicates that the pseudo-Eulerian averages tend to
underestimate the mean flow in the eastern Southern
Equatorial Current and in the tropical basin, while

Ž 2 2 .Fig. 4. Magnitude of the mean vector velocity and mean flow kinetic energy left column, cmrs, and cm rs , and of the eddy vector
Ž 2 2 . Ž . Ž . Ž .velocity and eddy kinetic energy right column, cmrs, and cm rs : a,b Eulerian; c,d pseudo-Eulerian, all drifters; e,f pseudo-Eulerian,
Ž .initially seeded on a 58=58 grid; g,h pseudo-Eulerian, all drifters subsampled at 3-day interval.
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Ž .Fig. 4 continued .

they tend to overestimate the mean flow in the
western boundary currents, especially in the North
Brazil Current and to a lesser degree in the Gulf
Stream area.

Ž .Direct estimates of the biases, U yU , havepE E

been computed for the full data set over 58 bins. In
the 58 bins, in fact, sampling errors are significantly

Žreduced relative to 18 bins by approximately 1r5,
) .assuming N is proportional to the bin area , so thatpE

Žbias patterns can be detected this is not the case for
the subsampled data sets, where sampling errors are

.too high to detect bias patterns even with 58 bins .
The results are shown in Fig. 7a, indicating biases in

Ž .the order of 2–3 cmrs up to f5 cmrs , occurring

primarily in the equatorial region and in the western
boundary. They provide a contribution against the

Ž .current negative bias in the Equatorial system of
currents, while in the western boundary and espe-
cially in the southwestward Brazil current retroflec-
tion they appear to be mostly in the same direction

Ž .of the current positive bias , in agreement with what
was shown in Fig. 6.

The nature of these biases has been investigated,
Ž .considering expression 3 . A direct estimate of Eq.

Ž .3 using the simulated drifter is not feasible, even
Aa-posterioriB, i.e., involving the full history of the
flow and the drifters, because the instantaneous drifter
concentration c is not high enough to significantly
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² X X :estimate u c rC . As a consequence, the bias ef-
fects have been studied using the approximations
Ž . Ž .4 – 6 which capture specific mechanisms as dis-
cussed in Section 3.

The effects of eddy dispersion depicted in Eqs.
Ž . Ž . Ž . Ž4 and 5 Fig. 2b,c appear too small by more

.than one order of magnitude to justify the results.
As discussed in Section 3, this might be partly
related to neglecting the effects of shear dispersion.
Not even the patterns, though, appear able to explain
the observed results, except for an indication of the

Ž .observed biases Fig. 7a in the Southern Equatorial
Current in Fig. 2c.

The effects of mesoscale divergence processes
Ž .have been investigated using Eq. 6 . The right hand

Ž . ² X X:side of Eq. 6 , u h rH, is estimated by using the
mixed layer thickness, and by performing a Eulerian
average over 2 years and over 58 bins, from values
first calculated in 18 bins. The results are shown in
Fig. 7b. A direct comparison between Fig. 7a and b
indicates a good qualitative agreement, even though

Žthe values in Fig. 7b are somewhat smaller not
.exceeding f3 cmrs . The agreement is remarkable

Ž .given that in our application, Eq. 6 includes contri-
butions due to mass exchange between the mixed
layer and interior layers, which do not influence
drifter concentration. The negative bias in the equa-
torial region is clearly present in Fig. 7a. Also,
significant contributions appear in the Brazil current
region, mostly in the same direction as in Fig. 7a.
Part of the differences in this area might be due to
the sampling errors in Fig. 7a, particularly high in
the Brazil Current because of high variability and
sparse sampling. Also, a hint of positive bias contri-
bution can be seen in the Gulf of Mexico and Gulf
Stream regions, again in qualitative agreement with
Fig. 7a. The most noticeable difference between Fig.

Fig. 5. Magnitude of the vector velocity difference with the
< < Ž .Eulerian AtruthB, U yU left, cmrs , and result for the statis-pE E

Ž . Ž . Ž .tical test on this quantity right for: a,b all drifters; c,d initial
Ž .seeding on a 58=58 grid; e,f subsampling at 3-day interval.

Ž . Ž . Ž .Plotted ranges are 0–20, 0–80 and 0–20 cmrs for a , c and e ,
Ž . Ž . Ž .respectively. Blue regions in b , d and f indicate velocity

Ž .estimates which differ significantly at 95% level from the Eule-
rian AtruthB. The statistical test is done where the number of
independent data is greater than 2.
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< < < < Ž . Ž . Ž . Ž .Fig. 6. Pseudo-Eulerian velocity magnitude minus Eulerian velocity magnitude, U y U , cmrs for: a all drifters, b initial seeding on a 58=58 grid, c subsampling atpE E
Ž . Ž .3-day interval. Dark light gray indicate negative positive values, with magnitude 0–50 cmrs.
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ˆ X XŽ . Ž . Ž . ² : ŽFig. 7. a Pseudo-Eulerian–Eulerian velocity, all drifters 58=58 averaged , b U s u h rH computed from the Eulerian fields sameD
.averaging .
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7a and b occurs south of the Equator in the eastern
boundary; the reason for this will be investigated in
the future.

The results of Fig. 7 suggest that mesoscale diver-
gence processes associated with mesoscale features
like eddies and jets are mostly responsible for the
observed biases. In the equatorial region, high veloc-
ity fluctuations appear to be undersampled by drifters,
while they appear to be oversampled in the western
boundary currents. This mechanism has been par-
tially tested by considering the distribution of veloci-
ties inside some selected bins in the western bound-
ary at random times. It has been found that the
drifter trajectories indeed tend to occur in the regions
of highest velocity inside the bins. A similar phe-
nomenon has been observed also for in situ real
drifters in the Kuroshio, comparing velocities along
trajectories and velocity distribution from the altime-

Ž .ter Uchida et al., 1998 . Similarly, Olson and Backus
Ž .1985 have observed high concentrations of organ-
isms in high velocity frontal eddy regions.

As a final aspect, we discuss how patterns of
divergence at large scales also can lead to biases,
when coupled with seasonality. This mechanism is
expected to increase the underestimate in the equato-
rial region. It must be considered in fact that parti-
cles were initially deployed in this region during the

Ž .fall season model date September year 14 , when
Ž .the current is the weakest maximum in the spring

and that the concentration c decreases with time
because this is a large-scale divergence region. Con-
sequently, the average flow appears biased toward
the initial low velocity sampling, for which c has the
highest values and uX has minimum magnitude. In
order to investigate this seasonality effect in a diver-
gent region, three mean velocity fields using differ-
ent 1-year periods are computed, starting at model
dates September year 14, April year 15, and Septem-

Ž .ber year 15 not shown . When comparing the re-
sults, we first notice that in the equatorial region the
velocity fields become progressively noisier from the
first 1-year analysis period to the later ones, as can
be expected given that the number of data progres-
sively decreases. Despite this, the bias in the results
initialized in September appears stronger than in the
results initialized in April, suggesting an influence of
seasonality. Similar seasonal effects on bias have not
been observed in the western boundary region.

In many observational cases, a special type of
potentially large error occurs, related to the binning

Žof finite Lagrangian data with biased sampling Smith
.and Parnes, 1994 . If a bin contains low and high

Ž .velocity regions e.g., a narrow jet and if there is no
re-seeding, as in the launching of a single cluster of
drifters at a single time, the low velocities are sam-
pled a large number of times than the high velocities,
because the drifters with low velocity stay longer in
the bin. This difference can cause a serious velocity
underestimate in bins that contain regions of high
velocity gradient. This bias towards low velocities
could be present in the eastern equatorial Atlantic,
due to the presence of narrow currents and divergent

Žflow which causes the number of drifters entering
.the region to diminish with time .

4.2. Sub-sampling in space

The effects of sub-sampling are studies here by
progressively decreasing the number of drifters, i.e.,
by considering only drifters initially launched with a
horizontal resolution of 28, 38, and 58. The total
number of data, in drifter-days, decreases corre-
spondingly by a factor of 4, 9 and 25, respectively.
As noted in Section 2, the 58 case has 144,000 total
drifter-days, less than the total number of historical
drifter data presently available in the NOAArAOML

Ž .archive 220,000 drifter-days . The average value of
2 drifter-years per 58=58 for the 58 case is lower
than the recommended WOCE sampling. Note that
as mentioned in Section 2, the data density concen-

Ž .tration Fig. 1b is far from homogeneous, being
dominated by large-scale divergence patterns. Maxi-
mum values of about 120 drifter-daysrbin are
reached in the convergence regions, while vast areas
have only a few drifter-days coverage. By compari-
son, the coverage of the in situ drifters, with a

Žmaximum of about 400 drifter-days see G01, Fig.
.3 , is not so fragmented, because of more concen-

trated initial conditions and the shorter life-time of
the drifters. In the following, the bin size for averag-
ing is maintained as 18=18.

< < Ž . X Ž .Examples of U MKE and u EKEpE pE rmspE pE

estimates are shown in Fig. 4e,f, respectively, for the
58 initial resolution. The data sets at 28 and 38 initial
resolution show a gradual transition between Fig.
4c,d and e,f. Despite the higher noise level, the
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structure of the main currents is still well repre-
sented. At a more detailed level, though, the errors
are obviously increased, and the pseudo-Eulerian
mean flow estimate appears to be more energetic

< < < <than both the U and the U computed with theE pE
Ž .full data set Fig. 4a,c . The underestimate in the

eastern North Equatorial Current appears less evi-
dent.

The difference between U and U is quantita-E pE

tively shown in Fig. 5c. Differences in the order 40
cmrs commonly found in the regions of strong
currents, reaching 60 cmrs in some locations, while
in the interior the values are on the order of a few
centimeter per second. On the average, the differ-
ences are approximately four times larger than in the

Ž .case of the full data set Fig. 5a . On the other hand,
the sampling error is expected to increase by approx-
imately five times, on average, given that the total

Žnumber of data has decreased by 25 times see Eqs.
Ž . Ž ..1 and 2 . As a consequence, we can expect that
most of the differences will not be significant, as for
the full data set. The results of the test, shown in Fig.
5d partially confirm this hypothesis, even though
there are extensive regions where the test cannot be
applied because there are only two independent data

Ž ) Ž ..points or less N of Eq. 2 , pointing out howpE

sparse the spatially subsampled data set is. Statistical
reliability can of course be increased by considering

Ž .larger averaging bins for example 58=58 . This is a
common practice in practical applications with low
data concentration, even though increasing binning
size implies losing resolution, with detrimental ef-
fects especially in the strong current regions. Here,
the 18=18 binning is maintained because we are
interested in the sub-sampling effects at a given
resolution, and in the direct comparison with previ-
ous results.

Finally, the bias errors have been investigated
< < < <considering the pattern of U y U , which ispE E

shown for the 58=58 initial resolution in Fig. 6b. As
the number of drifters decreases from the full data

Ž .set to the subsampled case Fig. 6a,b , the observed
overestimates in the western boundary currents be-
come more evident. This was already shown by
simple inspection of Fig. 4c,e and it is obvious in
Fig. 6b. The overestimates are especially strong along
the boundary currents, but they appear pervasive in
the entire basin, while the underestimates in the

eastern South Equatorial Current are less detectable,
possibly for lack of data. The mechanism for increas-
ing overestimates at decreasing spatial sampling is
not clear yet, and it will be studied in detail in the
future. First, the robustness of this result will be
tested considering different initial realizations, even
though the fact that the phenomenon is so pervasive
might suggest that it is independent of specific initial
condition realizations. Then, as mentioned in Section
4.1, the phenomenon will be linked with the bias Eq.
Ž .3 , considering its sampling dependence. There is a
possibility that the initial seeding of drifters at 58=58
horizontal resolution has preferentially placed drifters
in or near the strong currents, such as the Gulf
Stream at 408N or at 758W, and that due to mesoscale
convergence those drifters tend to stay in the high
velocity core, sampling the larger velocities.

4.3. Subsampling in time

The effects of subsampling in time are studied by
increasing the sampling interval D t to 1 and 3 days,
considering the data set with initial resolution of
18=18. We recall that the integral time scales T are
longer than 3 days over almost all of the model

Ždomain except for the western boundaries see G01,
.Fig. 5 , so that in the interior consecutive measure-

ments can also be considered correlated in the sub-
sampled data sets. There, the number of data points
decreases by a factor of 2 and 6, respectively, but the

Ž Ž ..number of independent measurements Eq. 2 does
not change.

< < Ž . XThe estimates of U MKE and upE pE rmspE
Ž .EKE for D ts3 days are shown in Fig. 4g,h. ThepE

results for D ts1 day can be interpolated from the
full data set case and the case discussed in this
section, and are therefore not presented. Mean cur-
rents and kinetic energy appear qualitatively very

Žsimilar to the full data set case. Quantitatively Fig.
.5e , the differences between U and U appearE pE

more pronounced, especially near the Brazil Current,
Gulf of Mexico, and Gulf Stream, with differences
on the order of 15–20 cmrs. The pattern of sam-
pling error is expected to be similar to the full data
set case, since the number of independent measure-

Ž Ž ..ments Eq. 2 is approximately the same except for
the most energetic regions where drifters might cross
the region in less that 3 days, and for regions with
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the shortest Lagrangian time scales. If the sampling
errors are approximately the same, it is not surprising
that the test results for temporally subsampled data
Ž .Fig. 5f show more significant differences than for

< <the full data set, with larger values of U yU .pE E

This indicates that the observed differences are due
to other reasons than the sampling error, as discussed
next.

The possible existence of biases is investigated
< < < <considering the values of U y U in Fig. 6c. ThepE E

underestimate in the eastern equatorial region, no-
Ž .ticed in the full data set case Fig. 6a , is evident

here also. In contrast with what is seen in Fig. 6a,
however, the western boundary regions appear char-
acterized by underestimates rather than overesti-
mates, especially in the regions of significant differ-
ences seen in Fig. 5f.

This result is likely to be due to the fact that
increasing D t results in decreasing the value of
instantaneous high velocities, in agreement with the

Ž .results of Mockett 1999 , counterbalancing and
over-riding the positive bias due to oversampling of
high velocity fronts. Energetic drifters might not be
approximately accounted for correctly, since they
can cross the bin in less than 3 days, so that their
velocity is not approximately registered inside a
single bin. If both extremes of the 3-day sampled
velocity are the average of the six values of the 12-h
sampled velocity, and there is no error. Differences
would only appear when the trajectory end points are
not in the same bin. In this case, we attribute the
3-day mean velocity to a mid bin while in the 12-h
case, velocities, are resolved over more than one bin.
In a region where the trajectories curve and the
magnitude of the velocity is approximately constant,
as in the North Brazil eddies, Gulf of Mexico loop
current, and Florida Current, the 3-day average ve-
locity attributed to the middle bin is smaller than the
12-h velocity, and the location is displaced. For this
effect to be present, the particles must cross the bins
in less than the time sampling interval, and the
interval has to be longer than the Lagrangian time
scale. For intervals shorter than the Lagrangin time
scale, successive velocities would essentially be equal
in magnitude and direction, and there would be no
significant velocity difference between the full and
time-subsampled cases. As discussed also in Section
4.2 for the subsampling in space, results can be

improved by considering larger averaging bins, but
Žat the price of losing resolution Figueroa and Olson,

.1994 .
It is important to emphasize that significant differ-

ences occur mostly in the western boundary, where
the values of the Lagrangian time scales are on the

Ž .order of or less than 3 days, i.e., the order of the
Ž .sampling rate Fig. 3 . Since T is actually signifi-

Žcantly shorter for real drifters than in the model by
.about a factor of 2, G01 , it can be speculated that

subsampling effects will also be more relevant for
real drifter analysis.

5. Summary and concluding remarks

In this paper, the reconstruction of the Eulerian
mean flow using Lagrangian data and the effects of
subsampling in space and time have been studied. A
numerical flow, the solution of a high resolution

ŽMICOM simulation of the North Atlantic Paiva et
.al., 1999, G01, Chassignet et al., 2001 , is consid-

ered. A set of trajectories is computed, simulating
the motion of surface drifters initially launched on a
regular array of 18=18, and results over a period of
approximately 2 years are analyzed. The drifter dis-
tribution in time is influenced by the large scale
Ekman divergence pattern, which results in a maxi-
mum data concentration in the divergent upwelling
regions.

A comparison is carried out between estimates of
the Eulerian mean flow U and of the pseudo-E

Eulerian mean flow U , computed in 18=18 bins.pE

The Eulerian mean U is computed as a directE

average of the instantaneous velocities of all grid
points inside the bin for the 2-year period. U ,pE

however, is computed by averaging in each bin all
the available velocities along trajectories during the
2 years. The comparison is first performed using the
full Lagrangian data set, with sampling intervals
D ts12 h and drifters initially seeded at 18=18
horizontal resolution, and then by subsampling the
data in space and time.

For the full data set with total data corresponding
Žto approximately 50 drifter-years per 58=58 sub-

.stantially more than the WOCE requirement , differ-
ences on the order of 10 cmrs are found between UE

and U in the strong current regions, reaching occa-pE

sional maxima of about 20 cmrs. A statistical test



( )Z.D. Garraffo et al.rJournal of Marine Systems 29 2001 177–200 197

shows that these differences are usually not signifi-
cant at the 95% confidence level, i.e., they are
mostly due to the uncertainty related to subgrid-scale
variability and finite sampling. Nevertheless, there
are some areas, especially in the eastern equatorial
region and in the western boundary currents, where
the differences are significant, suggesting other
sources of error.

The presence of biases is first investigated consid-
ering the pattern of the difference of the absolute

< < < <values, U y U . The calculations suggest thatpE E
< < < <U underestimates U in the eastern equatorialpE E

region, while it overestimates it in the western
boundary currents in the eastern equatorial region,
while it overestimates it in the western boundary
currents and especially in the North Brazil Current.
Direct bias estimates are also computed for the full
data set with a 58 binning, confirming these results.
The possibility that the observed biases are due to
eddy dispersion processes has been tested, but the

Ž .corresponding bias terms Davis, 1991 are estimated
to be too small to explain the observed values.
Alternatively, it is suggested that the results are
related to a bias induced by mesoscale divergence
processes and expressed through the correlation be-
tween instantaneous velocity and mixed layer thick-
ness, used as a proxy for particle concentration,
ˆ X X² : Ž .U s u h rH Davis, 1998 . Despite the fact thatD

mixed layer thickness is influenced also by mass
ˆexchange with the interior layers, U appears able toD

explain most of the observed bias patterns. In the
equatorial region, high velocity fluctuations appear
undersampled by the drifters, while in the western
boundary currents high velocity regions in eddies
and fronts appear oversampled. A similar phe-
nomenon has been observed also in in situ drifters in

Ž .the Kuroshio Uchida et al., 1998 and in biological
Žorganism concentration in eddies Olson and Backus,

.1985 .
When subsampling in space is considered, it is

observed that the errors increase, reaching approxi-
mately 40 cmrs with maxima of 70–80 cmrs in the

Ž58 subsampling case which is lower than the WOCE
.recommendation . Also in this case, the errors are

mostly due to sampling uncertainty. The overesti-
mate of the mean velocity U , suggestive of apE

positive bias, appears to increase, becoming evident
also in the interior of the basin. The reason for this

increase is not clear at this point, and is under
investigation.

Subsampling in time slightly increases the errors
in the major currents, which, for D ts3 days, be-
come more clearly significant in the western bound-
ary currents. This is probably due to the fact that
Lagrangian time scales are shorter than D t only in
these highly energetic areas. U tends to underesti-pE

mate rather than overestimate the mean flow, in
Ž .agreement with previous results Mockett, 1999 .

This is probably because instantaneous high veloci-
ties are smoothed and energetic drifters are not ap-
propriately accounted for, since they can cross the
bin in less than 3 days. This induces a bias, which
overrides the tendency to oversample high velocity
fronts.

The present results are obtained for numerical
flow and trajectories. An important question is how
realistic are these results and how much can they be
used as guidance for in situ data analysis. As dis-
cussed in G01, the numerical flow used here pro-
vides a realistic description of the main currents in
the Atlantic Ocean, while it tends to underestimate
the eddy kinetic enery in the interior and to overesti-
mate the Lagrangian time scales T , probably due to
the lack of high frequency winds in the model
forcing and to the bulk mixed layer representation.

ŽDespite this, we recall that the sampling error Eq.
Ž ..1 at given number of observations depends ap-
proximately on the product s 2T. As a consequence,
the results for the error magnitude and significance
discussed here for the various data sets can be used
quite directly as guidance for in situ data. Possible
differences can arise from the geographical data
distribution. The numerical data distribution, in fact,

Žis more clearly dependent on Ekman divergence see
.G01 , because the initial releases of in situ drifters

are usually more concentrated and the drifter’s life
time is too short to be strongly influenced by large
scale divergence.

Regarding the results on the underroverestimates
of U and their relationship to subsampling, wepE

believe that they are of potential great interest in the
analysis of real flows. In particular, attention is

ˆdrawn to the possible relationship to the bias UD

related to the correlation between drifter concentra-
Ž .tion and velocity. As indicated by Davis 1998 , this

bias is likely to be related to the Aeddy transportB
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discussed and parameterized by Gent and
Ž .McWilliams 1990 , and is thought to represent the

actual difference between tracer mean advection and
Eulerian mean velocity. In the future, we intend to
further investigate this matter, first testing the results
quantitatively, by verifying their robustness with re-
spect to numerical advection schemes, initial distri-
butions, and characteristics of the mixed layer pa-
rameterization. At a more conceptual level, we also
intend to investigate possible parameterizations of
Û as a function of macroscopic variables and un-D

derstand its dependence on sampling in space and
time.
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Appendix A. Lagrangian time scales

Ž .The Lagrangian velocity time scale Ts T ,T isu Õ

a purely Lagrangian quantity defined for the two
velocity components as

`1
T s R t dt ,Ž .Hu uu2s 0u

and
`1

T s R t dt .Ž .HÕ Õ Õ2s 0Õ

R is the Lagrangian temporal auto-covariance
function, computed for u and Õ following particles,
and defined as

² :R t s u t yu t u tqt yu t ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .uu

² :R t s Õ t yÕ t Õ tqt yÕ t ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .
Õ Õ

² :where the symbol indicates expected values.

The estimates of T , performed in G01 and shown
in Fig. 3, are calculated by first dividing the drifter
trajectories into segments whose first and last posi-
tions are 400 km apart. Four hundred kilometers is
chosen as a compromise in order to have sufficient
data to reliably calculate temporal covariance func-
tions and also to resolve the spatial details of the
eddy field. All AleftoverB segments or short trajecto-
ries containing at least 50 positions are also used in
the analysis. For each velocity component, R is

² :estimated computing the expected value, , as an
arithmetic average over all data with lag t . The

Ž . Ž .average velocities, u t , Õ t , are given by a least-
squares fit to a linear trend using 400 km long
subsets of a drifter’s trajectory. The variances of u

2 2 Ž .and Õ, denoted by s and s , are R 0 andu Õ uu
Ž .R 0 , respectively.

Õ Õ

When R is calculated from a finite data set, a
subjective choice for the limits of integration to
compute T must be made. To avoid this problem and
to gain statistical confidence, a function of a small
number of parameters is fitted to each temporal
auto-covariance function R,

R t ss 2 1ye 2 cos 2ptrP eyŽtrt e.
2
,Ž . Ž .Ž .n

2 Ž 2 .where e is the normalized by total variance sn

variance of subgrid scale processes and measurement
variance for the data, P is the period that equals four
times the zero-crossing scale of the covariance func-
tion, and t is the e-folding scale or the turbulente

time scale. This covariance function, based on a
smoothed version of a second-order auto-regressive
process, contains a wave component and a turbulent
component, and produces excellent fits to the ob-
served and simulated Lagrangian velocity covariance
functions.

Ž 2 .The three parameters e , P, and t are deter-n e

mined using the feature-based technique described in
Ž .Mariano and Chin 1996 , which finds the value of

Ž . Ž 2Ž 2 ..R t at zero lag ss 1ye , finds the zero-n
Ž .crossing scale of R sPr4 by determining where

Ž .R t changes from positive to negative, and finds the
e-folding scale t from the first two parameters, ane

Ž .initial guess consisting of the lag at which R t is
1re of its initial value, with the best fit being
determined in a least-squares sense.

The time scales, computed for each 400 km long
subset of a drifter trajectory, are determined by
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Ž . Ževaluating the integral of R t Gradshteyn and
.Ryzhik, 1980 ,

`
2 2t yp te e2 2 'R t dtss 1ye p exp ,Ž . Ž .H n 2ž /2 P0

using the estimated three parameters and s 2. Then,
the integral time scale is

2 2t yp te e2 'Ts 1ye p exp .Ž .n 2ž /2 P

Direct numerical integration of the temporal auto-co-
variance functions, using n temporal lags, requires
estimating n parameters for the integration. Each of
these n parameters is noisy and small changes in n
can cause large changes in the value of the integral.
This is especially true when the temporal auto-co-
variance function has large negative lobes. The inte-
gration of the Lagrangian velocity autocovariance
function using three parameters leads to more robust
estimates of the Lagrangian velocity time scales than

Ž .does the numerical integration of n values R t .
The values of T are assigned to the midpoint of

the drifter trajectory. A least-squares bi-cubic
Ž .smoothing spline Inoue, 1986 is then used to inter-

polate the estimates of T to a regular grid. The plots
Ž .Figs. 3 and 6 of G01 are contoured to a 58=58
grid to enhance the large scale structure of the
Lagrangian velocity time scales.
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